1
|
Chhabra M, Wilson JC, Wu L, Davies GJ, Gandhi NS, Ferro V. Structural Insights into Pixatimod (PG545) Inhibition of Heparanase, a Key Enzyme in Cancer and Viral Infections. Chemistry 2022; 28:e202104222. [PMID: 34981584 PMCID: PMC9303737 DOI: 10.1002/chem.202104222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/12/2022]
Abstract
Pixatimod (PG545), a heparan sulfate (HS) mimetic and anticancer agent currently in clinical trials, is a potent inhibitor of heparanase. Heparanase is an endo‐β‐glucuronidase that degrades HS in the extracellular matrix and basement membranes and is implicated in numerous pathological processes such as cancer and viral infections, including SARS−CoV‐2. To understand how PG545 interacts with heparanase, we firstly carried out a conformational analysis through a combination of NMR experiments and molecular modelling which showed that the reducing end β‐D‐glucose residue of PG545 adopts a distorted conformation. This was followed by docking and molecular dynamics simulations to study the interactions of PG545 with heparanase, revealing that PG545 is able to block the active site by binding in different conformations, with the cholestanol side‐chain making important hydrophobic interactions. While PG545 blocks its natural substrate HS from binding to the active site, small synthetic heparanase substrates are only partially excluded, and thus pentasaccharide or larger substrates are preferred for assaying this class of inhibitor. This study provides new insights for the design of next‐generation heparanase inhibitors and substrates.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jennifer C Wilson
- School of Pharmacy and Medical Science, Griffith University Gold Coast Campus, Queensland, Australia
| | - Liang Wu
- The Rosalind Franklin Institute Harwell Campus, Didcot, OX11 0FA, UK.,Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Gideon J Davies
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Neha S Gandhi
- Centre for Genomics and Personalised Health School of Chemistry and Physics, Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Vito Ferro
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
2
|
Heparanase: Cloning, Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:189-229. [PMID: 32274711 DOI: 10.1007/978-3-030-34521-1_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 2019, we mark the 20th anniversary of the cloning of the human heparanase gene. Heparanase remains the only known enzyme to cleave heparan sulfate, which is an abundant component of the extracellular matrix. Thus, elucidating the mechanisms underlying heparanase expression and activity is critical to understanding its role in healthy and pathological settings. This chapter provides a historical account of the race to clone the human heparanase gene, describes the intracellular and extracellular function of the enzyme, and explores the various mechanisms regulating heparanase expression and activity at the gene, transcript, and protein level.
Collapse
|
3
|
Molecular Aspects of Heparanase Interaction with Heparan Sulfate, Heparin and Glycol Split Heparin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32274710 DOI: 10.1007/978-3-030-34521-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Heparanase is the principal enzyme that degrades heparan sulfate (HS) in both physiological (HS turnover) and pathological (tumor metastasis, inflammation) cell conditions, catalysing the hydrolysis of the β-1-4 glycosidic bond in -GlcUA-β(1-4)-GlcNX-. Despite efforts to define the minimum trisaccharide sequence that allows glycans to be recognized by heparanase, a rigorous "molecular code" by which the enzyme reads and degrades HS chains has not been identified. The X-ray diffraction model of heparanase, resolved by Wu et al (2015), revealed a complex between the trisaccharide GlcNS6S-GlcUA-GlcNS6S and heparanase. Efforts are ongoing to better understand how HS mimetics longer than three residues are recognized by heparanase before being hydrolyzed or inhibit the enzyme. It is also important to consider the flexibility of the enzyme active site, a feature that opens up the development of heparanase inhibitors with structures significantly different from HS or heparin. This chapter reviews the state-of-the-art knowledge about structural aspects of heparanase activities in terms of substrate recognition, mechanism of hydrolysis, and inhibition.
