1
|
Sharma B, Dill KA. MELD-accelerated molecular dynamics help determine amyloid fibril structures. Commun Biol 2021; 4:942. [PMID: 34354239 PMCID: PMC8342454 DOI: 10.1038/s42003-021-02461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
It is challenging to determine the structures of protein fibrils such as amyloids. In principle, Molecular Dynamics (MD) modeling can aid experiments, but normal MD has been impractical for these large multi-molecules. Here, we show that MELD accelerated MD (MELD x MD) can give amyloid structures from limited data. Five long-chain fibril structures are accurately predicted from NMR and Solid State NMR (SSNMR) data. Ten short-chain fibril structures are accurately predicted from more limited restraints information derived from the knowledge of strand directions. Although the present study only tests against structure predictions - which are the most detailed form of validation currently available - the main promise of this physical approach is ultimately in going beyond structures to also give mechanical properties, conformational ensembles, and relative stabilities.
Collapse
Affiliation(s)
- Bhanita Sharma
- grid.36425.360000 0001 2216 9681Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY USA
| | - Ken A. Dill
- grid.36425.360000 0001 2216 9681Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY USA ,grid.36425.360000 0001 2216 9681Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY USA ,grid.36425.360000 0001 2216 9681Departments of Chemistry and Physics, Stony Brook University, Stony Brook, NY USA
| |
Collapse
|
2
|
Yang J, Agnihotri MV, Huseby CJ, Kuret J, Singer SJ. A theoretical study of polymorphism in VQIVYK fibrils. Biophys J 2021; 120:1396-1416. [PMID: 33571490 DOI: 10.1016/j.bpj.2021.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The VQIVYK fragment from the Tau protein, also known as PHF6, is essential for aggregation of Tau into neurofibrillary lesions associated with neurodegenerative diseases. VQIVYK itself forms amyloid fibrils composed of paired β-sheets. Therefore, the full Tau protein and VQIVYK fibrils have been intensively investigated. A central issue in these studies is polymorphism, the ability of a protein to fold into more than one structure. Using all-atom molecular simulations, we generate five stable polymorphs of VQIVYK fibrils, establish their relative free energy with umbrella sampling methods, and identify the side chain interactions that provide stability. The two most stable polymorphs, which have nearly equal free energy, are formed by interdigitation of the mostly hydrophobic VIY "face" sides of the β-sheets. Another stable polymorph is formed by interdigitation of the QVK "back" sides. When we turn to examine structures from cryo-electron microscopy experiments on Tau filaments taken from diseased patients or generated in vitro, we find that the pattern of side chain interactions found in the two most stable face-to-face as well as the back-to-back polymorphs are recapitulated in amyloid structures of the full protein. Thus, our studies suggest that the interactions stabilizing PHF6 fibrils explain the amyloidogenicity of the VQIVYK motif within the full Tau protein and provide justification for the use of VQIVYK fibrils as a test bed for the design of molecules that identify or inhibit amyloid structures.
Collapse
Affiliation(s)
- Jaehoon Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Mithila V Agnihotri
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carol J Huseby
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Jeff Kuret
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio.
| | - Sherwin J Singer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
3
|
Structure-based machine-guided mapping of amyloid sequence space reveals uncharted sequence clusters with higher solubilities. Nat Commun 2020; 11:3314. [PMID: 32620861 PMCID: PMC7335209 DOI: 10.1038/s41467-020-17207-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023] Open
Abstract
The amyloid conformation can be adopted by a variety of sequences, but the precise boundaries of amyloid sequence space are still unclear. The currently charted amyloid sequence space is strongly biased towards hydrophobic, beta-sheet prone sequences that form the core of globular proteins and by Q/N/Y rich yeast prions. Here, we took advantage of the increasing amount of high-resolution structural information on amyloid cores currently available in the protein databank to implement a machine learning approach, named Cordax (https://cordax.switchlab.org), that explores amyloid sequence beyond its current boundaries. Clustering by t-Distributed Stochastic Neighbour Embedding (t-SNE) shows how our approach resulted in an expansion away from hydrophobic amyloid sequences towards clusters of lower aliphatic content and higher charge, or regions of helical and disordered propensities. These clusters uncouple amyloid propensity from solubility representing sequence flavours compatible with surface-exposed patches in globular proteins, functional amyloids or sequences associated to liquid-liquid phase transitions. An increasing number of amyloid structures are determined. Here, the authors present the structure-based amyloid core sequence prediction method Cordax that is based on machine learning and allows the detection of aggregation-prone regions with higher solubility, disorder and surface exposure, and furthermore predicts the structural topology, orientation and overall architecture of the resulting putative fibril core.
