1
|
Cheeseman JR, Frisch MJ, Keiderling TA. Increased accuracy of vibrational circular dichroism calculations for isotopically labeled helical peptides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124097. [PMID: 38457873 DOI: 10.1016/j.saa.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Vibrational circular dichroism (VCD) spectra have been computed with qualitatively correct sign patterns for α-helical peptides using various methods, ranging from empirical models to ab initio quantum mechanical computations. However, some details, such as deuteration effects and isotope substitution shifts and sign patterns for the resultant amide I' band shape, have remained a predictive challenge. Fully optimized computations for a 25-residue Ala-rich peptide, including implicit solvent corrections and explicit side chains that experimentally stabilize these model helical peptides in water, have been carried out using density functional theory (DFT). These fully minimized structures show minor changes in the (ϕ,ψ) torsions at the termini and yield an extra negative band to the low energy side of the characteristic amide I' couplet VCD, in agreement with experiments. Additionally, these calculations give the right sign and relative intensity patterns, as compared to experimental results, for several 13C=O substituted variants. The differences from previously reported computations that used ideal helical structures and vacuum conditions imply that inclusion of distorted termini and solvent effects can have an impact on the final detailed spectral patterns. Inclusion of side chains in these calculations had very little effect on the computed amide I' IR and VCD. Tests of constrained geometries, varying dielectric, and different functionals indicate that each can affect the band shapes, particularly for the 12C=O components, but these aspects do not fully explain the difference from previous spectral simulations. Inclusion of long-range amide coupling, as obtained from DFT computation of the full structure, or transfer of parameters from a somewhat longer peptide model, rather than shorter model, seems to be more important for the final detailed band shape under isotopic substitution. However, these corrections can also induce other changes, suggesting that previously reported, limited calculations may have been qualitatively useful due to a balance of errors. This may also explain the success of simple empirical IR models.
Collapse
Affiliation(s)
- James R Cheeseman
- Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, CT 06492, USA
| | - Michael J Frisch
- Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, CT 06492, USA
| | - Timothy A Keiderling
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
2
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
3
|
Pero JE, Matthews JM, Behm DJ, Brnardic EJ, Brooks C, Budzik BW, Costell MH, Donatelli CA, Eisennagel SH, Erhard K, Fischer MC, Holt DA, Jolivette LJ, Li H, Li P, McAtee JJ, McCleland BW, Pendrak I, Posobiec LM, Rivera KL, Rivero RA, Roethke TJ, Sender MR, Shu A, Terrell LR, Vaidya K, Xu X, Lawhorn BG. Design and Optimization of Sulfone Pyrrolidine Sulfonamide Antagonists of Transient Receptor Potential Vanilloid-4 with in Vivo Activity in a Pulmonary Edema Model. J Med Chem 2018; 61:11209-11220. [DOI: 10.1021/acs.jmedchem.8b01344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Buffeteau T, Lagugné-Labarthet F, Sourisseau C. Vibrational circular dichroism in general anisotropic thin solid films: measurement and theoretical approach. APPLIED SPECTROSCOPY 2005; 59:732-45. [PMID: 16053539 DOI: 10.1366/0003702054280568] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, the measurement of the true vibrational circular dichroism (VCD) spectrum is considered from an experimental and theoretical approach for any general anisotropic thin solid sample exhibiting linear as well as circular birefringence (LB, CB) and dichroism (LD, CD) properties. For this purpose, we have made use of a simple model alpha-helix polypeptide, namely, the poly(gamma-benzyl-L-glutamate) or PBLG, reference sample possessing a well-known VCD spectrum and giving rise to slightly oriented films by deposition onto a solid substrate. Also, we have used a different Fourier transform infrared modulation of polarization (PM-FTIR) optical setup with two-channel electronic processing in order to record the PM-VLD and PM-VCD spectra for various sample orientations in its film plane. All the corresponding general relations of the expected intensities in these experiments and the related properly designed calibration measurements were established using the Stokes-Mueller formalism; in addition, the residual birefringence of the optical setup and the transmittance anisotropy of the detector were estimated. From a comparative study of the results obtained in solution and in the solid state, we then propose a simple new experimental procedure to extract the true VCD spectrum of an oriented PBLG thin film: its consists of calculating the half-sum of two spectra recorded at theta and at theta +/- 90 degrees sample orientations. Moreover, the complete linear and circular birefringence and dichroism properties of the ordered PBLG thin film are estimated in the amide I and amide II vibrational regions. This allows us to establish for any sample orientation various theoretical simulations of the VCD spectra that agree nicely with the observed experimental results; this confirms that the measurement of LD and LB is in this case a prerequisite in simulating the true VCD spectrum of a partly oriented anisotropic sample. This validates our combined experimental and theoretical approach and opens the route to promising future vibrational CD studies on other macroscopic anisotropic thin film samples.
