1
|
Lu D, Chai A, Hu X, Zhong P, Kang N, Kuang X, Yang Z. Conformational Transition of Semiflexible Ring Polyelectrolyte in Tetravalent Salt Solutions: A Simple Numerical Modeling without the Effect of Twisting. Int J Mol Sci 2024; 25:8268. [PMID: 39125837 PMCID: PMC11311450 DOI: 10.3390/ijms25158268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, the conformational behaviors of ring polyelectrolyte in tetravalent salt solutions are discussed in detail through molecular dynamics simulation. For simplification, here we have neglected the effect of the twisting interaction, although it has been well known that both bending and twisting interactions play a deterministic in the steric conformation of a semiflexible ring polymer. The salt concentration CS and the bending energy b take a decisive role in the conformation of the ring polyelectrolyte (PE). Throughout our calculations, the b varies from b = 0 (freely joint chain) to b = 120. The salt concentration CS changes in the range of 3.56 × 10-4 M ≤ CS ≤ 2.49 × 10-1 M. Upon the addition of salt, ring PE contracts at first, subsequently re-expands. More abundant conformations are observed for a semiflexible ring PE. For b = 10, the conformation of semiflexible ring PE shifts from the loop to two-racquet-head spindle, then it condenses into toroid, finally arranges into coil with the increase of CS. As b increases further, four phase transitions are observed. The latter two phase transitions are different. The semiflexible ring PE experiences transformation from toroid to two racquet head spindle, finally to loop in the latter two phase transitions. Its conformation is determined by the competition among the bending energy, cation-bridge, and entropy. Combined, our findings indicate that the conformations of semiflexible ring PE can be controlled by changing the salt concentration and chain stiffness.
Collapse
Affiliation(s)
- Dan Lu
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| | - Aihua Chai
- College of Data Sience, Jiaxing University, Jiaxing 314001, China;
| | - Xiuxia Hu
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| | - Peihua Zhong
- College of Computer Information and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Nianqian Kang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| | - Xianfei Kuang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| |
Collapse
|
2
|
Wang X, Yu S, Lou E, Tan YL, Tan ZJ. RNA 3D Structure Prediction: Progress and Perspective. Molecules 2023; 28:5532. [PMID: 37513407 PMCID: PMC10386116 DOI: 10.3390/molecules28145532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ribonucleic acid (RNA) molecules play vital roles in numerous important biological functions such as catalysis and gene regulation. The functions of RNAs are strongly coupled to their structures or proper structure changes, and RNA structure prediction has been paid much attention in the last two decades. Some computational models have been developed to predict RNA three-dimensional (3D) structures in silico, and these models are generally composed of predicting RNA 3D structure ensemble, evaluating near-native RNAs from the structure ensemble, and refining the identified RNAs. In this review, we will make a comprehensive overview of the recent advances in RNA 3D structure modeling, including structure ensemble prediction, evaluation, and refinement. Finally, we will emphasize some insights and perspectives in modeling RNA 3D structures.
Collapse
Affiliation(s)
- Xunxun Wang
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shixiong Yu
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - En Lou
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
| | - Zhi-Jie Tan
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Bennett D, Chen X, Walker GJ, Stelzer-Braid S, Rawlinson WD, Hibbert DB, Tilley RD, Gooding JJ. Machine Learning Color Feature Analysis of a High Throughput Nanoparticle Conjugate Sensing Assay. Anal Chem 2023; 95:6550-6558. [PMID: 37036670 DOI: 10.1021/acs.analchem.2c05292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Plasmonic nanoparticles are finding applications within the single molecule sensing field in a "dimer" format, where interaction of the target with hairpin DNA causes a decrease in the interparticle distance, leading to a localized surface plasmon resonance shift. While this shift may be detected using spectroscopy, achieving statistical relevance requires the measurement of thousands of nanoparticle dimers and the timescales required for spectroscopic analysis are incompatible with point-of-care devices. However, using dark-field imaging of the dimer structures, simultaneous digital analysis of the plasmonic resonance shift after target interaction of thousands of dimer structures may be achieved in minutes. The main challenge of this digital analysis on the single-molecule scale was the occurrence of false signals caused by non-specifically bound clusters of nanoparticles. This effect may be reduced by digitally separating dimers from other nanoconjugate types. Variation in image intensity was observed to have a discernible impact on the color analysis of the nanoconjugate constructs and thus the accuracy of the digital separation. Color spaces wherein intensity may be uncoupled from the color information (hue, saturation, and value (HSV) and luminance, a* vector, and b* vector (LAB) were contrasted to a color space which cannot uncouple intensity (RGB) to train a classifier algorithm. Each classifier algorithm was validated to determine which color space produced the most accurate digital separation of the nanoconjugate types. The LAB-based learning classifier demonstrated the highest accuracy for digitally separating nanoparticles. Using this classifier, nanoparticle conjugates were monitored for their plasmonic color shift after interaction with a synthetic RNA target, resulting in a platform with a highly accurate yes/no response with a true positive rate of 88% and a true negative rate of 100%. The sensor response of tested single stranded RNA (ssRNA) samples was well above control responses for target concentrations in the range of 10 aM-1 pM.