Collapse
|
4
|
Vlodavsky I, Sanderson RD, Ilan N. Non-Anticoagulant Heparins as Heparanase Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:493-522. [PMID: 32274724 PMCID: PMC7142274 DOI: 10.1007/978-3-030-34521-1_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chapter will review early and more recent seminal contributions to the discovery and characterization of heparanase and non-anticoagulant heparins inhibiting its peculiar enzymatic activity. Indeed, heparanase displays a unique versatility in degrading heparan sulfate chains of several proteoglycans expressed in all mammalian cells. This endo-β-D-glucuronidase is overexpressed in cancer, inflammation, diabetes, atherosclerosis, nephropathies and other pathologies. Starting from known low- or non-anticoagulant heparins, the search for heparanase inhibitors evolved focusing on structure-activity relationship studies and taking advantage of new chemical-physical analytical methods which have allowed characterization and sequencing of polysaccharide chains. New methods to screen heparanase inhibitors and to evaluate their mechanism of action and in vivo activity in experimental models prompted their development. New non-anticoagulant heparin derivatives endowed with anti-heparanase activity are reported. Some leads are under clinical evaluation in the oncology field (e.g., acute myeloid leukemia, multiple myeloma, pancreatic carcinoma) and in other pathological conditions (e.g., sickle cell disease, malaria, labor arrest).
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
5
|
Coombe DR, Gandhi NS. Heparanase: A Challenging Cancer Drug Target. Front Oncol 2019; 9:1316. [PMID: 31850210 PMCID: PMC6892829 DOI: 10.3389/fonc.2019.01316] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Heparanase has been viewed as a promising anti-cancer drug target for almost two decades, but no anti-heparanase therapy has yet reached the clinic. This endoglycosidase is highly expressed in a variety of malignancies, and its high expression is associated with greater tumor size, more metastases, and a poor prognosis. It was first described as an enzyme cleaving heparan sulfate chains of proteoglycans located in extracellular matrices and on cell surfaces, but this is not its only function. It is a multi-functional protein with activities that are enzymatic and non-enzymatic and which take place both outside of the cell and intracellularly. Knowledge of the crystal structure of heparanase has assisted the interpretation of earlier structure-function studies as well as in the design of potential anti-heparanase agents. This review re-examines the various functions of heparanase in light of the structural data. The functions of the heparanase variant, T5, and structure and functions of heparanase-2 are also examined as these heparanase related, but non-enzymatic, proteins are likely to influence the in vivo efficacy of anti-heparanase drugs. The anti-heparanase drugs currently under development predominately focus on inhibiting the enzymatic activity of heparanase, which, in the absence of inhibitors with high clinical efficacy, prompts a discussion of whether this is the best approach. The diversity of outcomes attributed to heparanase and the difficulties of unequivocally determining which of these are due to its enzymatic activity is also discussed and leads us to the conclusion that heparanase is a valid, but challenging drug target for cancer.
Collapse
Affiliation(s)
- Deirdre R Coombe
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Demystifying the pH dependent conformational changes of human heparanase pertaining to structure–function relationships: an in silico approach. J Comput Aided Mol Des 2018; 32:821-840. [DOI: 10.1007/s10822-018-0131-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
7
|
Dai X, Yan J, Fu X, Pan Q, Sun D, Xu Y, Wang J, Nie L, Tong L, Shen A, Zheng M, Huang M, Tan M, Liu H, Huang X, Ding J, Geng M. Aspirin Inhibits Cancer Metastasis and Angiogenesis via Targeting Heparanase. Clin Cancer Res 2017; 23:6267-6278. [PMID: 28710312 DOI: 10.1158/1078-0432.ccr-17-0242] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/26/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Recent epidemiological and clinical studies have suggested the benefit of aspirin for patients with cancer, which inspired increasing efforts to demonstrate the anticancer ability of aspirin and reveal the molecular mechanisms behind. Nevertheless, the anticancer activity and related mechanisms of aspirin remain largely unknown. This study aimed to confirm this observation, and more importantly, to investigate the potential target contributed to the anticancer of aspirin.Experimental Design: A homogeneous time-resolved fluorescence (HTRF) assay was used to examine