Collapse
Affiliation(s)
- Thierry Buffeteau
- Laboratoire de Physico-Chimie Moléculaire (LPCM), UMR 5803 CNRS, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France.
| | | | | |
Collapse
|
5
|
Bour P, Michalík D, Kapitán J. Empirical solvent correction for multiple amide group vibrational modes. J Chem Phys 2005; 122:144501. [PMID: 15847539 DOI: 10.1063/1.1877272] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously proposed solvent correction to the amide I peptide vibration was extended so that it can be applied to a general solvated chromophore. The combined molecular and quantum mechanics (MMQM) method is based on a linear dependence of harmonic force field and intensity tensor components of the solute on solvent electrostatic field. For N-methylacetamide, realistic solvent frequency and intensity changes as well as inhomogeneous band widths were obtained for amide A, I, II , and III modes. A rather anomalous basis set size dependence was observed for the amide A and I vibrations, when bigger basis lead to narrowing of spectral bands and lesser molecular sensibility to the environment. For a model alpha-helical peptide, a W-shape of the vibrational circular dichroism signal observed in deuterated solvent for the amide I band was reproduced correctly, unlike with previous vacuum models.
Collapse
Affiliation(s)
- Petr Bour
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic.
| | | | | |
Collapse
|
6
|
Kubelka J, Huang R, Keiderling TA. Solvent Effects on IR and VCD Spectra of Helical Peptides: DFT-Based Static Spectral Simulations with Explicit Water. J Phys Chem B 2005; 109:8231-43. [PMID: 16851962 DOI: 10.1021/jp0506078] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Simulations of IR and VCD spectra are carried out for model alpha-helical, 3(10)-helical, and 3(1)-helical (polyProII-like) oligopeptides, with up to 21 amide groups, and including explicit consideration of effects of directly hydrogen-bonded solvent (water). Parameters used were obtained from ab initio density functional theory (DFT) computations of force field, atomic polar and axial tensors for oligopeptides of 5 to 7 amides, whose structures were constrained in (phi,psi) to target the secondary structure type but otherwise fully optimized. By comparison with experimental data as well as with calculations for identical but isolated (gas phase) peptides, the computed effects of an inner shell of aqueous solvent on the vibrational spectra of helical oligopeptides are illustrated. The interaction with solvent causes significant frequency shifts of the amide bands, but only minor changes in the characteristic IR intensity distributions and splittings and the VCD band shapes. Better agreement with experimental band shapes is achieved for the alpha-helical amide I' (N-deuterated) VCD by inclusion of explicit solvent in the calculations. Some improvements are also observed in theoretical VCD predictions for 13C labeled alpha-helical peptides when solvated models are used. However, the qualitative isotopic splitting patterns are preserved and just shifted in frequency due to consistent, solvent independent interamide coupling constants. The critical match of experiment and theory for relative positions of transitions in peptides with specifically separated 13C=O labels, including and neglecting solvent, confirms the stability of the coupling interactions. Despite these solvation effects, the calculated VCD band shape of the amide I mode is shown to be a reliable conformational probe, since it remains basically insensitive to frequency shifts caused by environment. Thus theoretical VCD simulations, even vacuum calculations, are shown to provide useful spectral predictions for solution-phase peptides.
