1
|
Bagheri M, Zandieh MA, Daryab M, Samaei SS, Gholami S, Rahmanian P, Dezfulian S, Eary M, Rezaee A, Rajabi R, Khorrami R, Salimimoghadam S, Hu P, Rashidi M, Ardakan AK, Ertas YN, Hushmandi K. Nanostructures for site-specific delivery of oxaliplatin cancer therapy: Versatile nanoplatforms in synergistic cancer therapy. Transl Oncol 2024; 39:101838. [PMID: 38016356 DOI: 10.1016/j.tranon.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nanostructures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo-sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of nanoparticle-mediated phototherapy can increase OXA's potential in cancer suppression. All of these subjects and their clinical implications are discussed in the current review.
Collapse
Affiliation(s)
- Mohsen Bagheri
- Radiology Resident, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Eary
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Poly(amidoamine) Dendrimer/Camptothecin Complex: From Synthesis to In Vitro Cancer Cell Line Studies. Molecules 2023; 28:molecules28062696. [PMID: 36985668 PMCID: PMC10052527 DOI: 10.3390/molecules28062696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Camptothecin (CPT), an alkaloid with potent anticancer activity, is still not used in clinical practice due to its high hydrophobicity, toxicity, and poor active-form stability. To address these shortcomings, our research focuses on the encapsulation of this drug in the poly(amidoamine) (PAMAM) dendrimer macromolecule. The PAMAM dendrimer/CPT complex was synthesized and thoroughly characterized. The in vitro drug release study revealed that the drug was released in a slow and controlled manner in acidic and physiological conditions and that more than 80% of the drug was released after 168 h of incubation. Furthermore, it was demonstrated that CPT was released with first-order kinetics and non-Fickian transport. The studies on the hemolytic activity of the synthesized complex indicated that it is hemocompatible for potential intravenous administration at a concentration ≤ 5 µg/mL. Additionally, the developed product was shown to reduce the viability of non-small-cell lung cancer cells (A549) in a concentration- and time-dependent manner, and cancer cells were more susceptible to the complex than normal fibroblasts. Lastly, molecular modeling studies revealed that the lactone or carboxylic forms of CPT had a significant impact on the shape and stability of the complex and that its formation with the lactone form of CPT was more energetically favorable for each subsequent molecule than the carboxylic form. The report represents a systematic and structured approach to develop a PAMAM dendrimer/CPT complex that can be used as an effective drug delivery system (DDS) for the potential treatment of non-small-cell lung cancer.
Collapse
|
3
|
Badalkhani-Khamseh F, Ebrahim-Habibi A, Hadipour NL, Behmanesh M. PEGylated PAMAM Dendrimers as Eptifibatide Nanocarriers: An Atomistic View from Molecular Dynamics Simulations. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Jangid AK, Patel K, Joshi U, Patel S, Singh A, Pooja D, Saharan VA, Kulhari H. PEGylated G4 dendrimers as a promising nanocarrier for piperlongumine delivery: Synthesis, characterization, and anticancer activity. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng 2022; 16:18. [PMID: 35879774 PMCID: PMC9317453 DOI: 10.1186/s13036-022-00298-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Since the first dendrimer was reported in 1978 by Fritz Vögtle, dendrimer research has grown exponentially, from synthesis to application in the past four decades. The distinct structure characteristics of dendrimers include nanoscopic size, multi-functionalized surface, high branching, cavernous interior, and so on, making dendrimers themselves ideal drug delivery vehicles. This mini review article provides a brief overview of dendrimer’s history and properties and the latest developments of dendrimers as drug delivery systems. This review focuses on the latest progress in the applications of dendrimers as drug and gene carriers, including 1) active drug release strategies to dissociate drug/gene from dendrimer in response to stimuli; 2) size-adaptive and charge reversal dendrimer delivery systems that can better take advantage of the size and surface properties of dendrimer; 3) bulk and micro/nano dendrimer gel delivery systems. The recent advances in dendrimer formulations may lead to the generation of new drug and gene products and enable the development of novel combination therapies.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Qiao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| |
