1
|
Zhang DK, Song KY, Yan YQ, Zheng JT, Xu J, Da LT, Xu MJ. Structural and mechanistic investigations on CC bond forming α-oxoamine synthase allowing L-glutamate as substrate. Int J Biol Macromol 2024; 268:131696. [PMID: 38642679 DOI: 10.1016/j.ijbiomac.2024.131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Carbon‑carbon (C-C) bonds serve as the fundamental structural backbone of organic molecules. As a critical CC bond forming enzyme, α-oxoamine synthase is responsible for the synthesis of α-amino ketones by performing the condensation reaction between amino acids and acyl-CoAs. We previously identified an α-oxoamine synthase (AOS), named as Alb29, involved in albogrisin biosynthesis in Streptomyces albogriseolus MGR072. This enzyme belongs to the α-oxoamine synthase family, a subfamily under the pyridoxal 5'-phosphate (PLP) dependent enzyme superfamily. In this study, we report the crystal structures of Alb29 bound to PLP and L-Glu, which provide the atomic-level structural insights into the substrate recognition by Alb29. We discover that Alb29 can catalyze the amino transformation from L-Gln to L-Glu, besides the condensation of L-Glu with β-methylcrotonyl coenzyme A. Subsequent structural analysis has revealed that one flexible loop in Alb29 plays an important role in both amino transformation and condensation. Based on the crystal structure of the S87G mutant in the loop region, we capture two distinct conformations of the flexible loop in the active site, compared with the wild-type Alb29. Our study offers valuable insights into the catalytic mechanism underlying substrate recognition of Alb29.
Collapse
Affiliation(s)
- Dai-Ke Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai-Yuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ya-Qian Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jian-Ting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
2
|
Ikushiro H, Honda T, Murai Y, Murakami T, Takahashi A, Sawai T, Goto H, Ikushiro SI, Miyahara I, Hirabayashi Y, Kamiya N, Monde K, Yano T. Racemization of the substrate and product by serine palmitoyltransferase from Sphingobacterium multivorum yields two enantiomers of the product from d-serine. J Biol Chem 2024; 300:105728. [PMID: 38325740 PMCID: PMC10912632 DOI: 10.1016/j.jbc.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Takumi Honda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuta Murai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan; Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Taiki Murakami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Aya Takahashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Taiki Sawai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Haruna Goto
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yoshio Hirabayashi
- RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan; Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Nobuo Kamiya
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| |
Collapse
|
3
|
Chen A, Re RN, Davis TD, Tran K, Moriuchi YW, Wu S, La Clair JJ, Louie GV, Bowman ME, Clarke DJ, Mackay CL, Campopiano DJ, Noel JP, Burkart MD. Visualizing the Interface of Biotin and Fatty Acid Biosynthesis through SuFEx Probes. J Am Chem Soc 2024; 146:1388-1395. [PMID: 38176024 DOI: 10.1021/jacs.3c10181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Site-specific covalent conjugation offers a powerful tool to identify and understand protein-protein interactions. In this study, we discover that sulfur fluoride exchange (SuFEx) warheads effectively crosslink the Escherichia coli acyl carrier protein (AcpP) with its partner BioF, a key pyridoxal 5'-phosphate (PLP)-dependent enzyme in the early steps of biotin biosynthesis by targeting a tyrosine residue proximal to the active site. We identify the site of crosslink by MS/MS analysis of the peptide originating from both partners. We further evaluate the BioF-AcpP interface through protein crystallography and mutational studies. Among the AcpP-interacting BioF surface residues, three critical arginine residues appear to be involved in AcpP recognition so that pimeloyl-AcpP can serve as the acyl donor for PLP-mediated catalysis. These findings validate an evolutionary gain-of-function for BioF, allowing the organism to build biotin directly from fatty acid biosynthesis through surface modifications selective for salt bridge formation with acidic AcpP residues.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Rebecca N Re
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Kelley Tran
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Yuta W Moriuchi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Sitong Wu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Gordon V Louie
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Marianne E Bowman
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - David J Clarke
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - C Logan Mackay
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - Dominic J Campopiano
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| |
Collapse
|
4
|
Ogonkov A, Dieterich CL, Meoded RA, Piel J, Fraley AE, Sasso S. Characterization of an Unusual α-Oxoamine Synthase Off-Loading Domain from a Cyanobacterial Type I Fatty Acid Synthase. Chembiochem 2023; 24:e202300209. [PMID: 37144248 DOI: 10.1002/cbic.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/06/2023]
Abstract
Type I fatty acid synthases (FASs) are known from higher eukaryotes and fungi. We report the discovery of FasT, a rare type I FAS from the cyanobacterium Chlorogloea sp. CCALA695. FasT possesses an unusual off-loading domain, which was heterologously expressed in E. coli and found to act as an α-oxoamine synthase (AOS) in vitro. Similar to serine palmitoyltransferases from sphingolipid biosynthesis, the AOS off-loading domain catalyzes a decarboxylative Claisen condensation between l-serine and a fatty acyl thioester. While the AOS domain was strictly specific for l-serine, thioesters with saturated fatty acyl chains of six carbon atoms and longer were tolerated, with the highest activity observed for stearoyl-coenzyme A (C18 ). Our findings suggest a novel route to α-amino ketones via the direct condensation of iteratively produced long-chain fatty acids with l-serine by a FAS with a cis-acting AOS off-loading domain.