Collapse
Affiliation(s)
- Jan Kubelka
- Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 W. Taylor Street, room 4500 SES, Chicago, Illinois 60607-7061, USA
| | | | | |
Collapse
|
7
|
Pandyra AA, Yamniuk AP, Andrushchenko VV, Wieser H, Vogel HJ. Isotope-labeled vibrational circular dichroism studies of calmodulin and its interactions with ligands. Biopolymers 2005; 79:231-7. [PMID: 16013055 DOI: 10.1002/bip.20339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work we have studied ligand-induced secondary structure changes in the small calcium regulatory protein calmodulin (CaM) using vibrational circular dichroism (VCD) spectroscopy. We find that, due to its chiral sensitivity, VCD spectroscopy has increased ability over IR spectroscopy to detect changes in the structure and flexibility of secondary structure elements upon ligand binding. Moreover, we demonstrate that the uniform isotope labeling of CaM with (13)C shifts its amide I' VCD band by about approximately 43 cm(-1) to lower wavenumbers, which opens up a spectral window to simultaneously visualize a bound target protein. Therefore this study also provides the first example of how isotope labeling enables protein-protein interactions to be studied by VCD with good separation of the signals for both isotope-labeled and unlabeled proteins.
Collapse
|
8
|
Keiderling TA, Xu Q. Unfolded peptides and proteins studied with infrared absorption and vibrational circular dichroism spectra. ADVANCES IN PROTEIN CHEMISTRY 2004; 62:111-61. [PMID: 12418103 DOI: 10.1016/s0065-3233(02)62007-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Timothy A Keiderling
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
9
|
Wang F, Zhao C, Polavarapu PL. A study of the conformations of valinomycin in solution phase. Biopolymers 2004; 75:85-93. [PMID: 15307200 DOI: 10.1002/bip.20103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vibrational absorption and vibrational circular dichroism (VCD) spectra of valinomycin are measured, in different solvents, in the ester and amide carbonyl stretching regions. The influence of cations, namely Li(+), Na(+), K(+), and Cs(+), in methanol-d(4) solvent is also investigated. Ab initio quantum mechanical calculations using density functional theory and 6-31G* basis set are used to predict the absorption and VCD spectra. A bracelet-type structure for valinomycin that reproduces the experimental absorption and VCD spectra in inert solvents is identified. For the structure of valinomycin in polar solvents, a propeller-type structure was optimized, but further investigations are required to confirm this structure. A symmetric octahedral environment for the ester carbonyl groups in the valinomycin-K(+) complex is supported by the experimental VCD spectra. The results obtained in the present study demonstrate that even for large macrocyclic peptides, such as valinomycin, VCD can be used as an independent structural tool for the study of conformations in solution.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | | | | |
Collapse
|
10
|
Silva RAGD, Yasui SC, Kubelka J, Formaggio F, Crisma M, Toniolo C, Keiderling TA. Discriminating 3(10)- from alpha-helices: vibrational and electronic CD and IR absorption study of related Aib-containing oligopeptides. Biopolymers 2002; 65:229-43. [PMID: 12382284 DOI: 10.1002/bip.10241] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Model peptides based on -(Aib-Ala)(n)-, and (Aib)(n)-Leu-(Aib)(2) sequences, which have varying amounts of 3(10)-helical character, were studied by use of vibrational and electronic circular dichroism (VCD and ECD) and Fourier transform infrared (FTIR) absorption spectroscopies to test the correlation of spectral response and conformation. The data indicate that these peptides, starting from a length of about four to six residues, predominantly adopt a 3(10)-helical conformation at room temperature. The longest model peptides, depending on the series, may evidence some alpha-helical contribution to the spectra, while the shorter ones, with less than six residues, have much less order. The IR absorption spectra (as supported by theory) showed only small frequency changes between 3(10)- and alpha-helices. By contrast, solvent effects are a source of much bigger perturbations. The ECD results show that the intensity ratio for the approximately 222-nm to approximately 208-nm bands, while useful for distinguishing between these two helical types in some sequences, may have a narrower range of application than VCD. However, the VCD data presented here continue to support the proposed discrimination between alpha- and 3(10)-helices based on qualitative amide I and II bandshape differences. The present study shows the intensities of the 3(10)-helical amide I (peak-to-peak) to its amide II VCD to be of the same order and useful for discriminating them from alpha-helices, whose amide I dominates the amide II in intensity. This qualitative result is experimentally independent of the amount of alphaMe-substituted residues in the sequence. These experimental VCD results are consistent in detail with theoretical spectral simulations for Ac-(Ala)(8)-NH(2), Ac-(Aib-Ala)(4)-NH(2), and Ac-(Aib)(8)-NH(2) in 3(10)- and alpha-helical conformations.