Collapse
|
4
|
Bandyopadhyay A, Dhar AK, Basu S. Graph coloring: a novel heuristic based on trailing path—properties, perspective and applications in structured networks. Soft comput 2020. [DOI: 10.1007/s00500-019-04278-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Masutani K, Yamamori Y, Kim K, Matubayasi N. Free-energy analysis of the hydration and cosolvent effects on the β-sheet aggregation through all-atom molecular dynamics simulation. J Chem Phys 2019; 150:145101. [DOI: 10.1063/1.5088395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Keiichi Masutani
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yu Yamamori
- Artificial Intelligence Research Center and Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo 135-0064, Japan
| | - Kang Kim
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
6
|
Leahy CT, Murphy RD, Hummer G, Rosta E, Buchete NV. Coarse Master Equations for Binding Kinetics of Amyloid Peptide Dimers. J Phys Chem Lett 2016; 7:2676-2682. [PMID: 27323250 DOI: 10.1021/acs.jpclett.6b00518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We characterize the kinetics of dimer formation of the short amyloid microcrystal-forming tetrapeptides NNQQ by constructing coarse master equations for the conformational dynamics of the system, using temperature replica-exchange molecular dynamics (REMD) simulations. We minimize the effects of Kramers-type recrossings by assigning conformational states based on their sequential time evolution. Transition rates are further estimated from short-time state propagators by maximizing the likelihood that the extracted rates agree with the observed atomistic trajectories without any a priori assumptions about their temperature dependence. Here, we evaluate the rates for both continuous replica trajectories that visit different temperatures and for discontinuous data corresponding to each REMD temperature. While the binding-unbinding kinetic process is clearly Markovian, the conformational dynamics of the bound NNQQ dimer has a complex character. Our kinetic analysis allows us to discriminate between short-lived encounter pairs and strongly bound conformational states. The conformational dynamics of NNQQ dimers supports a kinetically driven aggregation mechanism, in agreement with the polymorphic character reported for amyloid aggregates such as microcrystals and fibrils.
Collapse
Affiliation(s)
- Cathal T Leahy
- School of Physics, University College Dublin , Belfield, Dublin 4, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin , Belfield, Dublin 4, Ireland
| | - Ronan D Murphy
- School of Physics, University College Dublin , Belfield, Dublin 4, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin , Belfield, Dublin 4, Ireland
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Edina Rosta
- Department of Chemistry, King's College London , London SE1 1DB, United Kingdom
| | - Nicolae-Viorel Buchete
- School of Physics, University College Dublin , Belfield, Dublin 4, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Luiken JA, Bolhuis PG. Prediction of a stable associated liquid of short amyloidogenic peptides. Phys Chem Chem Phys 2016; 17:10556-67. [PMID: 25804723 DOI: 10.1039/c5cp00284b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyloid fibril formation is believed to be a nucleation-controlled process. Depending on the nature of peptide sequence, fibril nucleation can occur in one step, straight from a dilute solution, or in multiple steps via oligomers or disordered aggregates. What determines this process is poorly understood. Since the fibril formation kinetics is driven by thermodynamic forces, knowledge of the phase behavior is crucial. Here, we investigated the phase behavior of three short peptide sequences of varying side-chain hydrophobicity. Replica exchange molecular dynamics simulations of a mid-resolution model indicate that the weakly hydrophobic peptide forms fibrils directly from solution, whereas the most hydrophobic peptide forms a dense liquid phase before crystallizing into ordered fibrils at low temperatures. For the medium hydrophobic peptide we found evidence of a novel additional transition to a liquid phase consisting of clusters of aligned peptides, implying a three-step nucleation process. We tested the robustness of this prediction by applying Wertheim's theory and statistical associating fluid theory to a hard-sphere model dressed with isotropic and anisotropic attractions. We found that the ratio of interaction strengths strongly affects the phase behavior, and under certain conditions indeed gives rise to a stable polymerized liquid phase. The peptide clusters in the associated liquid tend to be slow and long-lived, which may give the oligomer droplet more time to act as a toxic oligomer, before turning into a fibril.
