1
|
Shapira S, Finkelshtein E, Kazanov D, Naftali E, Stepansky I, Loyter A, Elbirt D, Hay-Levy M, Brazowski E, Bedny F, Dekel R, Hershkovitz D, Blachar A, Wolf I, Arber N. Integrase-derived peptides together with CD24-targeted lentiviral particles inhibit the growth of CD24 expressing cancer cells. Oncogene 2021; 40:3815-3825. [PMID: 33958722 PMCID: PMC8175240 DOI: 10.1038/s41388-021-01779-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/02/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022]
Abstract
The integration of viral DNA into the host genome is mediated by viral integrase, resulting in the accumulation of double-strand breaks. Integrase-derived peptides (INS and INR) increase the number of integration events, leading to escalated genomic instability that induces apoptosis. CD24 is a surface protein expressed mostly in cancer cells and is very rarely found in normal cells. Here, we propose a novel targeted cancer therapeutic platform based on the lentiviral integrase, stimulated by integrase-derived peptides, that are specifically delivered to cancerous cells via CD24 antigen-antibody targeting. INS and INR were synthesized and humanized and anti-CD24 antibodies were fused to the lentivirus envelope. The activity, permeability, stability, solubility, and toxicity of these components were analyzed. Cell death was measured by fluorescent microscopy and enzymatic assays and potency were tested in vitro and in vivo. Lentivirus particles, containing non-functional DNA led to massive cell death (40–70%). Raltegravir, an antiretroviral drug, inhibited the induction of apoptosis. In vivo, single and repeated administrations of INS/INR were well tolerated without any adverse effects. Tumor development in nude mice was significantly inhibited (by 50%) as compared to the vehicle arm. In summary, a novel and generic therapeutic platform for selective cancer cell eradication with excellent efficacy and safety are presented.
Collapse
Affiliation(s)
- Shiran Shapira
- Health Promotion Center and Integrated Cancer Prevention Center, Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | - Dina Kazanov
- Health Promotion Center and Integrated Cancer Prevention Center, Sourasky Medical Center, Tel-Aviv, Israel
| | | | - Irena Stepansky
- Oncology Division, Tel Aviv Medical Center, Tel-Aviv, Israel
| | - Abraham Loyter
- Department of Biological Chemistry, The Alexander Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Daniel Elbirt
- Clinical Immunology, Allergy and AIDS Center Kaplan Medical Center, Affiliated with Hadassah-Hebrew University Medical School Jerusalem, Rehovot, Israel
| | - Mori Hay-Levy
- Health Promotion Center and Integrated Cancer Prevention Center, Sourasky Medical Center, Tel-Aviv, Israel
| | - Eli Brazowski
- Pathology Institute, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Faina Bedny
- Pathology Institute, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Roy Dekel
- Health Promotion Center and Integrated Cancer Prevention Center, Sourasky Medical Center, Tel-Aviv, Israel
| | - Dov Hershkovitz
- Pathology Institute, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Arye Blachar
- Department of Radiology, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ido Wolf
- Oncology Division, Tel Aviv Medical Center, Tel-Aviv, Israel
| | - Nadir Arber
- Health Promotion Center and Integrated Cancer Prevention Center, Sourasky Medical Center, Tel-Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Samarasimhareddy M, Shamir M, Shalev DE, Hurevich M, Friedler A. A Rapid and Efficient Building Block Approach for Click Cyclization of Peptoids. Front Chem 2020; 8:405. [PMID: 32509731 PMCID: PMC7248394 DOI: 10.3389/fchem.2020.00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclic peptide-peptoid hybrids possess improved stability and selectivity over linear peptides and are thus better drug candidates. However, their synthesis is far from trivial and is usually difficult to automate. Here we describe a new rapid and efficient approach for the synthesis of click-based cyclic peptide-peptoid hybrids. Our methodology is based on a combination between easily synthesized building blocks, automated microwave assisted solid phase synthesis and bioorthogonal click cyclization. We proved the concept of this method using the INS peptide, which we have previously shown to activate the HIV-1 integrase enzyme. This strategy enabled the rapid synthesis and biophysical evaluation of a library of cyclic peptide-peptoid hybrids derived from HIV-1 integrase in high yield and purity. The new cyclic hybrids showed improved biological activity and were significantly more stable than the original linear INS peptide.