Collapse
Affiliation(s)
- Andrei Ogonkov
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
- Institute of Biology, Leipzig University, Johannisallee 23, 04107, Leipzig, Germany
| | - Cora L Dieterich
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Roy A Meoded
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Jörn Piel
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Amy E Fraley
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Severin Sasso
- Institute of Biology, Leipzig University, Johannisallee 23, 04107, Leipzig, Germany
| |
Collapse
|
5
|
Ikushiro H, Murakami T, Takahashi A, Katayama A, Sawai T, Goto H, Koolath S, Murai Y, Monde K, Miyahara I, Kamiya N, Yano T. Structural insights into the substrate recognition of serine palmitoyltransferase from Sphingobacterium multivorum. J Biol Chem 2023; 299:104684. [PMID: 37030501 DOI: 10.1016/j.jbc.2023.104684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023] Open
Abstract
Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of L-serine (L-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize L-alanine (L-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from L-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only L-Ala and Gly but also L-homoserine, in addition to L-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, L-threonine, and determined the structures at 1.40-1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Taiki Murakami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Aya Takahashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Asuka Katayama
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Taiki Sawai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Haruna Goto
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Sajeer Koolath
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Sapporo, Hokkaido 001-0021, JAPAN
| | - Yuta Murai
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Sapporo, Hokkaido 001-0021, JAPAN
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Sapporo, Hokkaido 001-0021, JAPAN
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Nobuo Kamiya
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan; Research Center for Artificial Photosynthesis, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
6
|
Padilla-Gómez J, Olea-Ozuna RJ, Contreras-Martínez S, Morales-Tarré O, García-Soriano DA, Sahonero-Canavesi DX, Poggio S, Encarnación-Guevara S, López-Lara IM, Geiger O. Specialized acyl carrier protein used by serine palmitoyltransferase to synthesize sphingolipids in Rhodobacteria. Front Microbiol 2022; 13:961041. [PMID: 35992722 PMCID: PMC9386255 DOI: 10.3389/fmicb.2022.961041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Serine palmitoyltransferase (SPT) catalyzes the first and committed step in sphingolipid biosynthesis condensating L-serine and acyl-CoA to form 3-oxo-sphinganine. Whenever the structural gene for SPT is present in genomes of Rhodobacteria (α-, β-, and γ-Proteobacteria), it co-occurs with genes coding for a putative acyl carrier protein (ACP) and a putative acyl-CoA synthetase (ACS). In the α-proteobacterium Caulobacter crescentus, CC_1162 encodes an SPT, whereas CC_1163 and CC_1165 encode the putative ACP and ACS, respectively, and all three genes are known to be required for the formation of the sphingolipid intermediate 3-oxo-sphinganine. Here we show that the putative ACP possesses a 4'-phosphopantetheine prosthetic group, is selectively acylated by the putative ACS and therefore is a specialized ACP (AcpR) required for sphingolipid biosynthesis in Rhodobacteria. The putative ACS is unable to acylate coenzyme A or housekeeping ACPs, but acylates specifically AcpR. Therefore, it is a specialized acyl-ACP synthetase (AasR). SPTs from C. crescentus, Escherichia coli B, or Sphingomonas wittichii use preferentially acyl-AcpR as thioester substrate for 3-oxo-sphinganine synthesis. Whereas acyl-AcpR from C. crescentus is a good substrate for SPTs from distinct Rhodobacteria, acylation of a specific AcpR is achieved by the cognate AasR from the same bacterium. Rhodobacteria might use this more complex way of 3-oxo-sphinganine formation in order to direct free fatty acids toward sphingolipid biosynthesis.
Collapse
Affiliation(s)
- Jonathan Padilla-Gómez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | - Orlando Morales-Tarré
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Isabel M. López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- *Correspondence: Otto Geiger,
| |
Collapse
|
7
|
Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Lett 2022; 596:2345-2363. [PMID: 35899376 DOI: 10.1002/1873-3468.14457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
Modern cell membranes contain a bewildering complexity of lipids, among them sphingolipids (SLs). Advances in mass spectrometry have led to the realization that the number and combinatorial complexity of lipids, including SLs, is much greater than previously appreciated. SLs are generated de novo by four enzymes, namely serine palmitoyltransferase, 3-ketodihydrosphingosine reductase, ceramide synthase and dihydroceramide Δ4-desaturase 1. Some of these enzymes depend on the availability of specific substrates and cofactors, which are themselves supplied by other complex metabolic pathways. The evolution of these four enzymes is poorly understood and likely depends on the co-evolution of the metabolic pathways that supply the other essential reaction components. Here, we introduce the concept of the 'anteome', from the Latin ante ('before') to describe the network of metabolic ('omic') pathways that must have converged in order for these pathways to co-evolve and permit SL synthesis. We also suggest that current origin of life and evolutionary models lack appropriate experimental support to explain the appearance of this complex metabolic pathway and its anteome.
Collapse
Affiliation(s)
- Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
8
|
Liaw CC, Lo LH, Cheng TH, Chan YT, Huang YR, Wang AHJ, Chang HY. Biosynthesis of Vitroprocines by α-Oxoamine Synthase and Oxidoreductase Identified from Vibrio sp. QWI-06. Org Lett 2022; 24:3281-3285. [PMID: 35467888 DOI: 10.1021/acs.orglett.2c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A specific α-oxoamine synthase (VsAOS-2) and an oxidoreductase (VsOR) identified from marine Vibrio sp. QWI-06 were involved in the decarboxylative condensation of l-tyrosine to lauroyl-CoA following the reduction of the ketone group to form vitroprocine-type compound 1. The intermediates and products were characterized through HR-MS and their MS/MS fragmentations. This study reveals the biosynthetic pathway of vitroprocines and provides a useful model for elucidating the reaction mechanism underlying the production of amino acid-polyketide derivatives in microorganisms.