the impact of aspirin on heparanase. Streptavidin pull-down, surface plasmon resonance (SPR) assay, and molecular docking were performed to identify heparanase as an aspirin-binding protein. Transwell, rat aortic rings, and chicken chorioallantoic membrane model were used to evaluate the antimetastasis and anti-angiogenesis effects of aspirin, and these phenotypes were tested in a B16F10 metastatic model, MDA-MB-231 metastatic model, and MDA-MB-435 xenograft model.Results: This study identified heparanase, an oncogenic extracellular matrix enzyme involved in cancer metastasis and angiogenesis, as a potential target of aspirin. We had discovered that aspirin directly binds to Glu225 region of heparanase and inhibits the enzymatic activity. Aspirin impeded tumor metastasis, angiogenesis, and growth in heparanase-dependent manner.Conclusions: In summary, this study has illustrated heparanase as a target of aspirin for the first time. It provides insights for a better understanding of the mechanisms of aspirin in anticancer effects, and offers a direction for the development of small-molecule inhibitors of heparanase. Clin Cancer Res; 23(20); 6267-78. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoyang Dai
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Juan Yan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xuhong Fu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Qiuming Pan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Danni Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yuan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Litong Nie
- The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Linjiang Tong
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Aijun Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Min Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Minjia Tan
- The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xun Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Meiyu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| |
Collapse
|
8
|
Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 2016; 8:647-80. [PMID: 27057774 DOI: 10.4155/fmc-2016-0012] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, heparanase has attracted considerable attention as a promising target for innovative pharmacological applications. Heparanase is a multifaceted protein endowed with enzymatic activity, as an endo-β-D-glucuronidase, and nonenzymatic functions. It is responsible for the cleavage of heparan sulfate side chains of proteoglycans, resulting in structural alterations of the extracellular matrix. Heparanase appears to be involved in major human diseases, from the most studied tumors to chronic inflammation, diabetic nephropathy, bone osteolysis, thrombosis and atherosclerosis, in addition to more recent investigation in various rare diseases. The present review provides an overview on heparanase, its biological role, inhibitors and possible clinical applications, covering the latest findings in these areas.
Collapse
|
9
|
Pala D, Rivara S, Mor M, Milazzo FM, Roscilli G, Pavoni E, Giannini G. Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase. Glycobiology 2016; 26:640-54. [PMID: 26762172 PMCID: PMC4847616 DOI: 10.1093/glycob/cww003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022] Open
Abstract
Heparanase is a β-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anticoagulant 100% N-acetylated and glycol-split heparin acting as a potent heparanase inhibitor, currently in phase I in advanced multiple myeloma. Herein, the kinetics of heparanase inhibition by roneparstat is reported. The analysis of dose-inhibition curves confirmed the high potency of roneparstat (IC50 ≈ 3 nM) and showed, at higher concentrations, a Hill coefficient consistent with the engagement of two molecules of inhibitor. A homology model of human heparanase GS3 construct was built and used for docking experiments with inhibitor fragments. The model has high structural similarity with the recently reported crystal structure of human heparanase. Different interaction schemes are proposed, which support the hypothesis of a complex binding mechanism involving the recruitment of one or multiple roneparstat chains, depending on its concentration. In particular, docking solutions were obtained in which (i) a single roneparstat molecule interacts with both heparin-binding domains (HBDs) of heparanase or (ii) two fragments of roneparstat interact with either HBD-1 or HBD-2, consistent with the possibility of different inhibitor:enzyme binding stoichiometries. This study provides unique insights into the mode of action of roneparstat as well as clues of its interaction with heparanase at a molecular level, which could be exploited to design novel potential inhibitor molecules.
