Abstract
Forces of self-attraction inherent in DNA are unmasked when its ionic charge is neutralized. On the global level, self-attraction operates between segments to condense null (charge-neutralized) DNA into a segment-rich particle. Locally, self-attraction tends to contract an individual segment along its axis. If certain conditions are satisfied, the compressed segment buckles outward from the original line of the axis. Its most stable shape is then curved, or, as an extreme case, even completely folded. Buckling conditions are derived and shown to be met by DNA, thus explaining the high degree of ordered curvature and folding in the observed morphologies of condensed null DNA. The central concept employed is the buckling persistence length. It is evaluated for null DNA (40-50 bp) and agrees with experimental data (less than 60 bp). It helps in understanding the observed cooperative unit in the condensation/decondensation equilibrium (about 60 bp) and the observed size of digestion fragments unstable in the condensed phase (about 80 bp). The root-mean-square thermal compression/extension fluctuation in DNA is estimated at about 0.1 A/bp.
Collapse