Collapse
Affiliation(s)
- Jurriaan A Luiken
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Trusova VM. Protein Fibrillar Nanopolymers: Molecular-Level Insights into Their Structural, Physical and Mechanical Properties. ACTA ACUST UNITED AC 2015. [DOI: 10.1142/s1793048015300029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Amyloid fibrils represent a generic class of mechanically strong and stable biomaterials with extremely advantageous properties. Although amyloids were initially associated only with severe neurological disorders, the role of these structures nowadays is shifting from health debilitating to highly beneficial both in biomedical and technological aspects. Intensive involvement of fibrillar assemblies into the wide range of pathogenic and functional processes strongly necessitate the molecular level characterization of the structural, physical and elastic features of protein nanofibrils. In the present contribution, we made an attempt to highlight the up-to-date progress in the understanding of amyloid properties from the polymer physics standpoint. The fundamental insights into protein fibril behavior are essential not only for development of therapeutic strategies to combat the protein misfolding disorders but also for rational and precise design of novel biodegradable protein-based nanopolymers.
Collapse
Affiliation(s)
- Valeriya M. Trusova
- Department of Nuclear and Medical Physics, V. N. Karazin Kharkiv National University, 4 Svobody Sq. Kharkiv 61072, Ukraine
| |
Collapse
|
9
|
Alred EJ, Phillips M, Berhanu WM, Hansmann UHE. On the lack of polymorphism in Aβ-peptide aggregates derived from patient brains. Protein Sci 2015; 24:923-35. [PMID: 25739352 DOI: 10.1002/pro.2668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 11/09/2022]
Abstract
The amyloid beta (Aβ) oligomers and fibrils that are found in neural tissues of patients suffering from Alzheimer's disease may either cause or contribute to the pathology of the disease. In vitro, these Aβ-aggregates are characterized by structural polymorphism. However, recent solid state NMR data of fibrils acquired post mortem from the brains of two Alzheimer's patients indicate presence of only a single, patient-specific structure. Using enhanced molecular dynamic simulations we investigate the factors that modulate the stability of Aβ-fibrils. We find characteristic differences in molecular flexibility, dynamics of interactions, and structural behavior between the brain-derived Aβ-fibril structure and in vitro models. These differences may help to explain the lack of polymorphism in fibrils collected from patient brains, and have to be taken into account when designing aggregation inhibitors and imaging agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Erik J Alred
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019
| | - Malachi Phillips
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019
| | - Workalemahu M Berhanu
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019
| |
Collapse
|
10
|
Srivastava A, Balaji PV. Interplay of sequence, topology and termini charge in determining the stability of the aggregates of GNNQQNY mutants: a molecular dynamics study. PLoS One 2014; 9:e96660. [PMID: 24817093 PMCID: PMC4015988 DOI: 10.1371/journal.pone.0096660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 04/11/2014] [Indexed: 01/16/2023] Open
Abstract
This study explores the stabilities of single sheet parallel systems of three sequence variants of 1GNNQQNY7, N2D, N2S and N6D, with variations in aggregate size (5–8) and termini charge (charged or neutral). The aggregates were simulated at 300 and 330 K. These mutations decrease amyloid formation in the yeast prion protein Sup35. The present study finds that these mutations cause instability even in the peptide context. The protonation status of termini is found to be a key determinant of stabilities; other determinants are sequence, position of mutation and aggregate size. All systems with charged termini are unstable, whereas both stable and unstable systems are found when the termini are neutral. When termini are charged, the largest stable aggregate for the N2S and N6D systems has 3 to 4 peptides whereas N2D mutation supports oligomers of larger size (5-and 6-mers) as well. Mutation at 2nd position (N2S and N2D) results in fewer H-bonds at the mutated as well as neighboring (Gly1/Gln4) positions. However, no such effect is found if mutation is at 6th position (N6D). The effect of Asn→Asp mutation depends on the position and termini charge: it is more destabilizing at the 2nd position than at the 6th in case of neutral termini, however, the opposite is true in case of charged termini. Appearance of twist in stable systems and in smaller aggregates formed in unstable systems suggests that twist is integral to amyloid arrangement. Disorder, dissociation or rearrangement of peptides, disintegration or collapse of aggregates and formation of amorphous aggregates observed in these simulations are likely to occur during the early stages of aggregation also. The smaller aggregates formed due to such events have a variety of arrangements of peptides. This suggests polymorphic nature of oligomers and presence of a heterogeneous mixture of oligomers during early stages of aggregation.