Collapse
Affiliation(s)
- Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Ferdinando Maria Milazzo
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, Pomezia, Roma 00071, Italy
| | | | | | - Giuseppe Giannini
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, Pomezia, Roma 00071, Italy
| |
Collapse
|
10
|
Functional and structural characterization of a heparanase. Nat Chem Biol 2015; 11:955-7. [DOI: 10.1038/nchembio.1956] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/09/2015] [Indexed: 01/24/2023]
|
11
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
12
|
Hammond E, Khurana A, Shridhar V, Dredge K. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics. Front Oncol 2014; 4:195. [PMID: 25105093 PMCID: PMC4109498 DOI: 10.3389/fonc.2014.00195] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Keith Dredge
- Progen Pharmaceuticals Ltd. , Brisbane, QLD , Australia
| |
Collapse
|
13
|
Pisano C, Vlodavsky I, Ilan N, Zunino F. The potential of heparanase as a therapeutic target in cancer. Biochem Pharmacol 2014; 89:12-9. [PMID: 24565907 DOI: 10.1016/j.bcp.2014.02.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022]
Abstract
Heparanase has generated substantial interest as therapeutic target for antitumor therapy, because its activity is implicated in malignant behavior of cancer cells and in tumor progression. Increased heparanase expression was found in numerous tumor types and correlates with poor prognosis. Heparanase, an endoglucuronidase responsible for heparan sulfate cleavage, regulates the structure and function of heparan sulfate proteoglycans, leading to disassembly of the extracellular matrix. The action of heparanase is involved in multiple regulatory events related, among other effects, to augmented bioavailability of growth factors and cytokines. Inhibitors of heparanase suppress tumor growth, angiogenesis and metastasis by modulating growth factor-mediated signaling, ECM barrier function and cell interactions in the tumor microenvironment. Therefore, targeting heparanase has potential implications for anti-tumor, anti-angiogenic and anti-inflammatory therapies. Current approaches for heparanase inhibition include development of chemically modified heparins, small molecule inhibitors and neutralizing antibodies. The available evidence supports the emerging utility of heparanase inhibition as a promising antitumor strategy, specifically in rational combination with other agents. The recent studies with compounds designed to block heparanase (e.g., modified heparins) provide a rational basis for their therapeutic application and optimization.
Collapse
Affiliation(s)
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center Rappaport, Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center Rappaport, Faculty of Medicine, Technion, Haifa, Israel
| | - Franco Zunino
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
14
|
Wilson JC, Laloo AE, Singh S, Ferro V. 1H NMR spectroscopic studies establish that heparanase is a retaining glycosidase. Biochem Biophys Res Commun 2013; 443:185-8. [PMID: 24291708 DOI: 10.1016/j.bbrc.2013.11.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022]
Abstract
Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe (1)H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.
Collapse
Affiliation(s)
- Jennifer C Wilson
- Institute for Glycomics, Griffith University Gold Coast Campus, QLD 4222, Australia.
| | - Andrew Elohim Laloo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sanjesh Singh
- Institute for Glycomics, Griffith University Gold Coast Campus, QLD 4222, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
15
|
Synthesis of a pseudo-disaccharide library and its application to the characterisation of the heparanase catalytic site. PLoS One 2013; 8:e82111. [PMID: 24260588 PMCID: PMC3832595 DOI: 10.1371/journal.pone.0082111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/19/2013] [Indexed: 12/15/2022] Open
Abstract
A novel methodology is described for the efficient and divergent synthesis of pseudodisaccharides, molecules comprising of amino carbasugar analogues linked to natural sugars. The methodology is general and enables the introduction of diversity both at the carbasugar and the natural sugar components of the pseudodisaccharides. Using this approach, a series of pseudodisaccharides are synthesised that mimic the repeating backbone unit of heparan sulfate, and are tested for inhibition of heparanase, a disease-relevant enzyme that hydrolyses heparan sulfate. A new homology model of human heparanase is described based on a family 79 β-glucuronidase. This model is used to postulate a computational rationale for the observed activity of the different pseudodisaccharides and provide valuable information that informs the design of potential inhibitors of this enzyme.
Collapse
|
16
|
Hammond E, Handley P, Dredge K, Bytheway I. Mechanisms of heparanase inhibition by the heparan sulfate mimetic PG545 and three structural analogues. FEBS Open Bio 2013; 3:346-51. [PMID: 24251094 PMCID: PMC3821029 DOI: 10.1016/j.fob.2013.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 01/04/2023] Open
Abstract
The tetrasaccharide heparan sulfate (HS) mimetic PG545, a clinical anti-cancer candidate, is an inhibitor of the HS-degrading enzyme heparanase. The kinetics of heparanase inhibition by PG545 and three structural analogues were investigated to understand their modes of inhibition. The cholestanol aglycon of PG545 significantly increased affinity for heparanase and also modified the inhibition mode. For the tetrasaccharides, competitive inhibition was modified to parabolic competition by the addition of the cholestanol aglycon. For the trisaccharides, partial competitive inhibition was modified to parabolic competition. A schematic model to explain these findings is presented.