Collapse
Affiliation(s)
| | - Mai Shamir
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E. Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem, Israel
| | - Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Abstract
HIV integrase (IN) catalyzes the insertion into the genome of the infected human cell of viral DNA produced by the retrotranscription process. The discovery of raltegravir validated the existence of the IN, which is a new target in the field of anti-HIV drug research. The mechanism of catalysis of IN is depicted, and the characteristics of the inhibitors of the catalytic site of this viral enzyme are reported. The role played by the resistance is elucidated, as well as the possibility of bypassing this problem. New approaches to block the integration process are depicted as future perspectives, such as development of allosteric IN inhibitors, dual inhibitors targeting both IN and other enzymes, inhibitors of enzymes that activate IN, activators of IN activity, as well as a gene therapy approach.
Collapse
Affiliation(s)
- Roberto Di Santo
- Dipartimento
di Chimica e
Tecnologie del Farmaco, Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, P.le Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
4
|
Levin A, Hayouka Z, Friedler A, Loyter A. Specific eradication of HIV-1 from infected cultured cells. AIDS Res Ther 2010; 7:31. [PMID: 20723214 PMCID: PMC2933580 DOI: 10.1186/1742-6405-7-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/19/2010] [Indexed: 11/28/2022] Open
Abstract
A correlation between increase in the integration of Human Immunodeficiency virus-1 (HIV-1) cDNA and cell death was previously established. Here we show that combination of peptides that stimulate integration together with the protease inhibitor Ro 31-8959 caused apoptotic cell death of HIV infected cells with total extermination of the virus. This combination did not have any effect on non-infected cells. Thus it appears that cell death is promoted only in the infected cells. It is our view that the results described in this work suggest a novel approach to specifically promote death of HIV-1 infected cells and thus may eventually be developed into a new and general anti-viral therapy.
Collapse
|
5
|
Levin A, Hayouka Z, Friedler A, Loyter A. Peptides derived from the HIV-1 integrase promote HIV-1 infection and multi-integration of viral cDNA in LEDGF/p75-knockdown cells. Virol J 2010; 7:177. [PMID: 20678206 PMCID: PMC2924314 DOI: 10.1186/1743-422x-7-177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/02/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The presence of the cellular Lens Epithelium Derived Growth Factor p75 (LEDGF/p75) protein is essential for integration of the Human immunodeficiency virus type 1 (HIV-1) cDNA and for efficient virus production. In the absence of LEDGF/p75 very little integration and virus production can be detected, as was demonstrated using LEDGF/p75-knockdown cells. RESULTS Here we show that the failure to infect LEDGF/p75-knockdown cells has another reason aside from the lack of LEDGF/p75. It is also due to inhibition of the viral integrase (IN) enzymatic activity by an early expressed viral Rev protein. The formation of an inhibitory Rev-IN complex in virus-infected cells can be disrupted by the addition of three IN-derived, cell-permeable peptides, designated INr (IN derived-Rev interacting peptides) and INS (IN derived-integrase stimulatory peptide). The results of the present work confirm previous results showing that HIV-1 fails to infect LEDGF/p75-knockdown cells. However, in the presence of INrs and INS peptides, relatively high levels of viral cDNA integration as well as productive virus infection were obtained following infection by a wild type (WT) HIV-1 of LEDGF/p75-knockdown cells. CONCLUSIONS It appears that the lack of integration observed in HIV-1 infected LEDGF/p75-knockdown cells is due mainly to the inhibitory effect of Rev following the formation of a Rev-IN complex. Disruption of this inhibitory complex leads to productive infection in those cells.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|