Collapse
Affiliation(s)
- Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.,Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Hua Lo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Tien-Hsing Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yuen Ting Chan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Ru Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Andrew H-J Wang
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Hsin-Yang Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
9
|
Stankeviciute G, Tang P, Ashley B, Chamberlain JD, Hansen ME, Coleman A, D’Emilia R, Fu L, Mohan EC, Nguyen H, Guan Z, Campopiano DJ, Klein EA. Convergent evolution of bacterial ceramide synthesis. Nat Chem Biol 2022; 18:305-312. [PMID: 34969973 PMCID: PMC8891067 DOI: 10.1038/s41589-021-00948-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial domain produces numerous types of sphingolipids with various physiological functions. In the human microbiome, commensal and pathogenic bacteria use these lipids to modulate the host inflammatory system. Despite their growing importance, their biosynthetic pathway remains undefined since several key eukaryotic ceramide synthesis enzymes have no bacterial homolog. Here we used genomic and biochemical approaches to identify six proteins comprising the complete pathway for bacterial ceramide synthesis. Bioinformatic analyses revealed the widespread potential for bacterial ceramide synthesis leading to our discovery of a Gram-positive species that produces ceramides. Biochemical evidence demonstrated that the bacterial pathway operates in a different order from that in eukaryotes. Furthermore, phylogenetic analyses support the hypothesis that the bacterial and eukaryotic ceramide pathways evolved independently.
Collapse
Affiliation(s)
- Gabriele Stankeviciute
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Peijun Tang
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Ben Ashley
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Joshua D. Chamberlain
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Matthew E.B. Hansen
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimiyah Coleman
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Rachel D’Emilia
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Larina Fu
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Eric C. Mohan
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Hung Nguyen
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
| | - Dominic J. Campopiano
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom,Correspondence to: , , and
| | - Eric A. Klein
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA,Biology Department, Rutgers University-Camden, Camden, NJ 08102, USA.,Correspondence to: , , and
| |
Collapse
|
10
|
Belton S, Lamari N, Jermiin LS, Mariscal V, Flores E, McCabe PF, Ng CKY. Genetic and lipidomic analyses suggest that Nostoc punctiforme, a plant-symbiotic cyanobacterium, does not produce sphingolipids. Access Microbiol 2022; 4:000306. [PMID: 35252750 PMCID: PMC8895605 DOI: 10.1099/acmi.0.000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Sphingolipids, a class of amino-alcohol-based lipids, are well characterized in eukaryotes and in some anaerobic bacteria. However, the only sphingolipids so far identified in cyanobacteria are two ceramides (i.e., an acetylsphingomyelin and a cerebroside), both based on unbranched, long-chain base (LCB) sphingolipids in Scytonema julianum and Moorea producens, respectively. The first step in de novo sphingolipid biosynthesis is the condensation of l-serine with palmitoyl-CoA to produce 3-keto-diyhydrosphingosine (KDS). This reaction is catalyzed by serine palmitoyltransferase (SPT), which belongs to a small family of pyridoxal phosphate-dependent α-oxoamine synthase (AOS) enzymes. Based on sequence similarity to molecularly characterized bacterial SPT peptides, we identified a putative SPT (Npun_R3567) from the model nitrogen-fixing, plant-symbiotic cyanobacterium, Nostoc punctiforme strain PCC 73102 (ATCC 29133). Gene expression analysis revealed that Npun_R3567 is induced during late-stage diazotrophic growth in N. punctiforme. However, Npun_R3567 could not produce the SPT reaction product, 3-keto-diyhydrosphingosine (KDS), when heterologously expressed in Escherichia coli. This agreed with a sphingolipidomic analysis of N. punctiforme cells, which revealed that no LCBs or ceramides were present. To gain a better understanding of Npun_R3567, we inferred the phylogenetic position of Npun_R3567 relative to other bacterial AOS peptides. Rather than clustering with other bacterial SPTs, Npun_R3567 and the other cyanobacterial BioF homologues formed a separate, monophyletic group. Given that N. punctiforme does not appear to possess any other gene encoding an AOS enzyme, it is altogether unlikely that N. punctiforme is capable of synthesizing sphingolipids. In the context of cross-kingdom symbiosis signalling in which sphingolipids are emerging as important regulators, it appears unlikely that sphingolipids from N. punctiforme play a regulatory role during its symbiotic association with plants.
Collapse
Affiliation(s)
- Samuel Belton
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
- Present address: DBN Plant Molecular Biology Lab, National Botanic Gardens of Ireland, Dublin, Ireland
| | - Nadia Lamari
- Present address: Philip Morris International, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
- UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
| | - Lars S. Jermiin
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
- UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Paul F. McCabe
- UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
| | - Carl K. Y. Ng
- UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin D4, Ireland
| |
Collapse
|
11
|
Chang HY, Lo LH, Lan YH, Hong MX, Chan YT, Ko TP, Huang YR, Cheng TH, Liaw CC. Structural insights into the substrate selectivity of α-oxoamine synthases from marine Vibrio sp. QWI-06. Colloids Surf B Biointerfaces 2021; 210:112224. [PMID: 34838420 DOI: 10.1016/j.colsurfb.2021.112224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
Pyridoxal phosphate (PLP)-dependent α-oxoamine synthases are generally believed to be responsible for offloading and elongating polyketides or catalyzing the condensation of amino acids and acyl-CoA thioester substrates, such as serine into sphingolipids and cysteate into sulfonolipids. Previously, we discovered vitroprocines, which are tyrosine- and phenylalanine-polyketide derivatives, as potential new antibiotics from the genus Vibrio. Using bioinformatics analysis, we identified putative genes of PLP-dependent enzyme from marine Vibrio sp. QWI-06, implying a capability to produce amino-polyketide derivatives. One of these genes was cloned, and the recombinant protein, termed Vibrio sp. QWI-06 α-oxoamine synthases-1 (VsAOS1), was overexpressed for structural and biochemical characterization. The crystal structure of the dimeric VsAOS1 was determined at 1.8-Å resolution in the presence of L-glycine. The electron density map indicated a glycine molecule occupying the pyridoxal binding site in one monomer, suggesting a snapshot of the initiation process upon the loading of amino acid substrate. In mass spectrometry analysis, VsAOS1 strictly acted to condense L-glycine with C12 or C16 acyl-CoA, including unsaturated acyl analog. Furthermore, a single residue replacement of VsAOS1 (G243S) allowed the enzyme to generate sphingoid derivative when L-serine and lauroyl-CoA were used as substrates. Our data elucidate the mechanism of substrate binding and selectivity by the VsAOS1 and provide a thorough understanding of the molecular basis for the amino acid preference of AOS members.