Collapse
Affiliation(s)
- Danielle Bennett
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xueqian Chen
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Gregory J Walker
- The Virology Research Laboratory, The University of New South Wales, The Prince of Wales Hospital, Sydney, New South Wales 2052, Australia
| | - Sacha Stelzer-Braid
- The Virology Research Laboratory, The University of New South Wales, The Prince of Wales Hospital, Sydney, New South Wales 2052, Australia
| | - William D Rawlinson
- The Virology Research Laboratory, The University of New South Wales, The Prince of Wales Hospital, Sydney, New South Wales 2052, Australia
| | - D Brynn Hibbert
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Sun LZ, Qian JL, Cai P, Xu X. Mutual effects between single-stranded DNA conformation and Na +-Mg 2+ ion competition in mixed salt solutions. Phys Chem Chem Phys 2022; 24:20867-20881. [PMID: 36043348 DOI: 10.1039/d2cp02737b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ion-dependence of single-stranded DNA (ssDNA) conformational changes has attracted growing attention because of its biological and technological importance. Although single-species ion effects have been extensively explored, it is challenging to study the ssDNA conformational properties under mixed monovalent/divalent ion conditions due to the complications of ssDNA flexibility and ion-ion competition. In this study, we apply Langevin dynamics simulations to investigate mixed Na+/Mg2+ ion-dependent ssDNA conformations. The ssDNA structure is described using a coarse-grained model, in which the phosphate, base, and sugar of each nucleotide are represented by three different beads. A novel improvement in our simulation model is that mixed-salt-related electrostatic interactions are computed via combining Manning counterion condensation (MCC) theory with the Monte Carlo tightly bound ion (MCTBI) model. Based on this MCC-MCTBI combination, we report new empirical functions to describe the ion-concentration-dependent and ssDNA conformation/structure-dependent electrostatic effects. The calculation results relating to the ion binding properties and the simulation results relating to the ssDNA conformational properties are validated against experimental results. In addition, our simulation results suggest a quantitative relationship between the ssDNA conformation and Na+-Mg2+ competition; this in turn reveals their mutual impact in the ion atmosphere.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Jun-Lin Qian
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Pinggen Cai
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| |
Collapse
|
5
|
Wang C, Hu HX, Zhou YL, Zhao B, Luo MB. Translocation of a Self-propelled Polymer through a Narrow Pore. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Si DQ, Liu XY, Wu JB, Hu GH. Modulation of DNA conformation in electrolytic nanodroplets. Phys Chem Chem Phys 2022; 24:6002-6010. [PMID: 35199810 DOI: 10.1039/d1cp05329a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The behavior of deoxyribonucleic acid (DNA) molecules in confinement is of profound importance in various bioengineering and medical applications. In the present study, all-atom molecular dynamics simulation is utilized to investigate the transition of the double-strand DNA (dsDNA) conformation in the electrolytic nanodroplet. Three typical conformations, i.e., C-shaped, folded S-shaped, and double C-shaped, are observed for different droplet sizes and ionic concentrations. To reveal the physics underlying this phenomenon, the characteristics of the dsDNA molecules, such as the overcharging intensity, the end-to-end distance, the radius of gyration, etc. are analyzed in detail based on the numerical results. It is found that the transition can be ascribed to the buckling of the polymer molecules under the compression due to the confinement of the nanodroplet, and it can be modulated by the ionic concentration in the electrolyte. Generally, nanoscale confinement dominates dsDNA behavior over the electrostatic effects in smaller nanodroplets, while the latter becomes more important for larger nanodroplets. This competition results in the persistence length increasing with the nanodroplet radii. Based on these discussions, a non-dimensional elasto-capillary number μ is proposed to classify the dsDNA conformations into three regions.