Collapse
Affiliation(s)
- R A Gangani D Silva
- Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7061, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Bour P, Kubelka J, Keiderling TA. Ab initio quantum mechanical models of peptide helices and their vibrational spectra. Biopolymers 2002; 65:45-59. [PMID: 12209472 DOI: 10.1002/bip.10224] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Structural parameters for standard peptide helices (alpha, 3(10), 3(1) left-handed) were fully ab initio optimized for Ac-(L-Ala)(9)-NHMe and for Ac-(L-Pro)(9)-NHMe (poly-L-proline-PLP I and PLP II-forms), in order to better understand the relative stability and minimum energy geometries of these conformers and the dependence of the ir absorption and vibrational CD (VCD) spectra on detailed variation in these conformations. Only the 3(10)-helical Ala-based conformation was stable in vacuum for this decaamide structure, but both Pro-based conformers minimized successfully. Inclusion of solvent effects, by use of the conductor-like screening solvent model (COSMO), enabled ab initio optimizations [at the DFT/B3LYP/SV(P) level] without any constraints for the alpha- and 3(10)-helical Ala-based peptides as well as the two Pro-based peptides. The geometries obtained compare well with peptide chain torsion angles and hydrogen-bond distances found for these secondary structure types in x-ray structures of peptides and proteins. For the simulation of VCD spectra, force field and intensity response tensors were obtained ab initio for the complete Ala-based peptides in vacuum, but constrained to the COSMO optimized torsional angles, due to limitations of the solvent model. Resultant spectral patterns reproduce well many aspects of the experimental spectra and capture the differences observed for these various helical types.
Collapse
Affiliation(s)
- Petr Bour
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Praha 6, Czech Republic
| | | | | |
Collapse
|
12
|
Kubelka J, Silva RAGD, Keiderling TA. Discrimination between peptide 3(10)- and alpha-helices. Theoretical analysis of the impact of alpha-methyl substitution on experimental spectra. J Am Chem Soc 2002; 124:5325-32. [PMID: 11996573 DOI: 10.1021/ja012685o] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detailed spectral simulations based on ab initio density functional theory computations of the amide I and II infrared (IR) and vibrational circular dichroism (VCD) spectra for Ac-(Ala)(4)-NH(2), Ac-(Aib-Ala)(2)-NH(2), and Ac-(Aib)(4)-NH(2) constrained to 3(10)- and alpha-helical conformations are presented. Parameters from these ab initio calculations are transferred onto corresponding larger oligopeptides to simulate the spectra for dodecamers. The differences between conformations and for different Aib substitution patterns within a conformation are reflected in observable spectral patterns where data are available. Simulated IR spectra show small frequency shifts in the amide I maxima between 3(10)- and alpha-helices, but the same magnitude shifts occur within one conformation upon Aib substitution. Thus, from a computational basis, the frequency of the amide I maximum does not discriminate between the 3(10)- or alpha-helical conformations. Calculated VCD band shapes for 3(10)-helices showed more significant changes in amplitude, with change in the fraction of Aib, than those for alpha-helices. Generally, with increasing Aib content, the overall amide I VCD intensity becomes weaker and the amide I couplet becomes more conservative, while the amide II VCD is less affected. Although the detailed band shape is shown to be sensitive to alpha-Me substitution, the basic pattern of amide I and II relative VCD intensities still differs between alpha- and 3(10)-helices and, as a consequence, successfully discriminates between them. These predictions are all borne out in experimental spectra of Aib, mixed Aib-Ala, and Ala-based helical peptides, where available.