Collapse
Affiliation(s)
- Hsin-Yang Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Li-Hua Lo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Hsuan Lan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Mao-Xuan Hong
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yuen Ting Chan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ru Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tien-Hsing Cheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Wang X, Yang X, Sun X, Qian Y, Fan M, Zhang Z, Deng K, Lou Z, Pei Z, Zhu J. Identification of a novel SPT inhibitor WXP-003 by docking-based virtual screening and investigation of its anti-fungi effect. J Enzyme Inhib Med Chem 2021; 36:1007-1015. [PMID: 34148472 PMCID: PMC8218698 DOI: 10.1080/14756366.2021.1915301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Serine palmitoyltransferase (SPT) plays the key role on catalysing the formation of 3-ketodihydrosphingosine, which is the first step of the de novo biosynthesis of sphingolipids. SPT is linked to many diseases including fungal infection, making it a potential therapeutic target. Thus, a logical docking-based virtual screening method was used to screen selective SPT inhibitor against fungi, not human. We used myriocin-similarity database to identify compounds with good binding with fungal SPT and poor binding with homology human SPT model. Preliminary bio-assay led to the discovery of a promising inhibitor WXP-003, which displayed good inhibitory activity against diversity fungi strains with MIC ranging from 0.78 to 12.5 μg/mL. WXP-003 could significantly reduce sphingolipids content in fungi and no effect on mouse fibroblast cell line L929. Molecular dynamics simulation depicted that SPT/WXP-003 complex formed the favoured interactions. Taken together, discovery of WXP-003 provided valuable guide for the development of novel anti-fungal agents.
Collapse
Affiliation(s)
- Xin Wang
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xin Yang
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xin Sun
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yi Qian
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mengyao Fan
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhehao Zhang
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Kaiyuan Deng
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zejun Pei
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Vences-Guzmán MÁ, Peña-Miller R, Hidalgo-Aguilar NA, Vences-Guzmán ML, Guan Z, Sohlenkamp C. Identification of the Flavobacterium johnsoniae cysteate-fatty acyl transferase required for capnine synthesis and for efficient gliding motility. Environ Microbiol 2021; 23:2448-2460. [PMID: 33626217 DOI: 10.1111/1462-2920.15445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Sulfonolipids (SLs) are bacterial lipids that are structurally related to sphingolipids. Synthesis of this group of lipids seems to be mainly restricted to Flavobacterium, Cytophaga and other members of the phylum Bacteroidetes. These lipids have a wide range of biological activities: they can induce multicellularity in choanoflagellates, act as von Willebrand factor receptor antagonists, inhibit DNA polymerase, or function as tumour suppressing agents. In Flavobacterium johnsoniae, their presence seems to be required for efficient gliding motility. Until now, no genes/enzymes involved in SL synthesis have been identified, which has been limiting for the study of some of the biological effects these lipids have. Here, we describe the identification of the cysteate-fatty acyl transferase Fjoh_2419 required for synthesis of the SL precursor capnine in F. johnsoniae. This enzyme belongs to the α-oxoamine synthase family similar to serine palmitoyl transferases, 2-amino-3-oxobutyrate coenzyme A ligase and 8-amino-7-oxononanoate synthases. Expression of the gene fjoh_2419 in Escherichia coli caused the formation of a capnine-derived molecule. Flavobacterium johnsoniae mutants deficient in fjoh_2419 lacked SLs and were more sensitive to many antibiotics. Mutant growth was not affected in liquid medium but the cells exhibited defects in gliding motility.
Collapse
Affiliation(s)
- Miguel Ángel Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Rafael Peña-Miller
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Nancy Adriana Hidalgo-Aguilar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Maritza Lorena Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| |
Collapse
|
14
|
Structural insights into the assembly and substrate selectivity of human SPT-ORMDL3 complex. Nat Struct Mol Biol 2021; 28:249-257. [PMID: 33558762 DOI: 10.1038/s41594-020-00553-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Human serine palmitoyltransferase (SPT) complex catalyzes the initial and rate-limiting step in the de novo biosynthesis of all sphingolipids. ORMDLs regulate SPT function, with human ORMDL3 being related to asthma. Here we report three high-resolution cryo-EM structures: the human SPT complex, composed of SPTLC1, SPTLC2 and SPTssa; the SPT-ORMDL3 complex; and the SPT-ORMDL3 complex bound to two substrates, PLP-L-serine (PLS) and a non-reactive palmitoyl-CoA analogue. SPTLC1 and SPTLC2 form a dimer of heterodimers as the catalytic core. SPTssa participates in acyl-CoA coordination, thereby stimulating the SPT activity and regulating the substrate selectivity. ORMDL3 is located in the center of the complex, serving to stabilize the SPT assembly. Our structural and biochemical analyses provide a molecular basis for the assembly and substrate selectivity of the SPT and SPT-ORMDL3 complexes, and lay a foundation for mechanistic understanding of sphingolipid homeostasis and for related therapeutic drug development.