Collapse
Affiliation(s)
- Dong-Qing Si
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China.
| | - Xin-Yue Liu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China.
| | - Jin-Bo Wu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Guo-Hui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China.
| |
Collapse
|
7
|
Srivastava S, Chhabra A, Gang O. Effect of mono- and multi-valent ionic environments on the in-lattice nanoparticle-grafted single-stranded DNA. SOFT MATTER 2022; 18:526-534. [PMID: 34908083 DOI: 10.1039/d1sm01171e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolyte (PE) chains respond in a complex manner to multivalent salt environments, and this behavior depends on pH, temperature, and the presence of specific counter ions. Although much work has been done to understand the behaviour of free PE chains, it is important to reveal their behaviour on a nanoparticle's surface, where surface constraints, particle geometry, and multi-chain environment can affect their behaviour and contribute to particles' assembly states. Our work investigates, using in situ small-angle X-ray scattering (SAXS), the morphology of PE (single-stranded DNA) chains grafted onto the surface of spherical gold nanoparticles assembled in a lattice in the presence of monovalent, divalent and trivalent salts. For divalent salts, the DNA brush length was found to decrease at a faster rate with salt concentration than in the monovalent salt environment, while trivalent salts led to chain collapse. Using a power law analysis and the modified Daoud-Cotton model, we have obtained insight into the mechanism of a nanoparticle-grafted chain's response to ionic environments. Our analysis suggests that the decrease in brush length is due to the conventional electrostatic screening for monovalent systems, whereas for divalent systems both electrostatic screening and divalent ion bridging must be considered.
Collapse
Affiliation(s)
- Sunita Srivastava
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Anuj Chhabra
- Center for Nanoscience, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Oleg Gang
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton, NY 11973, USA.
- Department of Chemical Engineering Columbia University New York, NY 10027, USA
- Department of Applied Physics and Applied Mathematics Columbia University New York, NY 10027, USA
| |
Collapse
|
8
|
Sensale S, Wang C, Chang HC. Resistive amplitude fingerprints during translocation of linear molecules through charged solid-state nanopores. J Chem Phys 2020; 153:035102. [PMID: 32716192 PMCID: PMC7367690 DOI: 10.1063/5.0013195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We report the first analytical theory on the amplitude of resistive signals during molecular translocation through charged solid-state nanopores with variable cross-sectional area and piecewise-constant surface charge densities. By providing closed-form explicit algebraic expressions for the concentration profiles inside charged nanopores, this theory allows the prediction of baseline and translocation resistive signals without the need for numerical simulation of the electrokinetic phenomena. A transversely homogenized theory and an asymptotic expansion for weakly charged pores capture DC or quasi-static rectification due to field-induced intrapore concentration polarization (as a result of pore charge inhomogeneity or a translocating molecule). This theory, validated by simulations and experiments, is then used to explain why the amplitude of a single stranded DNA molecule can be twice as high as the amplitude of its double stranded counterpart. It also suggests designs for intrapore concentration polarization and volume exclusion effects that can produce biphasic and other amplitude fingerprints for high-throughput and yet discriminating molecular identification.
