1
|
Henriksen HC, Sowers AJ, Travis CR, Vulpis TD, Cope TA, Ouslander SK, Russell AF, Gagné MR, Pophristic V, Liu Z, Waters ML. Stimulus-Induced Relief of Intentionally Incorporated Frustration Drives Refolding of a Water-Soluble Biomimetic Foldamer. J Am Chem Soc 2023; 145:27672-27679. [PMID: 38054648 PMCID: PMC11407234 DOI: 10.1021/jacs.3c09883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Frustrated, or nonoptimal, interactions have been proposed to be essential to a protein's ability to display responsive behavior such as allostery, conformational signaling, and signal transduction. However, the intentional incorporation of frustrated noncovalent interactions has not been explored as a design element in the field of dynamic foldamers. Here, we report the design, synthesis, characterization, and molecular dynamics simulations of the first dynamic water-soluble foldamer that, in response to a stimulus, exploits relief of frustration in its noncovalent network to structurally rearrange from a pleated to an intercalated columnar structure. Thus, relief of frustration provides the energetic driving force for structural rearrangement. This work represents a previously unexplored design element for the development of stimulus-responsive systems that has potential application to materials chemistry, synthetic biology, and molecular machines.
Collapse
Affiliation(s)
- Hanne C Henriksen
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Adam J Sowers
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher R Travis
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Troy D Vulpis
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas A Cope
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sarah K Ouslander
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexander F Russell
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michel R Gagné
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vojislava Pophristic
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028-1701 , United States
| | - Zhiwei Liu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028-1701 , United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Tilly DP, Morris DTJ, Clayden J. Anion-Dependent Hydrogen-Bond Polarity Switching in Ethylene-bridged Urea Oligomers. Chemistry 2023; 29:e202302210. [PMID: 37589333 PMCID: PMC10946793 DOI: 10.1002/chem.202302210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
The reversible coordination of anions to an N,N'-disubstituted 3,5-bis(trifluoromethyl)phenylurea located at a terminus of a linear chain of ethylene-bridged hydrogen-bonded ureas triggers a cascade of conformational changes. A series of hydrogen-bond polarity reversals propagates along the oligomer, leading to a global switch of its hydrogen-bond directionality. The induced polarity switch, transmitted through four reversible urea groups, results in a change in emission and excitation wavelengths of a fluorophore located at the opposite terminus of the oligomer. The molecule thus behaves as a chemical sensor with a relayed remote spectroscopic response to variations in anion concentration. The polarity switch induced by anion concentration constitutes an artificial communication mechanism for conveying information through oligomeric structures.
Collapse
Affiliation(s)
- David P. Tilly
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David T. J. Morris
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Jonathan Clayden
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
| |
Collapse
|
3
|
Tilly DP, Heeb JP, Webb SJ, Clayden J. Switching imidazole reactivity by dynamic control of tautomer state in an allosteric foldamer. Nat Commun 2023; 14:2647. [PMID: 37156760 PMCID: PMC10167260 DOI: 10.1038/s41467-023-38339-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Molecular biology achieves control over complex reaction networks by means of molecular systems that translate a chemical input (such as ligand binding) into an orthogonal chemical output (such as acylation or phosphorylation). We present an artificial molecular translation device that converts a chemical input - the presence of chloride ions - into an unrelated chemical output: modulation of the reactivity of an imidazole moiety, both as a Brønsted base and as a nucleophile. The modulation of reactivity operates through the allosteric remote control of imidazole tautomer states. The reversible coordination of chloride to a urea binding site triggers a cascade of conformational changes in a chain of ethylene-bridged hydrogen-bonded ureas, switching the chain's global polarity, that in turn modulates the tautomeric equilibrium of a distal imidazole, and hence its reactivity. Switching reactivities of active sites by dynamically controlling their tautomer states is an untapped strategy for building functional molecular devices with allosteric enzyme-like properties.
