1
|
Mező G, Gomena J, Ranđelović I, Dókus EL, Kiss K, Pethő L, Schuster S, Vári B, Vári-Mező D, Lajkó E, Polgár L, Kőhidai L, Tóvári J, Szabó I. Oxime-Linked Peptide-Daunomycin Conjugates as Good Tools for Selection of Suitable Homing Devices in Targeted Tumor Therapy: An Overview. Int J Mol Sci 2024; 25:1864. [PMID: 38339141 PMCID: PMC10855781 DOI: 10.3390/ijms25031864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.
Collapse
Affiliation(s)
- Gábor Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Jacopo Gomena
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
| | - Endre Levente Dókus
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Krisztina Kiss
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Lilla Pethő
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Sabine Schuster
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Balázs Vári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Diána Vári-Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - Lívia Polgár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Ildikó Szabó
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| |
Collapse
|
2
|
Luo Y, Jia T, Fang J, Liu D, Saikam V, Sheng X, Iyer SS. Rapid, user-friendly, and inexpensive detection of azidothymidine. Anal Bioanal Chem 2021; 413:1999-2006. [PMID: 33484329 DOI: 10.1007/s00216-021-03168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022]
Abstract
Strict adherence to highly active antiretroviral therapy (HAART) is very important to improve the quality of life for HIV-positive patients to reduce new infections and determine treatment success. Azidothymidine (AZT) is an antiretroviral drug commonly used in HAART treatment. In this research, an "add, mix, and measure" assay was developed to detect AZT within minutes. Three different probes designed to release fluorophores when samples containing AZT are added were synthesized and characterized. The limit of detection to AZT in simulated urine samples was determined to be 4 μM in 5 min for one of the probes. This simple and rapid point-of-care test could potentially be used by clinicians and health care workers to monitor the presence of AZT in low resource settings.
Collapse
Affiliation(s)
- Ying Luo
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Tianwei Jia
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Jieqiong Fang
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Dandan Liu
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Varma Saikam
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Xiaolin Sheng
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Suri S Iyer
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA.
| |
Collapse
|
3
|
Ranđelović I, Schuster S, Kapuvári B, Fossati G, Steinkühler C, Mező G, Tóvári J. Improved In Vivo Anti-Tumor and Anti-Metastatic Effect of GnRH-III-Daunorubicin Analogs on Colorectal and Breast Carcinoma Bearing Mice. Int J Mol Sci 2019; 20:E4763. [PMID: 31557968 PMCID: PMC6801585 DOI: 10.3390/ijms20194763] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety for drug delivery systems. The anti-tumor activity of the previously developed GnRH-III-[4Lys(Bu),8Lys(Dau=Aoa)] conjugate and the novel synthesized GnRH-III-[2ΔHis,3d-Tic,4Lys(Bu),8Lys(Dau=Aoa)] conjugate, containing the anti-cancer drug daunorubicin, were evaluated. Here, we demonstrate that both GnRH-III-Dau conjugates possess an efficient growth inhibitory effect on more than 20 cancer cell lines, whereby the biological activity is strongly connected to the expression of gonadotropin-releasing hormone receptors (GnRH-R). The novel conjugate showed a higher in vitro anti-proliferative activity and a higher uptake capacity. Moreover, the treatment with GnRH-III-Dau conjugates cause a significant in vivo tumor growth and metastases inhibitory effect in three different orthotopic models, including 4T1 mice and MDA-MB-231 human breast carcinoma, as well as HT-29 human colorectal cancer bearing BALB/s and SCID mice, while toxic side-effects were substantially reduced in comparison to the treatment with the free drug. These findings illustrate that our novel lead compound is a highly promising candidate for targeted tumor therapy in both colon cancer and metastatic breast cancer.
