1
|
Ito T, Ohoka N, Aoyama M, Nishikaze T, Misawa T, Inoue T, Ishii-Watabe A, Demizu Y. Strategic design of GalNAc-helical peptide ligands for efficient liver targeting. Chem Sci 2024; 15:d4sc05606j. [PMID: 39464603 PMCID: PMC11506524 DOI: 10.1039/d4sc05606j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
There is a growing need for liver-selective drug delivery systems (DDS) in the treatment and diagnosis of liver diseases. The asialoglycoprotein receptor, a trimeric protein specifically expressed in the liver, is a key target for DDS. We hypothesized that peptides with reduced main-chain flexibility and strategically positioned N-acetylgalactosamine (GalNAc) moieties could enhance liver selectivity and uptake efficiency. The helical peptides designed in this study demonstrated superior uptake efficiency and liver selectivity compared with the conventional triantennary GalNAc DDS. These peptides also showed potential in protein delivery. Furthermore, we explored their application in lysosome-targeting chimeras (LYTACs), gaining valuable insights into the requirements for effective LYTAC functionality. This study not only highlights the potential of helical peptides as liver-selective DDS ligands, but also opens avenues for their use in various therapeutic and diagnostic applications, making significant strides in the targeted treatment of liver diseases.
Collapse
Affiliation(s)
- Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences Kanagawa Japan
| | - Michihiko Aoyama
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki-ku Kawasaki Kanagawa 210-9501 Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation 1 Nishinokyo Kuwabara-cho, Nakagyo-ku Kyoto 604-8511 Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki Kanagawa 210-9501 Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences Kanagawa Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki-ku Kawasaki Kanagawa 210-9501 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita 700-8530 Japan
| |
Collapse
|
2
|
Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes (Basel) 2022. [DOI: 10.3390/pr10050924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-linking. Helical foldamers and stapled peptides are potential drug candidates that can target protein-protein interactions because they enable multipoint molecular recognition, which is difficult to achieve with low-molecular-weight compounds. This mini-review describes a variety of peptide-based foldamers and stapled peptides with a view to their applications in drug discovery, including our recent progress.
Collapse
|
3
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
4
|
Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020; 57:678-696. [PMID: 32705178 PMCID: PMC7384845 DOI: 10.3892/ijo.2020.5099] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer is currently ineffectively treated using therapeutic drugs, and is also able to resist drug action, resulting in increased side effects following drug treatment. A novel therapeutic strategy against cancer cells is the use of anticancer peptides (ACPs). The physicochemical properties, amino acid composition and the addition of chemical groups on the ACP sequence influences their conformation, net charge and orientation of the secondary structure, leading to an effect on targeting specificity and ACP-cell interaction, as well as peptide penetrating capability, stability and efficacy. ACPs have been developed from both naturally occurring and modified peptides by substituting neutral or anionic amino acid residues with cationic amino acid residues, or by adding a chemical group. The modified peptides lead to an increase in the effectiveness of cancer therapy. Due to this effectiveness, ACPs have recently been improved to form drugs and vaccines, which have sequentially been evaluated in various phases of clinical trials. The development of the ACPs remains focused on generating newly modified ACPs for clinical application in order to decrease the incidence of new cancer cases and decrease the mortality rate. The present review could further facilitate the design of ACPs and increase efficacious ACP therapy in the near future.
Collapse
Affiliation(s)
- Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Dhar A, Ahmed I, Mallick S, Roy S. A Peptide-PNA Hybrid Beacon for Sensitive Detection of Protein Biomarkers in Biological Fluids. Chembiochem 2020; 21:2121-2125. [PMID: 32187425 DOI: 10.1002/cbic.202000097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/14/2020] [Indexed: 01/03/2023]
Abstract
Specific and rapid detection of proteins in biological fluids poses a challenging problem. In biological fluids, many proteins are present at low concentrations, requiring high affinity and specificity of the beacon-protein interaction. We report the design of a peptide-PNA hybrid beacon that exploits the dimeric nature of a target protein, S100B, a biomarker for brain trauma, to enhance binding affinity and specificity. The complementary base-pairing of the PNA bases brings the two arms of the beacon, one carrying an Alexa tag and the other carrying a Dabcyl moiety, into proximity, thus quenching Alexa fluorescence. Each of the arms carries a sequence that binds to one of the subunits. Binding to the target separates the quencher from the probe lifting the quenching of fluorescence. Enhanced affinity and specificity resulting from simultaneously binding to two sites allowed specific detection of S100B at low-nanomolar concentrations in the presence of serum. The design can be easily adapted for the detection of proteins containing multiple binding sites and could prove useful for rapid and sensitive biomarker detection.