Collapse
Affiliation(s)
- Sebastian Sensale
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| | - Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| | - Hsueh-Chia Chang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| |
Collapse
|
9
|
Fu Y, Wu F, Huang JH, Chen YC, Luo MB. Simulation Study on the Extension of Semi-flexible Polymer Chains in Cylindrical Channel. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2291-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Sarkar S, Maity A, Sarma Phukon A, Ghosh S, Chakrabarti R. Salt Induced Structural Collapse, Swelling, and Signature of Aggregation of Two ssDNA Strands: Insights from Molecular Dynamics Simulation. J Phys Chem B 2018; 123:47-56. [DOI: 10.1021/acs.jpcb.8b09098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Soham Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atanu Maity
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aditya Sarma Phukon
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumadwip Ghosh
- Beckman Research Institute of the City of Hope National Medical Center, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Jin L, Shi YZ, Feng CJ, Tan YL, Tan ZJ. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions. Biophys J 2018; 115:1403-1416. [PMID: 30236782 DOI: 10.1016/j.bpj.2018.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
Double-stranded (ds) RNAs play essential roles in many processes of cell metabolism. The knowledge of three-dimensional (3D) structure, stability, and flexibility of dsRNAs in salt solutions is important for understanding their biological functions. In this work, we further developed our previously proposed coarse-grained model to predict 3D structure, stability, and flexibility for dsRNAs in monovalent and divalent ion solutions through involving an implicit structure-based electrostatic potential. The model can make reliable predictions for 3D structures of extensive dsRNAs with/without bulge/internal loops from their sequences, and the involvement of the structure-based electrostatic potential and corresponding ion condition can improve the predictions for 3D structures of dsRNAs in ion solutions. Furthermore, the model can make good predictions for thermal stability for extensive dsRNAs over the wide range of monovalent/divalent ion concentrations, and our analyses show that the thermally unfolding pathway of dsRNA is generally dependent on its length as well as its sequence. In addition, the model was employed to examine the salt-dependent flexibility of a dsRNA helix, and the calculated salt-dependent persistence lengths are in good accordance with experiments.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Chen-Jie Feng
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Zhang X, Bao L, Wu YY, Zhu XL, Tan ZJ. Radial distribution function of semiflexible oligomers with stretching flexibility. J Chem Phys 2018; 147:054901. [PMID: 28789545 DOI: 10.1063/1.4991689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The radial distribution of the end-to-end distance Ree is crucial for quantifying the global size and flexibility of a linear polymer. For semiflexible polymers, several analytical formulas have been derived for the radial distribution of Ree ignoring the stretching flexibility. However, for semiflexible oligomers, such as DNA or RNA, the stretching flexibility can be rather pronounced and can significantly affect the radial distribution of Ree. In this study, we obtained an extended formula that includes the stretch modulus to describe the distribution of Ree for semiflexible oligomers on the basis of previous formulas for semiflexible polymers without stretching flexibility. The extended formula was validated by extensive Monte Carlo simulations over wide ranges of the stretch modulus and persistence length, as well as all-atom molecular dynamics simulations of short DNAs and RNAs. Additionally, our analyses showed that the effect of stretching flexibility on the distribution of Ree becomes negligible for DNAs longer than ∼130 base pairs and RNAs longer than ∼240 base pairs.
Collapse
Affiliation(s)
- Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yuan-Yan Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Shi YZ, Jin L, Feng CJ, Tan YL, Tan ZJ. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions. PLoS Comput Biol 2018; 14:e1006222. [PMID: 29879103 PMCID: PMC6007934 DOI: 10.1371/journal.pcbi.1006222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/19/2018] [Accepted: 05/22/2018] [Indexed: 01/30/2023] Open
Abstract
RNA pseudoknots are a kind of minimal RNA tertiary structural motifs, and their three-dimensional (3D) structures and stability play essential roles in a variety of biological functions. Therefore, to predict 3D structures and stability of RNA pseudoknots is essential for understanding their functions. In the work, we employed our previously developed coarse-grained model with implicit salt to make extensive predictions and comprehensive analyses on the 3D structures and stability for RNA pseudoknots in monovalent/divalent ion solutions. The comparisons with available experimental data show that our model can successfully predict the 3D structures of RNA pseudoknots from their sequences, and can also make reliable predictions for the stability of RNA pseudoknots with different lengths and sequences over a wide range of monovalent/divalent ion concentrations. Furthermore, we made comprehensive analyses on the unfolding pathway for various RNA pseudoknots in ion solutions. Our analyses for extensive pseudokonts and the wide range of monovalent/divalent ion concentrations verify that the unfolding pathway of RNA pseudoknots is mainly dependent on the relative stability of unfolded intermediate states, and show that the unfolding pathway of RNA pseudoknots can be significantly modulated by their sequences and solution ion conditions.