Collapse
Affiliation(s)
- Jan Kubelka
- Department of Chemistry (M/C 111), University of Illinois at Chicago, 60607-7061, USA
| | | | | |
Collapse
|
13
|
Tanaka T, Inoue K, Kodama T, Kyogoku Y, Hayakawa T, Sugeta H. Conformational study on poly [gamma-(alpha-phenethyl)-L-glutamate] using vibrational circular dichroism spectroscopy. Biopolymers 2001; 62:228-34. [PMID: 11391572 DOI: 10.1002/bip.1017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vibrational circular dichroism (VCD) and IR absorption spectra are obtained in a chloroform solution for poly[gamma-((R)-alpha-phenethyl)-L-glutamate] (PRPLG) and poly[gamma-((S)-alpha-phenethyl)-L-glutamate] (PSPLG), whose only structural difference is an opposite chiral center in the side chain. Their characteristic amide A, I, and II bands show VCD patterns quite similar to those of poly[gamma-benzyl-L-glutamate] (PBLG), indicating that the secondary structure of these polypeptides is a right-handed alpha-helix. The VCD spectra in the CH stretching region exhibit different patterns for PRPLG and PSPLG, reflecting the chirality difference in the side chains. This difference is interpreted on the basis of the additivity of optical activity contributions from the main chain conformation and the chirality difference in the side chains. The results indicate that a VCD difference spectrum of the CH stretching region is a useful diagnostic tool for elucidating local chirality differences.
Collapse
Affiliation(s)
- T Tanaka
- Division of Molecular Biophysics, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Simulated ir absorption and vibrational CD (VCD) spectra of four alanine-based octapeptides, each having its main chain constrained to a different secondary structure conformation, were analyzed and compared with experimental results for several different peptides. The octapeptide simulations were based on transfer of property tensors from a series of ab initio calculations for a short L-alanine based segment containing 3 peptide bonds with relative straight phi, psi angles fixed to those appropriate for alpha-helix, 3(10)-helix, ProII-like helix, and beta-sheet-like strand. The tripeptide force field (FF) and atomic polar tensors were obtained with density functional theory techniques at the BPW91/6-31G** level and the atomic axial tensor at the mixed BPW91/6-31G**/HF/6-31G level. Allowing for frequency correction due to the FF limitations, the octapeptide results obtained are qualitatively consistent with experimental observations for ir and VCD spectra of polypeptides and oligopeptides in established conformations. In all cases, the correct VCD sign patterns for the amide I and II bands were predicted, but the intensities did have some variation from the experimental patterns. Predicted VCD changes upon deuteration of either the peptide or side-chains as well as for (13)C isotopic labeling of the amide C=O at specific sites in the peptide chain were computed for analysis of experimental observations. A combination of theoretical modeling with experimental data for labeled compounds leads both to enhanced resolution of component transitions and added conformational applicability of the VCD spectra.
Collapse
Affiliation(s)
- P Bour
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Praha 6, Czech Republic
| | | | | |
Collapse
|
15
|
Baello BI, Pancoska P, Keiderling TA. Vibrational circular dichroism spectra of proteins in the amide III region: measurement and correlation of bandshape to secondary structure. Anal Biochem 1997; 250:212-21. [PMID: 9245441 DOI: 10.1006/abio.1997.2221] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vibrational circular dichroism (VCD) spectra have been measured for 23 globular proteins dissolved in H2O/phosphate buffer over the 1400 to 1100 cm(-1) region which encompasses the amide III mode. Spectral responses characteristic of the dominant secondary structure type were found as broad features at approximately 1300 cm(-1), with the extreme forms having positive VCD for highly helical proteins and negative VCD for highly sheet-containing proteins. Quantitative correlation with secondary structure was carried out using previously developed factor analysis and restricted multiple regression (FA/RMR) techniques. Since the absorbance intensity of the amide III mode is difficult to determine due to overlap with other transitions, an alternative, absolute intensity-independent, simple structural analysis method was used. A linear regression was developed between the fractional components of secondary structure for the protein set and the overlap integrals of the normalized spectra from the set with that of a selected protein. The results of this simple method are quite comparable to those of the FA/ RMR approach for analysis with amide III VCD. On the other hand, test calculations with the new method when used with electronic CD spectra are not as good as FA/RMR due to its more intensity-dependent relationship with secondary structure.