Collapse
Affiliation(s)
- Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary.
| | - Sabine Schuster
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Bence Kapuvári
- Department of Biochemistry, National Institute of Oncology, 1122 Budapest, Hungary.
| | - Gianluca Fossati
- Preclinical R&D, Italfarmaco SpA, 20092 Cinisello Balsamo (Milan), Italy.
| | | | - Gábor Mező
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary.
| |
Collapse
|
4
|
Kiss K, Biri-Kovács B, Szabó R, Ranđelović I, Enyedi KN, Schlosser G, Orosz Á, Kapuvári B, Tóvári J, Mező G. Sequence modification of heptapeptide selected by phage display as homing device for HT-29 colon cancer cells to improve the anti-tumour activity of drug delivery systems. Eur J Med Chem 2019; 176:105-116. [PMID: 31100648 DOI: 10.1016/j.ejmech.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022]
Abstract
Development of peptide-based conjugates for targeted tumour therapy is a current research topic providing new possibilities in cancer treatment. In this study, VHLGYAT heptapeptide selected by phage display technique for HT-29 human colon cancer was investigated as homing peptide for drug delivery. Daunomycin was conjugated to the N-terminus of the peptide directly or through Cathepsin B cleavable spacers. Conjugates showed moderate in vitro cytostatic effect. Therefore, sequence modifications were performed by Ala-scan and positional scanning resulting in conjugates with much higher bioactivity. Conjugates in which Gly was replaced by amino acids with bulky apolaric side chains provided the best efficacy. The influence of the cellular uptake, stability and drug release on the anti-tumour activity was investigated. It was found that mainly the difference in the cellular uptake of the conjugates generated the distinct effect on cell viability. One of the most efficient conjugate Dau = Aoa-LRRY-VHLFYAT-NH2 showed tumour growth inhibition on orthotopically developed HT-29 colon cancer in mice with negligible toxic side effect compared to the free drug. We also indicate that this sequence is not specific to HT-29 cells, but it has a remarkable effect on many other cancer cells. Nevertheless, the Phe-containing conjugate was more active in all cases compared to the conjugate with the parent sequence. The literature data suggested that this sequence is highly overlapped with peptides that recognize Hsp70 membrane bound protein overexpressed in many types of tumours.
Collapse
Affiliation(s)
- Krisztina Kiss
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Rita Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Kata Nóra Enyedi
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Ádám Orosz
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1444, Budapest, Hungary
| | - Bence Kapuvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary.
| |
Collapse
|
5
|
Schuster S, Biri-Kovács B, Szeder B, Buday L, Gardi J, Szabó Z, Halmos G, Mező G. Enhanced In Vitro Antitumor Activity of GnRH-III-Daunorubicin Bioconjugates Influenced by Sequence Modification. Pharmaceutics 2018; 10:E223. [PMID: 30423956 PMCID: PMC6320914 DOI: 10.3390/pharmaceutics10040223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Receptors for gonadotropin releasing hormone (GnRH) are highly expressed in various human cancers including breast, ovarian, endometrial, prostate and colorectal cancer. Ligands like human GnRH-I or the sea lamprey analogue GnRH-III represent a promising approach for the development of efficient drug delivery systems for targeted tumor therapy. Here, we report on the synthesis and cytostatic effect of 14 oxime bond-linked daunorubicin GnRH-III conjugates containing a variety of unnatural amino acids within the peptide sequence. All compounds demonstrated a reduced cell viability in vitro on estrogen receptor α (ERα) positive and ERα negative cancer cells. The best candidate revealed an increased cancer cell growth inhibitory effect compared to our lead-compound GnRH-III-[⁴Lys(Bu),⁸Lys(Dau=Aoa)]. Flow cytometry and fluorescence microscopy studies showed that the cellular uptake of the novel conjugate is substantially improved leading to an accelerated delivery of the drug to its site of action. However, the release of the active drug-metabolite by lysosomal enzymes was not negatively affected by amino acid substitution, while the compound provided a high stability in human blood plasma. Receptor binding studies were carried out to ensure a high binding affinity of the new compound for the GnRH-receptor. It was demonstrated that GnRH-III-[²ΔHis,³d-Tic,⁴Lys(Bu),⁸Lys(Dau=Aoa)] is a highly potent and promising anticancer drug delivery system for targeted tumor therapy.