Collapse
|
6
|
Nguyen TT, Nguyen BP, Nguyen DTD, Nguyen NH, Nguyen DH, Nguyen CK. Retrovirus Drugs-Loaded PEGylated PAMAM for Prolonging Drug Release and Enhancing Efficiency in HIV Treatment. Polymers (Basel) 2021; 14:114. [PMID: 35012136 PMCID: PMC8747428 DOI: 10.3390/polym14010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Polyamidoamine dendrimer (PAMAM) with its unique characteristics emerges as a potential drug delivery system which can prolong releasing time, reduce the side effects but still retaining treatment efficiency. In this study, methoxy polyethylene glycol modified PAMAM generation 3.0 (G3.0@mPEG) is prepared and characterized via 1H-NMR, FT-IR, and TEM. Subsequently, two antiretroviral agents (ARV) including lamivudine (3TC) and zidovudine (AZT) are individually encapsulated into G3.0@mPEG. The drug-loading efficiency, drug release profile, cytotoxicity and anti-HIV activity are then evaluated. The results illustrate that G3.0@mPEG particles are spherical with a size of 34.5 ± 0.2 nm and a drug loading content of about 9%. Both G3.0@mPEG and ARV@G3.0@mPEG show no cytotoxicity on BJ cells, and G3.0@mPEG loading 3TC and AZT performs sustained drug release behavior which is best fitted with the Korsmeyer-Peppas model. Finally, the anti-HIV activity of ARV via Enzymatic Assay of Pepsin is retained after being loaded into the G3.0@mPEG, in which about 36% of pepsin activity was inhibited by AZT at the concentration of 0.226 mM. Overall, PAMAM G3.0@mPEG is a promising nanocarrier system for loading ARV in HIV treatment and prevention.
Collapse
Affiliation(s)
- Thi Thinh Nguyen
- Institute of Drug Quality Control, Ho Chi Minh City 70000, Vietnam;
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
| | - Bao Phu Nguyen
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, Ho Chi Minh City 70000, Vietnam;
| | - Dinh Tien Dung Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Vietnam;
- Faculty of Natural Science, Duy Tan University, Danang City 550000, Vietnam
| | - Ngoc Hoi Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Dai Hai Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Cuu Khoa Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
7
|
Chiral Recognition of Homochiral Poly (amidoamine) Dendrimers Substituted with R- and S-Glycidol by Keratinocyte (HaCaT) and Squamous Carcinoma (SCC-15) Cells In Vitro. Polymers (Basel) 2021; 13:polym13071049. [PMID: 33801610 PMCID: PMC8037736 DOI: 10.3390/polym13071049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The generation 2 and 3 poly(amidoamine) dendrimers (PAMAM G2 and G3) were converted into N-(2,3-dihydroxy)propyl derivatives by the addition of enantiomerically pure S- and R-glycidol. The homochiral dendrimers bind to HaCaT and SCC-15 cell membranes with an R/S glycidol enantioselectivity ratio of 1.5:1, as was quantitatively determined by fluorescence microscopy and visualized by confocal microscopy. Fully substituted G2 and G3 dendrimers were equipped with 32 and 64 N-(2,3-dihydroxy)propyl residues and showed effectively radial symmetry for homochiral derivatives in 13C NMR spectrum in contrary to analogs obtained by reaction with rac-glycidol. The sub-stoichiometric derivatives of G2 and G3 were also obtained in order to characterize them spectroscopically. The homochiral dendrimers were labeled with two different fluorescent labels, fluorescein, and rhodamine B, using their isothiocyanates to react with G2 and G3 followed by the addition of S- and R-glycidol. Obtained fluorescent derivatives were deficiently filled with N-(2,3-dihydroxy)propyl substituents due to steric hindrance imposed by the attached label. Nevertheless, these derivatives were used to determine their ability to bind to the cell membrane of human keratinocytes (HaCaT) and squamous carcinoma cells (SCC-15). Confocal microscopy images obtained from cells treated with variously labeled conjugates and fluorescence analysis with fluorescence reader allowed us to conclude that R-glycidol derivatives were bound and entered the cells preferentially, with higher accumulation in cancer cells. The G3 polyamidoamine (PAMAM)-based dendrimers were taken up more efficiently than G2 derivatives. Moreover, S- and R-glycidol furnished dendrimers were highly biocompatible with no toxicity up to 300 µM concentrations, in contrast to the amine-terminated PAMAM analogs.