Collapse
Affiliation(s)
- Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Jin
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Chen-Jie Feng
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Zhang JS, Zhang X, Zhang ZL, Tan ZJ. Potential of mean force between oppositely charged nanoparticles: A comprehensive comparison between Poisson-Boltzmann theory and Monte Carlo simulations. Sci Rep 2017; 7:14145. [PMID: 29074886 PMCID: PMC5658377 DOI: 10.1038/s41598-017-14636-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/12/2017] [Indexed: 01/31/2023] Open
Abstract
Ion-mediated interactions between like-charged polyelectrolytes have been paid much attention, and the Poisson-Boltzmann (PB) theory has been shown to fail in qualitatively predicting multivalent ion-mediated like-charge attraction. However, inadequate attention has been paid to the ion-mediated interactions between oppositely charged polyelectrolytes. In this work, the potentials of mean force (PMF) between oppositely charged nanoparticles in 1:1 and 2:2 salt solutions were investigated by Monte Carlo simulations and the PB theory. Our calculations show that the PMFs between oppositely charged nanoparticles are generally attractive in 1:1 and 2:2 salt solutions and that such attractive PMFs become weaker at higher 1:1 or 2:2 salt concentrations. The comprehensive comparisons show that the PB theory can quantitatively predict the PMFs between oppositely charged nanoparticles in 1:1 salt solutions, except for the slight deviation at very high 1:1 salt concentration. However, for 2:2 salt solutions, the PB theory generally overestimates the attractive PMF between oppositely charged nanoparticles, and this overestimation becomes more pronounced for nanoparticles with higher charge density and for higher 2:2 salt concentration. Our microscopic analyses suggest that the overestimation of the PB theory on the attractive PMFs for 2:2 salt solutions is attributed to the underestimation of divalent ions bound to nanoparticles.
Collapse
Affiliation(s)
- Jin-Si Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Zhong-Liang Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
15
|
Pramanik D, Maiti PK. DNA-Assisted Dispersion of Carbon Nanotubes and Comparison with Other Dispersing Agents. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35287-35296. [PMID: 28905626 DOI: 10.1021/acsami.7b06751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Separation and sorting of pristine carbon nanotubes (CNTs) from bundle geometry is a very challenging task due to the insoluble and nondispersive nature of CNTs in aqueous medium. Recently, many studies have been performed to address this problem using various organic and inorganic solutions, surfactant molecules, and biomolecules as dispersing agents. Recent experimental studies have reported the DNA to be highly efficient in dispersing CNTs from bundle geometry. However, there is no microscopic study and also quantitative estimation of the dispersion efficiency of the DNA. Using all-atom molecular dynamics simulation, we study the structure and stability of single-stranded DNA (ssDNA)-single-walled carbon nanotube (SWNT) (6,5) complex. To quantify the dispersion efficiency of various DNA sequences, we perform potential of mean forces (PMF) calculation between two bare SWNTs as well ssDNA-wrapped CNTs for different base sequences. From the PMF calculation, we find the PMF between two bare (6,5) SWNTs to be approximately -29 kcal/mol. For the ssDNA-wrapped SWNTs, the PMF reduces significantly and becomes repulsive. In the presence of ssDNA of different polynucleotide bases (A, T, G, and C), we present a microscopic picture of the ssDNA-SWNT (6,5) complex and also a quantitative estimate of the interaction strength between nanotubes from PMF calculation. From PMF, we show the sequence of dispersion efficiency for four different nucleic bases to be T > A > C > G. We have also presented a comparison of the dispersion efficiencies of ssDNA, flavin mononucleotide surfactant, and poly(amidoamine) (PAMAM) dendrimer by comparing their respective PMF values.