Collapse
Affiliation(s)
- Amlanjyoti Dhar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Israr Ahmed
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Shampa Mallick
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, 700054, India
| |
Collapse
|
6
|
Roy S, Ghosh P, Ahmed I, Chakraborty M, Naiya G, Ghosh B. Constrained α-Helical Peptides as Inhibitors of Protein-Protein and Protein-DNA Interactions. Biomedicines 2018; 6:E118. [PMID: 30567318 PMCID: PMC6315407 DOI: 10.3390/biomedicines6040118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular regulatory pathways are replete with protein-protein and protein-DNA interactions, offering attractive targets for therapeutic interventions. So far, most drugs are targeted toward enzymes and extracellular receptors. Protein-protein and protein-DNA interactions have long been considered as "undruggable". Protein-DNA interactions, in particular, present a difficult challenge due to the repetitive nature of the B-DNA. Recent studies have provided several breakthroughs; however, a design methodology for these classes of inhibitors is still at its infancy. A dominant motif of these macromolecular interactions is an α-helix, raising possibilities that an appropriate conformationally-constrained α-helical peptide may specifically disrupt these interactions. Several methods for conformationally constraining peptides to the α-helical conformation have been developed, including stapling, covalent surrogates of hydrogen bonds and incorporation of unnatural amino acids that restrict the conformational space of the peptide. We will discuss these methods and several case studies where constrained α-helices have been used as building blocks for appropriate molecules. Unlike small molecules, the delivery of these short peptides to their targets is not straightforward as they may possess unfavorable cell penetration and ADME properties. Several methods have been developed in recent times to overcome some of these problems. We will discuss these issues and the prospects of this class of molecules as drugs.
Collapse
Affiliation(s)
- Siddhartha Roy
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Piya Ghosh
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Israr Ahmed
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Madhumita Chakraborty
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Gitashri Naiya
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Basusree Ghosh
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
7
|
Tokuo H, Bhawan J, Coluccio LM. Myosin X is required for efficient melanoblast migration and melanoma initiation and metastasis. Sci Rep 2018; 8:10449. [PMID: 29993000 PMCID: PMC6041326 DOI: 10.1038/s41598-018-28717-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022] Open
Abstract
Myosin X (Myo10), an actin-associated molecular motor, has a clear role in filopodia induction and cell migration in vitro, but its role in vivo in mammals is not well understood. Here, we investigate the role of Myo10 in melanocyte lineage and melanoma induction. We found that Myo10 knockout (Myo10KO) mice exhibit a white spot on their belly caused by reduced melanoblast migration. Myo10KO mice crossed with available mice that conditionally express in melanocytes the BRAFV600E mutation combined with Pten silencing exhibited reduced melanoma development and metastasis, which extended medial survival time. Knockdown of Myo10 (Myo10kd) in B16F1 mouse melanoma cell lines decreased lung colonization after tail-vein injection. Myo10kd also inhibited long protrusion (LP) formation by reducing the transportation of its cargo molecule vasodilator-stimulated phosphoprotein (VASP) to the leading edge of migrating cells. These findings provide the first genetic evidence for the involvement of Myo10 not only in melanoblast migration, but also in melanoma development and metastasis.