Collapse
|
8
|
Kadina YA, Razuvaeva EV, Streltsov DR, Sedush NG, Shtykova EV, Kulebyakina AI, Puchkov AA, Volkov DS, Nazarov AA, Chvalun SN. Poly(Ethylene Glycol)- b-Poly(D,L-Lactide) Nanoparticles as Potential Carriers for Anticancer Drug Oxaliplatin. Molecules 2021; 26:molecules26030602. [PMID: 33498932 PMCID: PMC7865450 DOI: 10.3390/molecules26030602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles based on biocompatible methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG113-b-P(D,L)LAn) copolymers as potential vehicles for the anticancer agent oxaliplatin were prepared by a nanoprecipitation technique. It was demonstrated that an increase in the hydrophobic PLA block length from 62 to 173 monomer units leads to an increase of the size of nanoparticles from 32 to 56 nm. Small-angle X-ray scattering studies confirmed the “core-corona” structure of mPEG113-b-P(D,L)LAn nanoparticles and oxaliplatin loading. It was suggested that hydrophilic oxaliplatin is adsorbed on the core-corona interface of the nanoparticles during the nanoprecipitation process. The oxaliplatin loading content decreased from 3.8 to 1.5% wt./wt. (with initial loading of 5% wt./wt.) with increasing PLA block length. Thus, the highest loading content of the anticancer drug oxaliplatin with its encapsulation efficiency of 76% in mPEG113-b-P(D,L)LAn nanoparticles can be achieved for block copolymer with short hydrophobic block.
Collapse
Affiliation(s)
- Yulia A. Kadina
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Ekaterina V. Razuvaeva
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
- Correspondence:
| | - Dmitry R. Streltsov
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Nikita G. Sedush
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Eleonora V. Shtykova
- Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Alevtina I. Kulebyakina
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Alexander A. Puchkov
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Dmitry S. Volkov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.S.V.); (A.A.N.)
| | - Alexey A. Nazarov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.S.V.); (A.A.N.)
| | - Sergei N. Chvalun
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences, 117393 Moscow, Russia
| |
Collapse
|
9
|
Assessment of the Role of Ginsenoside RB1 Active Substance in Alginate/Chitosan/Lovastatin Composite Films. INT J POLYM SCI 2020. [DOI: 10.1155/2020/5807974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This article reports the effect of ginsenoside Rb1 on some properties, morphology, and the drug release process of the chitosan (CS)/alginate (AG)/lovastatin (LOV) composite films prepared by a solution method using different contents of ginsenoside Rb1. The ratio of AG/CS was fixed at 4/1 (wt.%/wt.%), the content of LOV was 10 wt.%, and the content of ginsenoside Rb1 was changed from 1 to 5 wt.%. The results of scanning electron microscopy and Fourier transform infrared spectroscopy analysis showed that the composite films have a heterogeneous structure and the ginsenoside Rb1 content influenced on the structure of composite films. The presence of ginsenoside Rb1 did not influence on the melting temperature of these films but caused a significant difference in the melting enthalpy of the films. The ginsenoside Rb1 was also contributed positively on the LOV release from these films in different pH buffer solutions. The LOV release process from these films included two stages (fast/burst release and slow/control release). It was increased remarkably by the synergic effect of LOV and ginsenoside Rb1 in the drug release process. From the obtained results, we suggested that ginsenoside Rb1 plays an important role not only in the enhancement of health and immunity as general but also as an efficient agent in control of the LOV size as well as LOV drug release from the composite films.