Collapse
|
15
|
Thongkawphueak T, Winter AJ, Williams C, Maple HJ, Soontaranon S, Kaewhan C, Campopiano DJ, Crump MP, Wattana-Amorn P. Solution Structure and Conformational Dynamics of a Doublet Acyl Carrier Protein from Prodigiosin Biosynthesis. Biochemistry 2021; 60:219-230. [PMID: 33416314 DOI: 10.1021/acs.biochem.0c00830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acyl carrier protein (ACP) is an indispensable component of both fatty acid and polyketide synthases and is primarily responsible for delivering acyl intermediates to enzymatic partners. At present, increasing numbers of multidomain ACPs have been discovered with roles in molecular recognition of trans-acting enzymatic partners as well as increasing metabolic flux. Further structural information is required to provide insight into their function, yet to date, the only high-resolution structure of this class to be determined is that of the doublet ACP (two continuous ACP domains) from mupirocin synthase. Here we report the solution nuclear magnetic resonance (NMR) structure of the doublet ACP domains from PigH (PigH ACP1-ACP2), which is an enzyme that catalyzes the formation of the bipyrrolic intermediate of prodigiosin, a potent anticancer compound with a variety of biological activities. The PigH ACP1-ACP2 structure shows each ACP domain consists of three conserved helices connected by a linker that is partially restricted by interactions with the ACP1 domain. Analysis of the holo (4'-phosphopantetheine, 4'-PP) form of PigH ACP1-ACP2 by NMR revealed conformational exchange found predominantly in the ACP2 domain reflecting the inherent plasticity of this ACP. Furthermore, ensemble models obtained from SAXS data reveal two distinct conformers, bent and extended, of both apo (unmodified) and holo PigH ACP1-ACP2 mediated by the central linker. The bent conformer appears to be a result of linker-ACP1 interactions detected by NMR and might be important for intradomain communication during the biosynthesis. These results provide new insights into the behavior of the interdomain linker of multiple ACP domains that may modulate protein-protein interactions. This is likely to become an increasingly important consideration for metabolic engineering in prodigiosin and other related biosynthetic pathways.
Collapse
Affiliation(s)
- Thitapa Thongkawphueak
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ashley J Winter
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Christopher Williams
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,BrisSynBio, Centre for Synthetic Biology Research, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, U.K
| | - Hannah J Maple
- School of Social and Community Medicine, University of Bristol, Oakfield House, Bristol BS8 2BN, U.K
| | - Siriwat Soontaranon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Chonthicha Kaewhan
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,BrisSynBio, Centre for Synthetic Biology Research, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, U.K
| | - Pakorn Wattana-Amorn
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
16
|
Ren R, Pang B, Han Y, Li Y. A Glimpse of the Structural Biology of the Metabolism of Sphingosine-1-Phosphate. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:2515256421995601. [PMID: 37366379 PMCID: PMC10243590 DOI: 10.1177/2515256421995601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/28/2023]
Abstract
As a key sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays crucial roles in vascular and immune systems. It regulates angiogenesis, vascular integrity and homeostasis, allergic responses, and lymphocyte trafficking. S1P is interconverted with sphingosine, which is also derived from the deacylation of ceramide. S1P levels and the ratio to ceramide in cells are tightly regulated by its metabolic pathways. Abnormal S1P production causes the occurrence and progression of numerous severe diseases, such as metabolic syndrome, cancers, autoimmune disorders such as multiple sclerosis, and kidney and cardiovascular diseases. In recent years, huge advances on the structure of S1P metabolic pathways have been accomplished. In this review, we have got a glimpse of S1P metabolism through structural and biochemical studies of: sphingosine kinases, S1P transporters and S1P receptors, and the development of therapeutics targeting S1P signaling. The progress we summarize here could provide fresh perspectives to further the exploration of S1P functions and facilitate the development of therapeutic molecules targeting S1P signaling with improved specificity and therapeutic effects.
Collapse
Affiliation(s)
- Ruobing Ren
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| | - Bin Pang
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| | - Yufei Han
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| | - Yihao Li
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| |
Collapse
|
17
|
Olea-Ozuna RJ, Poggio S, EdBergström, Quiroz-Rocha E, García-Soriano DA, Sahonero-Canavesi DX, Padilla-Gómez J, Martínez-Aguilar L, López-Lara IM, Thomas-Oates J, Geiger O. Five structural genes required for ceramide synthesis in Caulobacter and for bacterial survival. Environ Microbiol 2020; 23:143-159. [PMID: 33063925 DOI: 10.1111/1462-2920.15280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022]
Abstract
Sphingolipids are essential and common membrane components in eukaryotic organisms, participating in many important cellular functions. Only a few bacteria are thought to harbour sphingolipids in their membranes, among them the well-studied α-proteobacterium Caulobacter crescentus, a model organism for asymmetric cell division and cellular differentiation. Here, we report that C. crescentus wild type produces several molecular species of dihydroceramides, which are not produced in a mutant lacking the structural gene for serine palmitoyltransferase (spt). Whereas growth of a spt-deficient mutant and wild type are indistinguishable during the exponential phase of growth, survival of the spt-deficient mutant is much reduced, in comparison with wild type, during stationary phase of growth, especially at elevated temperatures. The structural gene for spt is located within a genomic cluster, comprising another 16 genes and which, like spt, are important for fitness of C. crescentus. Mutants deficient in genes linked to spt by high cofitness were unable to produce dihydroceramide or to survive in stationary phase of growth at elevated temperatures. At least five structural genes are required for dihydroceramide biosynthesis in C. crescentus and sphingolipid biosynthesis is needed for survival of this bacterium and the integrity of its outer membrane.