Collapse
Affiliation(s)
- Alka Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Petety V. Balaji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- * E-mail:
| |
Collapse
|
11
|
Berhanu WM, Hansmann UHE. Inter-species cross-seeding: stability and assembly of rat-human amylin aggregates. PLoS One 2014; 9:e97051. [PMID: 24810618 PMCID: PMC4014569 DOI: 10.1371/journal.pone.0097051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
Diseases such as type 2 diabetes, Alzheimer's and Parkinson's share as common feature the accumulation of mis-folded disease-specific protein aggregates into fibrillar structures, or plaques. These fibrils may either be toxic by themselves, or act as reservoirs for smaller cytotoxic oligomers. This suggests to investigate molecules as potential therapeutics that either reduce fibril formation or increase fibril stability. One example is rat amylin, which can inhibit aggregation of human amylin, a hallmark of type 2 diabetes. In the present paper, we use molecular dynamics to compare the stability of various preformed aggregates, built out of either human amylin, rat amylin, or mixtures of both. We considered two types of fibril-like oligomers: a single-layer in-register conformation, and a double-layer conformation in which the first U-shaped layer consists of rat amylin and the second layer of human amylin. Our results explain the weak amyloid-inhibiting properties of rat amylin and suggest that membrane leakage due to pore formation is responsible for the toxicity of rat amylin observed in a recent experiment. Together, our results put in question the use of rat amylin or the similar FDA approved drug pramlintide as an inhibitor of human amylin aggregation. They also point to mixed human-rat amylin fibril-like oligomers as possible model-systems for studies of amyloid formation that involve cross-species transmission.
Collapse
Affiliation(s)
- Workalemahu M. Berhanu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ulrich H. E. Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
12
|
LU YAN, XI WENHUI, WEI GUANGHONG. STRUCTURAL INSIGHT INTO THE POLYMORPHISM OF NNQNTF PROTOFIBRIL: IMPORTANCE OF INTERFACIAL WATER, POLAR AND AROMATIC RESIDUES. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613410125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polymorphism is widely observed in amyloid fibrils associated with many neurodegenerative diseases. Recent experimental study reported that fibrils formed by the segment NNQNTF of elk prion protein exhibited facial polymorphism with the two β-sheets either in back-to-back (BB) or in face-to-face (FF) packing arrangement. In the BB packing, the side chains of N2, N4 and F6 are interdigitated to form steric zipper, while in the FF packing, the side chains of N1, Q3 and T5 form the interdigitated interface. In this study, we investigate the water-mediated assembly of two preformed β-sheets and the physical interactions that stabilize the two different fibrils using all-atom molecular dynamics (MD) simulations. Multiple MD simulations have been carried out by starting from FF or BB packing of two β-sheets according to the facial polymorphism revealed by X-ray microcrystallography. For both packing patterns, we observe that the assembly of β-sheets is mediated by water molecules in the interface between β-sheets, leading to a long-lived protofibrils with wet interface prior to the formation of dry amyloid fibrils. Detailed structural analysis shows that besides the side chain steric zipper interactions, intra-sheet hydrogen bonding and aromatic stacking interactions play an important role on the stabilization of the protofibril with BB packing, while the intra-sheet and inter-sheet hydrogen bonding interactions are crucial for the formation of BB protofibril. These findings provide insights into the mechanism that lead to the facial polymorphism of NNQNTF fibrils.
Collapse
Affiliation(s)
- YAN LU
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences, (Ministry of Education) and Department of Physics, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - WENHUI XI
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences, (Ministry of Education) and Department of Physics, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - GUANGHONG WEI
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences, (Ministry of Education) and Department of Physics, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| |
Collapse
|
13
|
Bernhardt NA, Berhanu WM, Hansmann UHE. Mutations and seeding of amylin fibril-like oligomers. J Phys Chem B 2013; 117:16076-85. [PMID: 24294935 DOI: 10.1021/jp409777p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Seeding a protein solution with preformed fibrils can dramatically enhance the growth rate of amyloids. As the seeds do not need to be of the same protein, seeding may account for the observed correlations between amyloid diseases. In an effort to understand better the molecular mechanisms behind cross seeding we have studied in silico the effect of mutations on the seeding of amylin fibrils. Our investigations of the structural stability of decamers of wild type amylin peptides, of Y37L mutants, and of heteroassemblies of wild-type and mutant amylin molecules show that the experimentally observed efficient cross seeding can be explained based on similarity in fibril structure of components. We find that amyloids with similar side chains packing at the β-sheet interface are structurally compatible, acting as a good template for the congruent incorporation of homologues peptides. In the Y37L mutants, lack of tyrosine-specific interactions causes significant higher flexibility of the C terminal than observed in the wild-type fibril. This effects elongation of the mutant fibril leading to the longer lag times during aggregation that are observed in experiments. Our study gives guidelines for the design of ligands that could stabilize amylin fibrils.