Collapse
Affiliation(s)
- B I Baello
- Department of Chemistry, University of Illinois at Chicago, 60607-7061, USA
| | | | | |
Collapse
|
16
|
Bou? P, Sopkov� J, Bedn�rov� L, Malo? P, Keiderling TA. Transfer of molecular property tensors in cartesian coordinates: A new algorithm for simulation of vibrational spectra. J Comput Chem 1997. [DOI: 10.1002/(sici)1096-987x(19970415)18:5<646::aid-jcc6>3.0.co;2-n] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Bou? P, Sopkov� J, Bedn�rov� L, Malo? P, Keiderling TA. Transfer of molecular property tensors in cartesian coordinates: A new algorithm for simulation of vibrational spectra. J Comput Chem 1997. [DOI: 10.1002/(sici)1096-987x(19970415)18:5%3c646::aid-jcc6%3e3.0.co%3b2-n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Abstract
Vibrational optical activity (VOA) is a relatively new spectroscopic technique, which has two principal manifestations, ir vibrational CD and vibrational Raman optical activity. Progress in the study of oligopeptides using both of these forms of VOA is reviewed from the perspective of theoretical and instrumental techniques, spectral results, and structural interpretations.
Collapse
Affiliation(s)
- T B Freedman
- Department of Chemistry, Syracuse University, New York 13244-4100, USA
| | | | | |
Collapse
|
19
|
Keiderling TA, Wang B, Urbanova M, Pancoska P, Dukor RK. Empirical studies of protein secondary structure by vibrational circular dichroism and related techniques. Alpha-lactalbumin and lysozyme as examples. Faraday Discuss 1994:263-85; discussion 311-26. [PMID: 7549541 DOI: 10.1039/fd9949900263] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vibrational circular dichroism (VCD) has been shown to be sensitive to secondary structure in proteins and peptides and has been used as the basis for quantitative secondary-structure-prediction algorithms. However, the accuracy of these algorithms is not matched by the apparent qualitative sensitivity of the VCD spectra. This report provides examples of the use of VCD to follow structural change spectrally and to clarify the qualitative nature of the structural changes underlying the spectral variation. The VCD spectra and the complementary UV electronic CD (ECD) and FTIR spectra of alpha-lactalbumin (LA) have been studied as a function of pH, denaturation, Ca2+ ion and solvent conditions for several species. Spectral data for lysozyme were compared with those of LA because of their very similar crystal structures. In fact, these proteins in D2O-based pH 7 solution have quite different spectra using these optical techniques. Even for the LA proteins, the human differs from the bovine and goat species. Furthermore, under low pH conditions, where the LAs are in a reversibly denatured, molten globule form, the spectra are more similar, species variation is minimal and the spectral differences from lysozyme are in fact smaller. Our data are consistent with native, pH 7, alpha-lactalbumin having a less well organized structure than lysozyme, possibly in a dynamic sense. Conversely, in the low-pH, molten globule form of LA, tertiary structure is lost which could relax constraints that might distort the helical segments in the native form. The differences between the interpretation of our results and those from X-ray and NMR data may be due to motional sampling of various geometries in LA which all contribute to the spectral signatures seen in optical spectra but whose contributions are washed out in NMR or frozen out in the crystal structure. Part of this flexibility may relate to the rather large 3(10)-helical content in the LA protein structure. Fluctionality may have specific functional effects, perhaps allowing LA to bind better to beta-galactosyl transferase and form the biologically active lactose synthetase complex.