Collapse
Affiliation(s)
- Sabine Schuster
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Beáta Biri-Kovács
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - László Buday
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - János Gardi
- First Department of Internal Medicine, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Mező
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| |
Collapse
|
6
|
Vrettos EI, Mező G, Tzakos AG. On the design principles of peptide-drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem 2018; 14:930-954. [PMID: 29765474 PMCID: PMC5942387 DOI: 10.3762/bjoc.14.80] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer is the second leading cause of death affecting nearly one in two people, and the appearance of new cases is projected to rise by >70% by 2030. To effectively combat the menace of cancer, a variety of strategies have been exploited. Among them, the development of peptide–drug conjugates (PDCs) is considered as an inextricable part of this armamentarium and is continuously explored as a viable approach to target malignant tumors. The general architecture of PDCs consists of three building blocks: the tumor-homing peptide, the cytotoxic agent and the biodegradable connecting linker. The aim of the current review is to provide a spherical perspective on the basic principles governing PDCs, as also the methodology to construct them. We aim to offer basic and integral knowledge on the rational design towards the construction of PDCs through analyzing each building block, as also to highlight the overall progress of this rapidly growing field. Therefore, we focus on several intriguing examples from the recent literature, including important PDCs that have progressed to phase III clinical trials. Last, we address possible difficulties that may emerge during the synthesis of PDCs, as also report ways to overcome them.
Collapse
Affiliation(s)
- Eirinaios I Vrettos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| | - Gábor Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány P. stny. 1/A, H-1117 Budapest, Hungary.,MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány P. stny. 1/A, H-1117 Budapest, Hungary
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| |
Collapse
|
7
|
Schuster S, Biri-Kovács B, Szeder B, Farkas V, Buday L, Szabó Z, Halmos G, Mező G. Synthesis and in vitro biochemical evaluation of oxime bond-linked daunorubicin-GnRH-III conjugates developed for targeted drug delivery. Beilstein J Org Chem 2018; 14:756-771. [PMID: 29719573 PMCID: PMC5905287 DOI: 10.3762/bjoc.14.64] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin releasing hormone-III (GnRH-III), a native isoform of the human GnRH isolated from sea lamprey, specifically binds to GnRH receptors on cancer cells enabling its application as targeting moieties for anticancer drugs. Recently, we reported on the identification of a novel daunorubicin–GnRH-III conjugate (GnRH-III–[4Lys(Bu), 8Lys(Dau=Aoa)] with efficient in vitro and in vivo antitumor activity. To get a deeper insight into the mechanism of action of our lead compound, the cellular uptake was followed by confocal laser scanning microscopy. Hereby, the drug daunorubicin could be visualized in different subcellular compartments by following the localization of the drug in a time-dependent manner. Colocalization studies were carried out to prove the presence of the drug in lysosomes (early stage) and on its site of action (nuclei after 10 min). Additional flow cytometry studies demonstrated that the cellular uptake of the bioconjugate was inhibited in the presence of the competitive ligand triptorelin indicating a receptor-mediated pathway. For comparative purpose, six novel daunorubicin–GnRH-III bioconjugates have been synthesized and biochemically characterized in which 6Asp was replaced by D-Asp, D-Glu and D-Trp. In addition to the analysis of the in vitro cytostatic effect and cellular uptake, receptor binding studies with 125I-triptorelin as radiotracer and degradation of the GnRH-III conjugates in the presence of rat liver lysosomal homogenate have been performed. All derivatives showed high binding affinities to GnRH receptors and displayed in vitro cytostatic effects on HT-29 and MCF-7 cancer cells with IC50 values in a low micromolar range. Moreover, we found that the release of the active drug metabolite and the cellular uptake of the bioconjugates were strongly affected by the amino acid exchange which in turn had an impact on the antitumor activity of the bioconjugates.
Collapse
Affiliation(s)
- Sabine Schuster
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117 Budapest, Hungary.,Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117 Budapest, Hungary.,Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Viktor Farkas
- MTA-ELTE Protein Modelling Research Group, Hungarian Academy of Sciences, Eötvös L. University, 1117 Budapest, Hungary
| | - László Buday
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117 Budapest, Hungary.,Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| |
Collapse
|
8
|
Gunnoo SB, Madder A. Bioconjugation – using selective chemistry to enhance the properties of proteins and peptides as therapeutics and carriers. Org Biomol Chem 2016; 14:8002-13. [DOI: 10.1039/c6ob00808a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both peptide and protein therapeutics are becoming increasingly important for treating a wide range of diseases. Functionalisation of theseviasite-selective chemical modification leads to enhancement of their therapeutic properties.
Collapse
Affiliation(s)
- Smita B. Gunnoo
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Ghent
- Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Ghent
- Belgium
| |
Collapse
|