Collapse
Affiliation(s)
- Debabrata Pramanik
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Prabal K Maiti
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
16
|
Sensale S, Peng Z, Chang HC. Kinetic theory for DNA melting with vibrational entropy. J Chem Phys 2017; 147:135101. [PMID: 28987107 DOI: 10.1063/1.4996174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
By treating DNA as a vibrating nonlinear lattice, an activated kinetic theory for DNA melting is developed to capture the breakage of the hydrogen bonds and subsequent softening of torsional and bending vibration modes. With a coarse-grained lattice model, we identify a key bending mode with GHz frequency that replaces the hydrogen vibration modes as the dominant out-of-phase phonon vibration at the transition state. By associating its bending modulus to a universal in-phase bending vibration modulus at equilibrium, we can hence estimate the entropic change in the out-of-phase vibration from near-equilibrium all-atom simulations. This and estimates of torsional and bending entropy changes lead to the first predictive and sequence-dependent theory with good quantitative agreement with experimental data for the activation energy of melting of short DNA molecules without intermediate hairpin structures.
Collapse
Affiliation(s)
- Sebastian Sensale
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| | - Zhangli Peng
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| |
Collapse
|
17
|
Zhang ZL, Wu YY, Xi K, Sang JP, Tan ZJ. Divalent Ion-Mediated DNA-DNA Interactions: A Comparative Study of Triplex and Duplex. Biophys J 2017; 113:517-528. [PMID: 28793207 DOI: 10.1016/j.bpj.2017.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Ion-mediated interaction between DNAs is essential for DNA condensation, and it is generally believed that monovalent and nonspecifically binding divalent cations cannot induce the aggregation of double-stranded (ds) DNAs. Interestingly, recent experiments found that alkaline earth metal ions such as Mg2+ can induce the aggregation of triple-stranded (ts) DNAs, although there is still a lack of deep understanding of the surprising findings at the microscopic level. In this work, we employed all-atom dynamic simulations to directly calculate the potentials of mean force (PMFs) between tsDNAs, between dsDNAs, and between tsDNA and dsDNA in Mg2+ solutions. Our calculations show that the PMF between tsDNAs is apparently attractive and becomes more strongly attractive at higher [Mg2+], although the PMF between dsDNAs cannot become apparently attractive even at high [Mg2+]. Our analyses show that Mg2+ internally binds into grooves and externally binds to phosphate groups for both tsDNA and dsDNA, whereas the external binding of Mg2+ is much stronger for tsDNA. Such stronger external binding of Mg2+ for tsDNA favors more apparent ion-bridging between helices than for dsDNA. Furthermore, our analyses illustrate that bridging ions, as a special part of external binding ions, are tightly and positively coupled to ion-mediated attraction between DNAs.
Collapse
Affiliation(s)
- Zhong-Liang Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Yuan-Yan Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China; College of Physical Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jian-Ping Sang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Shi YZ, Jin L, Wang FH, Zhu XL, Tan ZJ. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions. Biophys J 2016; 109:2654-2665. [PMID: 26682822 DOI: 10.1016/j.bpj.2015.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 10/24/2022] Open
Abstract
A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (<77 nucleotides) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy compared to the experimental data; the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions.
Collapse
Affiliation(s)
- Ya-Zhou Shi
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Jin
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Feng-Hua Wang
- Engineering Training Center, Jianghan University, Wuhan, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics and Information Engineering, Jianghan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Granzotti CRF, Martinez AS, da Silva MAA. Scaling analysis of random walks with persistence lengths: Application to self-avoiding walks. Phys Rev E 2016; 93:052116. [PMID: 27300839 DOI: 10.1103/physreve.93.052116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/07/2022]
Abstract
We develop an approach for performing scaling analysis of N-step random walks (RWs). The mean square end-to-end distance, 〈R[over ⃗]_{N}^{2}〉, is written in terms of inner persistence lengths (IPLs), which we define by the ensemble averages of dot products between the walker's position and displacement vectors, at the jth step. For RW models statistically invariant under orthogonal transformations, we analytically introduce a relation between 〈R[over ⃗]_{N}^{2}〉 and the persistence length, λ_{N}, which is defined as the mean end-to-end vector projection in the first step direction. For self-avoiding walks (SAWs) on 2D and 3D lattices we introduce a series expansion for λ_{N}, and by Monte Carlo simulations we find that λ_{∞} is equal to a constant; the scaling corrections for λ_{N} can be second- and higher-order corrections to scaling for 〈R[over ⃗]_{N}^{2}〉. Building SAWs with typically 100 steps, we estimate the exponents ν_{0} and Δ_{1} from the IPL behavior as function of j. The obtained results are in excellent agreement with those in the literature. This shows that only an ensemble of paths with the same length is sufficient for determining the scaling behavior of 〈R[over ⃗]_{N}^{2}〉, being that the whole information needed is contained in the inner part of the paths.