Collapse
|
17
|
Ferro V. Heparan sulfate inhibitors and their therapeutic implications in inflammatory illnesses. Expert Opin Ther Targets 2013; 17:965-75. [DOI: 10.1517/14728222.2013.811491] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Peterson S, Liu J. Deciphering mode of action of heparanase using structurally defined oligosaccharides. J Biol Chem 2012; 287:34836-43. [PMID: 22893710 DOI: 10.1074/jbc.m112.390161] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide that serves many biological functions, including regulating cell growth and inflammatory responses as well as the blood coagulation process. Heparanase is an enzyme that cleaves HS and is known to display a variety of pathophysiological effects in cancer, diabetes, and Alzheimer disease. The link between heparanase and diseases is a result of its selective cleavage of HS, which releases smaller HS fragments to enhance cell proliferation, migration, and invasion. Despite its importance in pathological diseases, the structural cues in HS that direct heparanase cleavage and the steps of HS depolymerization remain unknown. Here, we sought to probe the substrate specificity of heparanase using a series of structurally defined oligosaccharide substrates. The sites of heparanase cleavage on the oligosaccharide substrates were determined by mass spectrometry and gel permeation chromatography. We discovered that heparanase cleaves the linkage of glucuronic acid linked to glucosamine carrying 6-O-sulfo groups. Furthermore, our findings suggest that heparanase displays different cleavage modes by recognizing the structures of the nonreducing ends of the substrates. Our results deepen the understanding of the action mode of heparanase.
Collapse
Affiliation(s)
- Sherket Peterson
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
19
|
Michikawa M, Ichinose H, Momma M, Biely P, Jongkees S, Yoshida M, Kotake T, Tsumuraya Y, Withers SG, Fujimoto Z, Kaneko S. Structural and biochemical characterization of glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum. J Biol Chem 2012; 287:14069-77. [PMID: 22367201 DOI: 10.1074/jbc.m112.346288] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present the first structure of a glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum, both as a product complex with β-D-glucuronic acid (GlcA) and as its trapped covalent 2-fluoroglucuronyl intermediate. This enzyme consists of a catalytic (β/α)(8)-barrel domain and a β-domain with irregular Greek key motifs that is of unknown function. The enzyme showed β-glucuronidase activity and trace levels of β-glucosidase and β-xylosidase activities. In conjunction with mutagenesis studies, these structures identify the catalytic residues as Glu(173) (acid base) and Glu(287) (nucleophile), consistent with the retaining mechanism demonstrated by (1)H NMR analysis. Glu(45), Tyr(243), Tyr(292)-Gly(294), and Tyr(334) form the catalytic pocket and provide substrate discrimination. Consistent with this, the Y292A mutation, which affects the interaction between the main chains of Gln(293) and Gly(294) and the GlcA carboxyl group, resulted in significant loss of β-glucuronidase activity while retaining the side activities at wild-type levels. Likewise, although the β-glucuronidase activity of the Y334F mutant is ~200-fold lower (k(cat)/K(m)) than that of the wild-type enzyme, the β-glucosidase activity is actually 3 times higher and the β-xylosidase activity is only 2.5-fold lower than the equivalent parameters for wild type, consistent with a role for Tyr(334) in recognition of the C6 position of GlcA. The involvement of Glu(45) in discriminating against binding of the O-methyl group at the C4 position of GlcA is revealed in the fact that the E45D mutant hydrolyzes PNP-β-GlcA approximately 300-fold slower (k(cat)/K(m)) than does the wild-type enzyme, whereas 4-O-methyl-GlcA-containing oligosaccharides are hydrolyzed only 7-fold slower.
Collapse
Affiliation(s)
- Mari Michikawa
- Food Biotechnology Division, National Agriculture and Food Research Organization Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|