Collapse
Affiliation(s)
- David P Tilly
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jean-Paul Heeb
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
4
|
Biondi B, Cardena R, Bisello A, Schiesari R, Cerveson L, Facci M, Rancan M, Formaggio F, Santi S. Flat, Ferrocenyl‐Conjugated Peptides: A Combined Electrochemical and Spectroscopic Study. ChemElectroChem 2021. [DOI: 10.1002/celc.202100597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Barbara Biondi
- Institute of Biomolecular Chemistry Padova Unit, CNR via Marzolo 1 35131 Padova Italy
| | - Roberta Cardena
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Annalisa Bisello
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Renato Schiesari
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Laura Cerveson
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Martino Facci
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Marzio Rancan
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), CNR Via Marzolo, 1 35131 Padova Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry Padova Unit, CNR via Marzolo 1 35131 Padova Italy
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Saverio Santi
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
5
|
Ragab SS, Kassir AF, Guillot R, Scherrmann MC, Boddaert T, Aitken DJ. Cooperative 5- and 10-membered ring interactions in the 10-helix folding of oxetin homo-oligomers. Chem Commun (Camb) 2018; 54:1968-1971. [PMID: 29399690 DOI: 10.1039/c7cc09964a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Homo-oligomers of the natural product oxetin (cis-3-amino-2-oxetanecarboxylic acid) were prepared and their conformational behaviour studied in solution and solid state and by molecular modelling. The predominant secondary structure was a 10-helix, propiciously stabilized by a network of 5-membered ring H-bonds implicating ring oxygens and neighboring amide hydrogen atoms.
Collapse
Affiliation(s)
- Sherif S Ragab
- CP3A Organic Synthesis Group, ICMMO, UMR 8182, CNRS, Université Paris-Sud, Université Paris-Saclay, 15 Rue Georges Clemenceau, 91405 Orsay cedex, France.
| | | | | | | | | | | |
Collapse
|
6
|
Crisma M, Formaggio F, Alemán C, Torras J, Ramakrishnan C, Kalmankar N, Balaram P, Toniolo C. The fully‐extended conformation in peptides and proteins. Pept Sci (Hoboken) 2018. [DOI: 10.1002/bip.23100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNRPadova35131 Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNRPadova35131 Italy
- Department of ChemistryUniversity of PadovaPadova35131 Italy
| | - Carlos Alemán
- Departament d'Enginyeria QuímicaEEBE, Universitat Politècnica de CatalunyaBarcelona08019 Spain
- Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de CatalunyaBarcelona08019 Spain
| | - Joan Torras
- Departament d'Enginyeria QuímicaEEBE, Universitat Politècnica de CatalunyaBarcelona08019 Spain
- Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de CatalunyaBarcelona08019 Spain
| | | | - Neha Kalmankar
- National Centre for Biological Sciences (TIFR), GKVK CampusBangalore560065 India
| | | | - Claudio Toniolo
- Institute of Biomolecular Chemistry, Padova Unit, CNRPadova35131 Italy
- Department of ChemistryUniversity of PadovaPadova35131 Italy
| |
Collapse
|
7
|
Crisma M, Peggion C, Moretto A, Banerjee R, Supakar S, Formaggio F, Toniolo C. The 2.0₅-helix in hetero-oligopeptides entirely composed of C(α,α)-disubstituted glycines with both side chains longer than methyls. Biopolymers 2016; 102:145-58. [PMID: 24307568 DOI: 10.1002/bip.22450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/15/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
The existence of the very uncommon, but potentially quite interesting, multiple, consecutive fully-extended conformation (2.0₅-helix) has been already clearly demonstrated in homo-oligopeptides based on quaternary α-amino acids with both side chains longer than methyls, but not cyclized on the α-carbon atom. To extend the scope of this research, in this work we investigated the occurrence of this flat 3D-structure in hetero-oligopeptides, each composed of two or three different residues of that class. The synthesis of a terminally protected peptide series to the tetrapeptide level was carried out by solution methods. The resulting oligomers were chemically and conformationally characterized. The data obtained point to an overwhelming population of the fully-extended conformation in CDCl3. However, a solvent-driven switch to a predominant 3₁₀-helical structure was seen in CD3CN. A delicate, local balance between these two conformations is confirmed to occur in the crystalline state. Molecular dynamics simulations in CHCl3 on a hetero-tetrapeptide converged to the fully-extended conformation even starting from the 3₁₀-helical structure.