Collapse
Affiliation(s)
- Roberto Jhonatan Olea-Ozuna
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Avenida Universidad s/n, Cuernavaca, MOR, 62210, Mexico
| | - Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - EdBergström
- Centre of Excellence in Mass Spectrometry and Department of Chemistry, University of York, Heslington, York, YO10 5DD
| | - Elva Quiroz-Rocha
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Avenida Universidad s/n, Cuernavaca, MOR, 62210, Mexico
| | - Daniela A García-Soriano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Avenida Universidad s/n, Cuernavaca, MOR, 62210, Mexico
| | - Diana X Sahonero-Canavesi
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Avenida Universidad s/n, Cuernavaca, MOR, 62210, Mexico
| | - Jonathan Padilla-Gómez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Avenida Universidad s/n, Cuernavaca, MOR, 62210, Mexico
| | - Lourdes Martínez-Aguilar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Avenida Universidad s/n, Cuernavaca, MOR, 62210, Mexico
| | - Isabel M López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Avenida Universidad s/n, Cuernavaca, MOR, 62210, Mexico
| | - Jane Thomas-Oates
- Centre of Excellence in Mass Spectrometry and Department of Chemistry, University of York, Heslington, York, YO10 5DD
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Avenida Universidad s/n, Cuernavaca, MOR, 62210, Mexico
| |
Collapse
|
18
|
Semi-rational approach to expand the Acyl-CoA Chain length tolerance of Sphingomonas paucimobilis serine palmitoyltransferase. Enzyme Microb Technol 2020; 137:109515. [PMID: 32423667 DOI: 10.1016/j.enzmictec.2020.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 11/21/2022]
Abstract
Serine palmitoyltransferase (SPTase), the first enzyme of the sphingolipid biosynthesis pathway, produces 3-ketodihydrosphingosine by a Claisen-like condensation/decarboxylation reaction of l-Ser and palmitoyl-CoA (n-C16-CoA). Previous structural analysis of Sphingomonas paucimobilis SPTase (SpSPTase) revealed a dynamic active site loop (RPPATP; amino acids 378-383) in which R378 (underlined) forms a salt bridge with the carboxylic acid group of the PLP : l-Ser external aldimine. We hypothesized that this interaction might play a key role in acyl group substrate selectivity and therefore performed site-saturation mutagenesis at position 378 based on semi-rational design to expand tolerance for shorter acyl-CoA's. The resulting library was initially screened for the reaction between l-Ser and dodecanoyl-CoA (n-C12-CoA). The most interesting mutant (R378 K) was then purified and compared to wild-type SpSPTase against a panel of acyl-CoA's. These data showed that the R378 K substitution shifted the acyl group preference to shorter chain lengths, opening the possibility of using this and other engineered variants for biocatalytic C-C bond-forming reactions.
Collapse
|
19
|
Ali U, Li H, Wang X, Guo L. Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. MOLECULAR PLANT 2018; 11:1328-1343. [PMID: 30336328 DOI: 10.1016/j.molp.2018.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 05/12/2023]
Abstract
Plant sphingolipids are not only structural components of the plasma membrane and other endomembrane systems but also act as signaling molecules during biotic and abiotic stresses. However, the roles of sphingolipids in plant signal transduction in response to environmental cues are yet to be investigated in detail. In this review, we discuss the signaling roles of sphingolipid metabolites with a focus on plant sphingolipids. We also mention some microbial sphingolipids that initiate signals during their interaction with plants, because of the limited literatures on their plant analogs. The equilibrium of nonphosphorylated and phosphorylated sphingolipid species determine the destiny of plant cells, whereas molecular connections among the enzymes responsible for this equilibrium in a coordinated signaling network are poorly understood. A mechanistic link between the phytohormone-sphingolipid interplay has also not yet been fully understood and many key participants involved in this complex interaction operating under stress conditions await to be identified. Future research is needed to fill these gaps and to better understand the signal pathways of plant sphingolipids and their interplay with other signals in response to environmental stresses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hehuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
21
|
Transcriptome Analysis of Novosphingobium pentaromativorans US6-1 Reveals the Rsh Regulon and Potential Molecular Mechanisms of N-acyl-l-homoserine Lactone Accumulation. Int J Mol Sci 2018; 19:ijms19092631. [PMID: 30189641 PMCID: PMC6163740 DOI: 10.3390/ijms19092631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 11/17/2022] Open
Abstract
In most bacteria, a bifunctional Rsh responsible for (p)ppGpp metabolism is the key player in stringent response. To date, no transcriptome-wide study has been conducted to investigate the Rsh regulon, and the molecular mechanism of how Rsh affects the accumulation of N-acyl-l-homoserine lactone (AHL) remains unknown in sphingomonads. In this study, we identified an rshUS6–1 gene by sequence analysis in Novosphingobium pentaromativorans US6-1, a member of the sphingomonads. RNA-seq was used to determine transcription profiles of the wild type and the ppGpp-deficient rshUS6–1 deletion mutant (∆rsh). There were 1540 genes in the RshUS6–1 regulon, including those involved in common traits of sphingomonads such as exopolysaccharide biosynthesis. Furthermore, both RNA-seq and quantitative real-time polymerase chain reaction (qRT-PCR) showed essential genes for AHL production (novI and novR) were positively regulated by RshUS6–1 during the exponential growth phase. A degradation experiment indicated the reason for the AHL absence in ∆rsh was unrelated to the AHL degradation. According to RNA-seq, we proposed σE, DksA, Lon protease and RNA degradation enzymes might be involved in the RshUS6–1-dependent expression of novI and novR. Here, we report the first transcriptome-wide analysis of the Rsh regulon in sphingomonads and investigate the potential mechanisms regulating AHL accumulation, which is an important step towards understanding the regulatory system of stringent response in sphingomonads.
Collapse
|
22
|
Custódio R, McLean CJ, Scott AE, Lowther J, Kennedy A, Clarke DJ, Campopiano DJ, Sarkar-Tyson M, Brown AR. Characterization of secreted sphingosine-1-phosphate lyases required for virulence and intracellular survival of Burkholderia pseudomallei. Mol Microbiol 2016; 102:1004-1019. [PMID: 27632710 DOI: 10.1111/mmi.13531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, plays a critical role in the orchestration of immune responses. S1P levels within the mammalian host are tightly regulated, in part through the activity of S1P lyase (S1PL) which catalyses its irreversible degradation. Herein, we describe the identification and characterization of secreted S1PL orthologues encoded by the facultative intracellular bacteria Burkholderia pseudomallei and Burkholderia thailandensis. These bacterial orthologues exhibited S1PL enzymatic activity, functionally complemented an S1PL-deficient yeast strain and conferred resistance to the antimicrobial sphingolipid D-erythro-sphingosine. We report that secretion of these bacterial S1PLs is pH-dependent, and is observed during intracellular infection. S1PL-deficient mutants displayed impaired intracellular replication in murine macrophages (associated with an inability to evade the maturing phagosome) and were significantly attenuated in murine and larval infection models. Furthermore, treatment of Burkholderia-infected macrophages with either S1P or a selective agonist of S1P receptor 1 enhanced bacterial colocalisation with LAMP-1 and reduced their intracellular survival. In summary, our studies confirm bacterial-encoded S1PL as a critical virulence determinant of B. pseudomallei and B. thailandensis, further highlighting the pivotal role of S1P in host-pathogen interactions. In addition, our data suggest that S1P pathway modulators have potential for the treatment of intracellular infection.