Collapse
Affiliation(s)
- C R F Granzotti
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Avenida Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - A S Martinez
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Avenida Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - M A A da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Avenida Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
20
|
Chakraborty K, Khatua P, Bandyopadhyay S. Exploring ion induced folding of a single-stranded DNA oligomer from molecular simulation studies. Phys Chem Chem Phys 2016; 18:15899-910. [PMID: 27241311 DOI: 10.1039/c6cp00663a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One crucial issue in DNA hydration is the effect of salts on its conformational features. This has relevance in biology as cations present in the cellular environment shield the negative charges on the DNA backbone, thereby reducing the repulsive force between them. By screening the negative charges along the backbone, cations stabilize the folded structure of DNA. To study the effect of the added salt on single-stranded DNA (ss-DNA) conformations, we have performed room temperature molecular dynamics simulations of an aqueous solution containing the ss-DNA dodecamer with the 5'-CGCGAATTCGCG-3' sequence in the presence of 0.2, 0.5, and 0.8 M NaCl. Our calculations reveal that in the presence of the salt, the DNA molecule forms more collapsed coil-like conformations due to the screening of negative charges along the backbone. Additionally, we demonstrated that the formation of an octahedral inner-sphere complex by the strongly bound ion plays an important role in the stabilization of such folded conformation of DNA. Importantly, it is found that ion-DNA interactions can also explain the formation of non-sequential base stackings with longer lifetimes. Such non-sequential base stackings further stabilize the collapsed coil-like folded form of the DNA oligomer.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India.
| | | | | |
Collapse
|
21
|
Ghosh S, Chakrabarti R. Spontaneous Unzipping of Xylonucleic Acid Assisted by a Single-Walled Carbon Nanotube: A Computational Study. J Phys Chem B 2016; 120:3642-52. [DOI: 10.1021/acs.jpcb.6b02035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumadwip Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 40076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 40076, India
| |
Collapse
|
22
|
Henke PS, Mak CH. An implicit divalent counterion force field for RNA molecular dynamics. J Chem Phys 2016; 144:105104. [DOI: 10.1063/1.4943387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paul S. Henke
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Chi H. Mak
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
23
|
Wu YY, Bao L, Zhang X, Tan ZJ. Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs. J Chem Phys 2016; 142:125103. [PMID: 25833610 DOI: 10.1063/1.4915539] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5-50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ∼6 bps at each helix end. Correspondingly, the apparent persistence length lp of short DNAs increases gradually from ∼29 nm to ∼45 nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ∼6 bps at each helix end have the similar flexibility with those of kilo bps and can be described by the worm-like chain model with lp ∼ 50 nm.
Collapse
Affiliation(s)
- Yuan-Yan Wu
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Bao
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xi Zhang
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Ghosh S, Patel N, Chakrabarti R. Probing the Salt Concentration Dependent Nucleobase Distribution in a Single-Stranded DNA–Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics. J Phys Chem B 2016; 120:455-66. [DOI: 10.1021/acs.jpcb.5b12044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Soumadwip Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 40076, India
| | - Nisheet Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 40076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 40076, India
| |
Collapse
|
25
|
Abstract
The flexibility of short DNA fragments is studied by a Hamiltonian model which treats the inter-strand and intra-strand forces at the level of the base pair.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology
- University of Camerino
- I-62032 Camerino
- Italy
| |
Collapse
|
26
|
Ghosh S, Dixit H, Chakrabarti R. Ion assisted structural collapse of a single stranded DNA: A molecular dynamics approach. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Wu YY, Zhang ZL, Zhang JS, Zhu XL, Tan ZJ. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA. Nucleic Acids Res 2015; 43:6156-65. [PMID: 26019178 PMCID: PMC4499160 DOI: 10.1093/nar/gkv570] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/20/2015] [Indexed: 01/30/2023] Open
Abstract
Ion-mediated interaction is critical to the structure and stability of nucleic acids. Recent experiments suggest that the multivalent ion-induced aggregation of double-stranded (ds) RNAs and DNAs may strongly depend on the topological nature of helices, while there is still lack of an understanding on the relevant ion-mediated interactions at atomistic level. In this work, we have directly calculated the potentials of mean force (PMF) between two dsRNAs and between two dsDNAs in Co(NH3)6 (3+) (Co-Hex) solutions by the atomistic molecular dynamics simulations. Our calculations show that at low [Co-Hex], the PMFs between B-DNAs and between A-RNAs are both (strongly) repulsive. However, at high [Co-Hex], the PMF between B-DNAs is strongly attractive, while those between A-RNAs and between A-DNAs are still (weakly) repulsive. The microscopic analyses show that for A-form helices, Co-Hex would become 'internal binding' into the deep major groove and consequently cannot form the evident ion-bridge between adjacent helices, while for B-form helices without deep grooves, Co-Hex would exhibit 'external binding' to strongly bridge adjacent helices. In addition, our further calculations show that, the PMF between A-RNAs could become strongly attractive either at very high [Co-Hex] or when the bottom of deep major groove is fixed with a layer of water.