Collapse
|
10
|
Do VMH, Bach LG, Tran DHN, Cao VD, Nguyen TNQ, Hoang DT, Ngo VC, Nguyen DH, Thi TTH. Effective Elimination of Charge-associated Toxicity of Low Generation Polyamidoamine Dendrimer Eases Drug Delivery of Oxaliplatin. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0047-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Le NTT, Nguyen TNQ, Cao VD, Hoang DT, Ngo VC, Hoang Thi TT. Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment. Pharmaceutics 2019; 11:E591. [PMID: 31717376 PMCID: PMC6920789 DOI: 10.3390/pharmaceutics11110591] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the fact that nanocarriers as drug delivery systems overcome the limitation of chemotherapy, the leakage of encapsulated drugs during the delivery process to the target site can still cause toxic effects to healthy cells in other tissues and organs in the body. Controlling drug release at the target site, responding to stimuli that originated from internal changes within the body, as well as stimuli manipulated by external sources has recently received significant attention. Owning to the spherical shape and porous structure, dendrimer is utilized as a material for drug delivery. Moreover, the surface region of dendrimer has various moieties facilitating the surface functionalization to develop the desired material. Therefore, multi-stimuli-responsive dendrimers or 'smart' dendrimers that respond to more than two stimuli will be an inspired attempt to achieve the site-specific release and reduce as much as possible the side effects of the drug. The aim of this review was to delve much deeper into the recent progress of multi-stimuli-responsive dendrimers in the delivery of anticancer drugs in addition to the major potential challenges.
Collapse
Affiliation(s)
- Ngoc Thuy Trang Le
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Thi Nhu Quynh Nguyen
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Du Cao
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Duc Thuan Hoang
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Cuong Ngo
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
12
|
Le NTT, Cao VD, Nguyen TNQ, Le TTH, Tran TT, Hoang Thi TT. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. Int J Mol Sci 2019; 20:E4706. [PMID: 31547569 PMCID: PMC6801558 DOI: 10.3390/ijms20194706] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The development of natural phospholipids for nanostructured drug delivery systems has attracted much attention in the past decades. Lecithin that was derived from naturally occurring in soybeans (SL) has introduced some auspicious accomplishments to the drug carrying aspect, like effectual encapsulation, controlled release, and successful delivery of the curative factors to intracellular regions in which they procure these properties from their flexible physicochemical and biophysical properties, such as large aqueous center and biocompatible lipid, self-assembly, tunable properties, and high loading capacity. Despite the almost perfect properties as a drug carrier, liposome is known to be quite quickly eliminated from the body systems. The surface modification of liposomes has been investigated in many studies to overcome this drawback. In this review, we intensively discussed the surface-modified liposomes that enhancing the targeting, cellular uptake, and therapeutic response. Moreover, the recent applications of soy lecithin-derived liposome, focusing on cancer treatment, brain targeting, and vaccinology, are also summarized.
Collapse
Affiliation(s)
- Ngoc Thuy Trang Le
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam.
| | - Van Du Cao
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thi Nhu Quynh Nguyen
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thi Thu Hong Le
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thach Thao Tran
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
13
|
Partial Surface Modification of Low Generation Polyamidoamine Dendrimers: Gaining Insight into their Potential for Improved Carboplatin Delivery. Biomolecules 2019; 9:biom9060214. [PMID: 31159469 PMCID: PMC6627870 DOI: 10.3390/biom9060214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 01/28/2023] Open
Abstract
Carboplatin (CAR) is a second generation platinum-based compound emerging as one of the most widely used anticancer drugs to treat a variety of tumors. In an attempt to address its dose-limiting toxicity and fast renal clearance, several delivery systems (DDSs) have been developed for CAR. However, unsuitable size range and low loading capacity may limit their potential applications. In this study, PAMAM G3.0 dendrimer was prepared and partially surface modified with methoxypolyethylene glycol (mPEG) for the delivery of CAR. The CAR/PAMAM G3.0@mPEG was successfully obtained with a desirable size range and high entrapment efficiency, improving the limitations of previous CAR-loaded DDSs. Cytocompatibility of PAMAM G3.0@mPEG was also examined, indicating that the system could be safely used. Notably, an in vitro release test and cell viability assays against HeLa, A549, and MCF7 cell lines indicated that CAR/PAMAM G3.0@mPEG could provide a sustained release of CAR while fully retaining its bioactivity to suppress the proliferation of cancer cells. These obtained results provide insights into the potential of PAMAM G3.0@mPEG dendrimer as an efficient delivery system for the delivery of a drug that has strong side effects and fast renal clearance like CAR, which could be a promising approach for cancer treatment.
Collapse
|