Collapse
Affiliation(s)
- Hiroshi Tokuo
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Jag Bhawan
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lynne M Coluccio
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
8
|
Palanissami G, Paul SFD. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review. Discov Oncol 2018; 9:295-325. [DOI: 10.1007/s12672-018-0342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
|
9
|
Miles JA, Yeo DJ, Rowell P, Rodriguez-Marin S, Pask CM, Warriner SL, Edwards TA, Wilson AJ. Hydrocarbon constrained peptides - understanding preorganisation and binding affinity. Chem Sci 2016; 7:3694-3702. [PMID: 28970875 PMCID: PMC5618334 DOI: 10.1039/c5sc04048e] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
The development of constrained peptides represents an emerging strategy to generate peptide based probes and hits for drug-discovery that address challenging protein-protein interactions (PPIs). In this manuscript we report on the use of a novel α-alkenylglycine derived amino acid to synthesise hydrocarbon constrained BH3-family sequences (BIM and BID). Our biophysical and structural analyses illustrate that whilst the introduction of the constraint increases the population of the bioactive α-helical conformation of the peptide in solution, it does not enhance the inhibitory potency against pro-apoptotic Bcl-xL and Mcl-1 PPIs. SPR analyses indicate binding occurs via an induced fit mechanism whilst X-ray analyses illustrate none of the key interactions between the helix and protein are disturbed. The behaviour derives from enthalpy-entropy compensation which may be considered in terms of the ground state energies of the unbound constrained and unconstrained peptides; this has implications for the design of preorganised peptides to target protein-protein interactions.
Collapse
Affiliation(s)
- Jennifer A Miles
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| | - David J Yeo
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| | - Philip Rowell
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,School of Molecular and Cellular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Silvia Rodriguez-Marin
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| | - Christopher M Pask
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| | - Stuart L Warriner
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,School of Molecular and Cellular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| |
Collapse
|
10
|
Chattopadhyay S, Ajani H, Basu G. Effect of introducing aib in a designed helical inhibitor of hdm2-p53 interaction: A molecular dynamics study. Biopolymers 2015; 106:51-61. [PMID: 26537425 DOI: 10.1002/bip.22761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/15/2015] [Accepted: 11/01/2015] [Indexed: 11/09/2022]
Abstract
Although p53 is an intrinsically disordered protein, upon binding to Hdm2, a short stretch (residues 19-25) comprising the binding epitope assumes a helical backbone. Because the allowed conformational space of α-aminoisobutyric acid (Aib) is restricted to only the helical basin, Aib-containing helical mimics of p53 (binding epitope) are expected to inhibit interaction between p53 and Hdm2 with a much stronger affinity than the wild type p53 peptide (binding epitope), due to the entropic advantage associated with Aib. However, the IC50 values for the disruption of p53-Hdm2 interaction by Aib-p53 peptides and wild type p53 peptide were found to be comparable (J. Peptide Res. 2002, 60:88-94). To understand why incorporation of Aib didn't substantially increase Hdm2 affinity of Aib-p53 peptides, a series of molecular dynamics simulations were performed. It was found that despite stabilizing a helical backbone in the unbound state, the Aib residues in Aib-p53 peptide arrested two functionally important side-chains (F19 and W23) in non-productive conformations, resulting in relative side-chain orientations of the binding triad F19-W23-L26 incompatible with the bound conformation. Therefore, although a Aib-induced pre-formed helical peptide backbone in the unbound state is expected to favor binding, the locked side-chain orientations of the binding triad in non-productive modes would disfavor binding. This study shows that when using Aib to design functionally important helical peptides, care must be taken to consider potential interactions between side-chains of neighboring residues and Aib in the unbound state.
Collapse
Affiliation(s)
- Sarbani Chattopadhyay
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Haresh Ajani
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India.,National Institute of Pharmaceutical Education and Research, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| |
Collapse
|
11
|
Abstract
In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
Collapse
Affiliation(s)
- Anne R. Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - David J. Weber
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| | - Danna B. Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| |
Collapse
|
12
|
Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer 2015. [PMID: 25614008 DOI: 10.1038/nrc3893.s100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - David J Weber
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| | - Danna B Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| |
Collapse
|