Collapse
Affiliation(s)
- Yuan-Yan Wu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhong-Liang Zhang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jin-Si Zhang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics & Information Engineering, Jianghan University, Wuhan 430056, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Schefer L, Usov I, Mezzenga R. Anomalous Stiffening and Ion-Induced Coil–Helix Transition of Carrageenans under Monovalent Salt Conditions. Biomacromolecules 2015; 16:985-91. [DOI: 10.1021/bm501874k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Larissa Schefer
- Department of Health Sciences
and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Ivan Usov
- Department of Health Sciences
and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences
and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
29
|
Ovanesyan Z, Medasani B, Fenley MO, Guerrero-García GI, de la Cruz MO, Marucho M. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: theory, simulations, and experiments. J Chem Phys 2014; 141:225103. [PMID: 25494770 PMCID: PMC4265039 DOI: 10.1063/1.4902407] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/12/2014] [Indexed: 12/19/2022] Open
Abstract
The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models.
Collapse
Affiliation(s)
- Zaven Ovanesyan
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003, USA
| | - Bharat Medasani
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003, USA
| | - Marcia O Fenley
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Guillermo Iván Guerrero-García
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, Mexico
| | - Mónica Olvera de la Cruz
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003, USA
| |
Collapse
|
30
|
Chakraborty K, Mantha S, Bandyopadhyay S. Molecular dynamics simulation of a single-stranded DNA with heterogeneous distribution of nucleobases in aqueous medium. J Chem Phys 2014; 139:075103. [PMID: 23968115 DOI: 10.1063/1.4818537] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The DNA metabolic processes often involve single-stranded DNA (ss-DNA) molecules as important intermediates. In the absence of base complementarity, ss-DNAs are more flexible and interact strongly with water in aqueous media. Ss-DNA-water interactions are expected to control the conformational flexibility of the DNA strand, which in turn should influence the properties of the surrounding water molecules. We have performed room temperature molecular dynamics simulation of an aqueous solution containing the ss-DNA dodecamer, 5'-CGCGAATTCGCG-3'. The conformational flexibility of the DNA strand and the microscopic structure and ordering of water molecules around it have been explored. The simulation reveals transformation of the initial base-stacked form of the ss-DNA to a fluctuating collapsed coil-like conformation with the formation of a few non-sequentially stacked base pairs. A preliminary analysis shows further collapse of the DNA conformation in presence of additional salt (NaCl) due to screening of negative charges along the backbone by excess cations. Additionally, higher packing of water molecules within a short distance from the DNA strand is found to be associated with realignment of water molecules by breaking their regular tetrahedral ordering.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | | | |
Collapse
|
31
|
Shi YZ, Wang FH, Wu YY, Tan ZJ. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect. J Chem Phys 2014; 141:105102. [DOI: 10.1063/1.4894752] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ya-Zhou Shi
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Feng-Hua Wang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yuan-Yan Wu
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
32
|
González-Mozuelos P, Guerrero-García GI, Olvera de la Cruz M. An exact method to obtain effective electrostatic interactions from computer simulations: The case of effective charge amplification. J Chem Phys 2013; 139:064709. [DOI: 10.1063/1.4817776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|