Collapse
Affiliation(s)
- T A Keiderling
- Department of Chemistry, University of Illinois at Chicago m/c 111 60607-7061, USA
| | | | | | | | | |
Collapse
|
20
|
Gupta VP, Keiderling TA. Vibrational CD of the amide II band in some model polypeptides and proteins. Biopolymers 1992; 32:239-48. [PMID: 1374654 DOI: 10.1002/bip.360320305] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The amide II vibrational CD (VCD) spectra of poly (L-glutamic acid) and poly (L-lysine) in various conformational forms and those of several proteins in H2O have been measured. Characteristic VCD patterns have been observed in the amide II region due to helix, beta-sheet, and coil conformations in polypeptides. Based on their x-ray crystal structures, the proteins studied have been assigned to six categories. Proteins in the same category give rise to similar amide II VCD. While the protein conformational type is indicated using the amide II VCD, discrimination between types is less characteristic than with the previously studied amide I' VCD in D2O.
Collapse
Affiliation(s)
- V P Gupta
- Department of Chemistry, University of Illinois, Chicago 60680
| | | |
Collapse
|
21
|
Dukor RK, Keiderling TA. Reassessment of the random coil conformation: vibrational CD study of proline oligopeptides and related polypeptides. Biopolymers 1991; 31:1747-61. [PMID: 1793813 DOI: 10.1002/bip.360311409] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The "random coil" conformational problem is examined by comparison of vibrational CD (VCD) spectra of various polypeptide model systems with that of proline oligomers [(Pro)n] and poly(L-proline). VCD, ir and uv CD spectra of blocked L-proline oligopeptides [(Pro)n, n = 2-12] in different solvents are reported and compared to the spectra of poly(L-proline) II, poly(L-glutamic acid), and unblocked proline oligomers. Based on the chain-length dependence of the VCD and electronic CD (ECD) spectra of proline oligomers, it is established that VCD spectra are dominated by short-range interactions. The VCD of random coil model polypeptides is shown to be identical in shape but smaller in magnitude than poly(L-proline) II and of similar magnitude to that of (Pro)n (n = 3, 4). Based on the spectral evidence, it is concluded that the "random coil" conformation has a large fraction of helical regions, conformationally similar to the left-handed, 3(1) polyproline II helix, as was previously suggested by Krimm and co-workers. This conclusion is further supported by studies of effects of salt (CaCl2, LiBr, LiClO4), temperature (5-75 degrees C), and pH on the VCD spectra of L-proline oligomers, poly(L-proline) II, and poly(L-glutamic acid). These show that, after each of these perturbations, a significant local ordering remains in the oligomers and polymers studied, and that charged polypeptides such as poly(L-glutamic acid) are more flexible than are polyproline or even L-proline oligomers.
Collapse
Affiliation(s)
- R K Dukor
- Department of Chemistry, University of Illinois, Chicago 60680
| | | |
Collapse
|
22
|
Dukor RK, Keiderling TA, Gut V. Vibrational circular dichroism spectra of unblocked proline oligomers. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1991; 38:198-203. [PMID: 1761366 DOI: 10.1111/j.1399-3011.1991.tb01429.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vibrational Circular Dichroism (VCD) spectra of unblocked L-proline oligopeptides, (Pro)n n = 3 to 7, dissolved in D2O are reported. For these oligomers, the VCD spectra can be attributed to a conformational dominance of the trans amide conformation with subunits interrelated by a left-handed twist, particularly for the longer oligomers. As a function of oligomer length, formation of this conformation starts at n = 3; and by n = 5 a spectrum closely resembling that of the poly-L-proline II helix in shape and magnitude is seen. The VCD data are compared with previous (Pro)n results using IR, CD, Raman and NMR spectroscopies, and reasons for the variations in interpretation are discussed.
Collapse
Affiliation(s)
- R K Dukor
- Department of Chemistry, University of Illinois, Chicago
| | | | | |
Collapse
|