Collapse
Affiliation(s)
- Marco Crisma
- Department of Chemistry, ICB, Padova Unit, CNR, University of Padova, 35131, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Foldamers can be made more than pieces of static, conformationally uniform molecular architecture by designing into their structure the conformational dynamism characteristic of functional molecular machines. We show that these dynamic foldamers display biomimetic properties reminiscent of allosteric proteins and receptor molecules. They can translate chemical signals into conformational changes, and hence into chemical outputs such as control of reactivity and selectivity. Future developments could see dynamic foldamers operating in the membrane phase providing artificial mechanisms for communication and control that integrate synthetic chemistry into synthetic biology.
Collapse
Affiliation(s)
- Bryden A F Le Bailly
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | |
Collapse
|
9
|
Le Bailly BAF, Byrne L, Clayden J. Refoldable Foldamers: Global Conformational Switching by Deletion or Insertion of a Single Hydrogen Bond. Angew Chem Int Ed Engl 2016; 55:2132-6. [PMID: 26762559 PMCID: PMC4755161 DOI: 10.1002/anie.201510605] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/12/2022]
Abstract
Small changes in the structure of a foldamer may lead to gross changes in conformational preference. We show that the simple insertion or deletion of a single hydrogen bond by changes in pH or by photochemical deprotection is sufficient to refold a helical oligomer, interconverting M and P screw-sense preference. As a consequence of the switch, information may be transmitted to a remote catalytic site, selectively directing the formation of either of two enantiomeric products by a reaction involving 1,22-remote intermolecular asymmetric induction.
Collapse
Affiliation(s)
- Bryden A F Le Bailly
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Liam Byrne
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
10
|
Le Bailly BAF, Byrne L, Clayden J. Refoldable Foldamers: Global Conformational Switching by Deletion or Insertion of a Single Hydrogen Bond. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bryden A. F. Le Bailly
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Liam Byrne
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Jonathan Clayden
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
11
|
Tumminakatti S, Reddy DN, Prabhakaran EN. Exploring the consequences of a representative "disallowed" conformation of Aib on a 3₁₀-helical fold. Biopolymers 2014; 104:21-36. [PMID: 25488434 DOI: 10.1002/bip.22599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/24/2023]
Abstract
The structural effects of a representative "disallowed" conformation of Aib on the 3(10)-helical fold of an octapeptidomimetic are explored. The 1D ((1)H, (13)C) & 2D NMR, FT-IR and CD data reveal that the octapeptide 1, adopts a 3(10)-helical conformation in solution, as it does in its crystal structure. The C-terminal methyl carboxylate (CO2Me) of 1 was modified into an 1,3-oxazine (Oxa) functional group in the peptidomimetic 2. This modification results in the stabilization of the backbone of the C-terminal Aib (Aib*-Oxa) of 2, in a conformation (ϕ, ψ = 180, 0) that is natively disallowed to Aib. Consequent to the presence of this natively disallowed conformation, the 3(10)-helical fold is not disrupted in the body of the peptidomimetic 2. But the structural distortions that do occur in 2 are primarily in residues in the immediate vicinity of the natively disallowed conformation, rather than in the whole peptide body. Non-native electronic effects resulting from modifications in backbone functional groups can be at the origin of stabilizing residues in natively disallowed conformations.
Collapse
Affiliation(s)
- Shama Tumminakatti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | | | |
Collapse
|
12
|
Thirupathi R, Prabhakaran EN. Estimation of the 2.05 helix type i→i hydrogen bond energy at Aib∗-Oxa motif: an isodesmic approach. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|