Collapse
Affiliation(s)
- Rafael Custódio
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | - Andrew E Scott
- Microbiology, Defence Science and Technology Laboratory, Porton Down, UK
| | | | | | | | | | - Mitali Sarkar-Tyson
- Microbiology, Defence Science and Technology Laboratory, Porton Down, UK.,Marshall Centre for Infectious Diseases and Training, School of Pathology and Laboratory Medicine, University of Western Australia, WA 6009, Australia
| | - Alan R Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
23
|
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2015; 40:133-59. [DOI: 10.1093/femsre/fuv008] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
|
24
|
Johnson MR, Londergan CH, Charkoudian LK. Probing the phosphopantetheine arm conformations of acyl carrier proteins using vibrational spectroscopy. J Am Chem Soc 2014; 136:11240-3. [PMID: 25080832 PMCID: PMC4140477 DOI: 10.1021/ja505442h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 12/23/2022]
Abstract
Acyl carrier proteins (ACPs) are universal and highly conserved domains central to both fatty acid and polyketide biosynthesis. These proteins tether reactive acyl intermediates with a swinging 4'-phosphopantetheine (Ppant) arm and interact with a suite of catalytic partners during chain transport and elongation while stabilizing the growing chain throughout the biosynthetic pathway. The flexible nature of the Ppant arm and the transient nature of ACP-enzyme interactions impose a major obstacle to obtaining structural information relevant to understanding polyketide and fatty acid biosynthesis. To overcome this challenge, we installed a thiocyanate vibrational spectroscopic probe on the terminal thiol of the ACP Ppant arm. This site-specific probe successfully reported on the local environment of the Ppant arm of two ACPs previously characterized by solution NMR, and was used to determine the solution exposure of the Ppant arm of an ACP from 6-deoxyerythronolide B synthase (DEBS). Given the sensitivity of the probe's CN stretching band to conformational distributions resolved on the picosecond time scale, this work lays a foundation for observing the dynamic action-related structural changes of ACPs using vibrational spectroscopy.
Collapse
Affiliation(s)
- Matthew
N. R. Johnson
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| | - Louise K. Charkoudian
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| |
Collapse
|
25
|
Beemelmanns C, Woznica A, Alegado RA, Cantley AM, King N, Clardy J. Synthesis of the rosette-inducing factor RIF-1 and analogs. J Am Chem Soc 2014; 136:10210-3. [PMID: 24983513 PMCID: PMC4111216 DOI: 10.1021/ja5046692] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Studies
on the origin of animal multicellularity have increasingly
focused on one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta. Single cells of S. rosetta can develop into multicellular rosette-shaped
colonies through a process of incomplete cytokinesis. Unexpectedly,
the initiation of rosette development requires bacterially produced
small molecules. Previously, our laboratories reported the planar
structure and femtomolar rosette-inducing activity of one rosette-inducing
small molecule, dubbed rosette-inducing factor 1 (RIF-1), produced
by the Gram-negative Bacteroidetes bacterium Algoriphagus
machipongonensis. RIF-1 belongs to the small and poorly
explored class of sulfonolipids. Here, we report a modular total synthesis
of RIF-1 stereoisomers and structural analogs. Rosette-induction assays
using synthetic RIF-1 stereoisomers and naturally occurring analogs
defined the absolute stereochemistry of RIF-1 and revealed a remarkably
restrictive set of structural requirements for inducing rosette development.
Collapse
Affiliation(s)
- Christine Beemelmanns
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
26
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
27
|
Hartmann EM, Armengaud J. Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1. Environ Microbiol 2013; 16:162-76. [PMID: 24118890 DOI: 10.1111/1462-2920.12264] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/06/2013] [Accepted: 08/24/2013] [Indexed: 12/01/2022]
Abstract
Chlorinated congeners of dibenzo-p-dioxin and dibenzofuran are widely dispersed pollutants that can be treated using microorganisms, such as the Sphingomonas wittichii RW1 bacterium, able to transform some of them into non-toxic substances. The enzymes of the upper pathway for dibenzo-p-dioxin degradation in S. wittichii RW1 have been biochemically and genetically characterized, but its genome sequence indicated the existence of a tremendous potential for aromatic compound transformation, with 56 ring-hydroxylating dioxygenase subunits, 34 extradiol dioxygenases and 40 hydrolases. To further characterize this enzymatic arsenal, new methodological approaches should be employed. Here, a large shotgun proteomic survey was performed on cells grown on dibenzofuran, dibenzo-p-dioxin and 2-chlorodibenzo-p-dioxin, and compared with growth on acetate. Changes in the proteome were monitored over time. In total, 502 proteins were observed and quantified using a label-free mass spectrometry-based approach; all data were deposited to the ProteomeXchange (PXD000403). Our results confirmed the roles of the dioxin dioxygenase DxnA1A2, trihydroxybiphenyl dioxygenase DbfB, meta-cleavage product hydrolase DxnB and reductase RedA2, and corroborated the proposed involvement of the Swit_3046 dioxygenase and DxnB2 hydrolase. Trends across substrates and over the course of growth do not support concerted pathway regulation and suggest the involvement of an additional hydrolase and several TonB-dependent receptors.