Collapse
Affiliation(s)
- Nathan A Bernhardt
- Department of Biology, Southwestern Oklahoma State University , Weatherford, Oklahoma 73096, United States
| | | | | |
Collapse
|
14
|
Berhanu WM, Hansmann UHE. The stability of cylindrin β-barrel amyloid oligomer models-a molecular dynamics study. Proteins 2013; 81:1542-55. [PMID: 23606599 DOI: 10.1002/prot.24302] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/21/2013] [Accepted: 04/01/2013] [Indexed: 11/10/2022]
Abstract
Small-soluble amyloid oligomers are believed to play a significant role in the pathology of amyloid diseases. Recently, the atomic structure of a toxic oligomer formed by an 11 residue and its tandem repeat was found to have an out-off register antiparallel β-strands in the shape of a β-barrel. In the present article we investigate the effect of mutations in the hydrophobic cores on the structure and dynamic of the β-barrels using all atom multiple molecular dynamics simulations with an explicit solvent. Extending previous experiments with molecular dynamics simulations we systematically test how stability and formation of cylindrin depends on the interplay between hydrophobicity and steric effects of the core residues. We find that strong hydrophobic interactions between geometrically fitting residues keep the strands (both in register and out-off-register interface) in close proximity, which in turn stabilizes the side-chain and main-chain hydrogen bonds, and the salt bridges on the outer surface along the weak out-of-register interface. Our simulations also indicate presence of water molecules in the hydrophobic interior of the cylindrin β-barrel.Proteins 2013.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019
| | | |
Collapse
|
15
|
Berhanu WM, Hansmann UHE. Side-chain hydrophobicity and the stability of Aβ₁₆₋₂₂ aggregates. Protein Sci 2012; 21:1837-48. [PMID: 23015407 PMCID: PMC3575914 DOI: 10.1002/pro.2164] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/06/2012] [Accepted: 09/14/2012] [Indexed: 11/05/2022]
Abstract
Recent mutagenesis studies using the hydrophobic segment of Aβ suggest that aromatic π-stacking interactions may not be critical for fibril formation. We have tested this conjecture by probing the effect of Leu, Ile, and Ala mutation of the aromatic Phe residues at positions 19 and 20, on the double-layer hexametric chains of Aβ fragment Aβ₁₆₋₂₂ using explicit solvent all-atom molecular dynamics. As these simulations rely on the accuracy of the utilized force fields, we first evaluated the dynamic and stability dependence on various force fields of small amyloid aggregates. These initial investigations led us to choose AMBER99SB-ILDN as force field in multiple long molecular dynamics simulations of 100 ns that probe the stability of the wild-type and mutants oligomers. Single-point and double-point mutants confirm that size and hydrophobicity are key for the aggregation and stability of the hydrophobic core region (Aβ₁₆₋₂₂). This suggests as a venue for designing Aβ aggregation inhibitors the substitution of residues (especially, Phe 19 and 20) in the hydrophobic region (Aβ₁₆₋₂₂) with natural and non-natural amino acids of similar size and hydrophobicity.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- Department of Chemistry and Biochemistry, University of OklahomaNorman, Oklahoma 73019
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of OklahomaNorman, Oklahoma 73019
| |
Collapse
|
16
|
Berhanu WM, Hansmann UHE. Structure and dynamics of amyloid-β segmental polymorphisms. PLoS One 2012; 7:e41479. [PMID: 22911797 PMCID: PMC3404032 DOI: 10.1371/journal.pone.0041479] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/21/2012] [Indexed: 11/23/2022] Open
Abstract
It is believed that amyloid-beta (Aβ) aggregates play a role in the pathogenesis of Alzheimer's disease. Aβ molecules form β-sheet structures with multiple interaction sites. This polymorphism gives rise to differences in morphology, physico-chemical property and level of cellular toxicity. We have investigated the conformational stability of various segmental polymorphisms using molecular dynamics simulations and find that the segmental polymorphic models of Aβ retain a U-shaped architecture. Our results demonstrate the importance of inter-sheet side chain-side chain contacts, hydrophobic contacts among the strands (β1 and β2) and of salt bridges in stabilizing the aggregates. Residues in β-sheet regions have smaller fluctuation while those at the edge and loop region are more mobile. The inter-peptide salt bridges between Asp23 and Lys28 are strong compared to intra-chain salt bridge and there is an exchange of the inter-chain salt-bridge with intra-chain salt bridge. As our results suggest that Aβ exists under physiological conditions as an ensemble of distinct segmental polymorphs, it may be necessary to account in the development of therapeutics for Alzheimer's disease the differences in structural stability and aggregation behavior of the various Aβ polymorphic forms.
Collapse
Affiliation(s)
- Workalemahu M. Berhanu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ulrich H. E. Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|