Collapse
Affiliation(s)
- Erica M Hartmann
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | | |
Collapse
|
28
|
Harmon JM, Bacikova D, Gable K, Gupta SD, Han G, Sengupta N, Somashekarappa N, Dunn TM. Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase. J Biol Chem 2013; 288:10144-10153. [PMID: 23426370 DOI: 10.1074/jbc.m113.451526] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met(25) in ssSPTa and Val(25) in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1(S331F)/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.
Collapse
Affiliation(s)
- Jeffrey M Harmon
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Dagmar Bacikova
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Nivedita Sengupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799.
| |
Collapse
|
29
|
Structural, mechanistic and regulatory studies of serine palmitoyltransferase. Biochem Soc Trans 2012; 40:547-54. [PMID: 22616865 DOI: 10.1042/bst20110769] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SLs (sphingolipids) are composed of fatty acids and a polar head group derived from L-serine. SLs are essential components of all eukaryotic and many prokaryotic membranes but S1P (sphingosine 1-phosphate) is also a potent signalling molecule. Recent efforts have sought to inventory the large and chemically complex family of SLs (LIPID MAPS Consortium). Detailed understanding of SL metabolism may lead to therapeutic agents specifically directed at SL targets. We have studied the enzymes involved in SL biosynthesis; later stages are species-specific, but all core SLs are synthesized from the condensation of L-serine and a fatty acid thioester such as palmitoyl-CoA that is catalysed by SPT (serine palmitoyltransferase). SPT is a PLP (pyridoxal 5'-phosphate)-dependent enzyme that forms 3-KDS (3-ketodihydrosphingosine) through a decarboxylative Claisen-like condensation reaction. Eukaryotic SPTs are membrane-bound multi-subunit enzymes, whereas bacterial enzymes are cytoplasmic homodimers. We use bacterial SPTs (e.g. from Sphingomonas) to probe their structure and mechanism. Mutations in human SPT cause a neuropathy [HSAN1 (hereditary sensory and autonomic neuropathy type 1)], a rare SL metabolic disease. How these mutations perturb SPT activity is subtle and bacterial SPT mimics of HSAN1 mutants affect the enzyme activity and structure of the SPT dimer. We have also explored SPT inhibition using various inhibitors (e.g. cycloserine). A number of new subunits and regulatory proteins that have a direct impact on the activity of eukaryotic SPTs have recently been discovered. Knowledge gained from bacterial SPTs sheds some light on the more complex mammalian systems. In the present paper, we review historical aspects of the area and highlight recent key developments.
Collapse
|
30
|
Crosby J, Crump MP. The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 2012; 29:1111-37. [PMID: 22930263 DOI: 10.1039/c2np20062g] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
Collapse
Affiliation(s)
- John Crosby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|
31
|
Bourquin F, Capitani G, Grütter MG. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci 2012; 20:1492-508. [PMID: 21710479 DOI: 10.1002/pro.679] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sphingolipids are membrane constituents as well as signaling molecules involved in many essential cellular processes. Serine palmitoyltransferase (SPT) and sphingosine-1-phosphate lyase (SPL), both PLP (pyridoxal 5'-phosphate)-dependent enzymes, function as entry and exit gates of the sphingolipid metabolism. SPT catalyzes the condensation of serine and a fatty acid into 3-keto-dihydrosphingosine, whereas SPL degrades sphingosine-1-phosphate (S1P) into phosphoethanolamine and a long-chain aldehyde. The recently solved X-ray structures of prokaryotic homologs of SPT and SPL combined with functional studies provide insight into the structure-function relationship of the two enzymes. Despite carrying out different reactions, the two enzymes reveal striking similarities in the overall fold, topology, and residues crucial for activity. Unlike their eukaryotic counterparts, bacterial SPT and SPL lack a transmembrane helix, making them targets of choice for biochemical characterization because the use of detergents can be avoided. Both human enzymes are linked to severe diseases or disorders and might therefore serve as targets for the development of therapeutics aiming at the modulation of their activity. This review gives an overview of the sphingolipid metabolism and of the available biochemical studies of prokaryotic SPT and SPL, and discusses the major similarities and differences to the corresponding eukaryotic enzymes.
Collapse
Affiliation(s)
- Florence Bourquin
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
32
|
Sphingolipid and ceramide homeostasis: potential therapeutic targets. Biochem Res Int 2012; 2012:248135. [PMID: 22400113 PMCID: PMC3286894 DOI: 10.1155/2012/248135] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/20/2011] [Indexed: 12/26/2022] Open
Abstract
Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions.
Collapse
|
33
|
Lowther J, Charmier G, Raman MC, Ikushiro H, Hayashi H, Campopiano DJ. Role of a conserved arginine residue during catalysis in serine palmitoyltransferase. FEBS Lett 2011; 585:1729-34. [PMID: 21514297 DOI: 10.1016/j.febslet.2011.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
All sphingolipid-producing organisms require the pyridoxal 5'-phosphate (PLP)-dependent serine palmitoyltransferase (SPT) to catalyse the first reaction on the de novo sphingolipid biosynthetic pathway. SPT is a member of the alpha oxoamine synthase (AOS) family that catalyses a Claisen-like condensation of palmitoyl-CoA and L-serine to form 3-ketodihydrosphingosine (KDS). Protein sequence alignment across various species reveals an arginine residue, not involved in PLP binding, to be strictly conserved in all prokaryotic SPTs, the lcb2 subunits of eukaryotic SPTs and all members of the AOS family. Here we use UV-vis spectroscopy and site-directed mutagenesis, in combination with a substrate analogue, to show that the equivalent residue (R370) in the SPT from Sphingomonas wittichii is required to form the key PLP:L-serine quinonoid intermediate that condenses with palmitoyl-CoA and thus plays an essential role enzyme catalysis.
Collapse
Affiliation(s)
- Jonathan Lowther
- School of Chemistry, EaStCHEM, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | | | | | | | |
Collapse
|