Fritsch V, Ravishanker G, Beveridge DL, Westhof E. Molecular dynamics simulations of poly(dA).poly(dT): comparisons between implicit and explicit solvent representations.
Biopolymers 1993;
33:1537-52. [PMID:
8218922 DOI:
10.1002/bip.360331005]
[Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The program AMBER 3.0 has been used to generate molecular dynamics trajectories of a poly(dA).poly(dT) decamer. The simulations were performed using different methods to treat solvent effects. Results of a simulation including 18 counterions NH4+ and 4109 water molecules under (N, P, T) conditions were compared to simulation runs with implicit solvent representation in which solvent screening effects were represented by the use of a sigmoidal distance-dependent dielectric function. In the latter case, the system was simulated under microcanonical (N, V, E) and canonical (N, V, T) conditions. For the fully hydrated system simulation, a preequilibration protocol was developed since it was observed that long and progressive periods of heating and equilibration on the overall system were necessary in order to avoid energetic collisions between the solute and the solvent molecules, leading to severe irreversible deformation of the solute. A detailed analysis of DNA conformations, sugar puckers, and stability of the hydrogen bonds, Watson-Crick and three-center H bonds, is reported. The results show that DNA remains essentially in the B conformer with a tendency in the hydrated model to adopt a slightly distorted, unwound, and stretched conformation in comparison to standard B-DNA. Concerning sugar puckers, the mean pseudorotation phases of the adenine residues are systematically higher than those of the thymine residues, except in the case of the hydrated model for which a articular behavior is observed for the adenine strand. In this case, the terminal bases oscillate between C2'-endo and O4'-endo and the central ones stay in the C3'-endo domain. The mean lifetimes of the internal Watson-Crick H-bond (A) HN6...O4(T) are also dependent on the base pairs included in the calculation, excepted for the implicit solvent simulation at constant temperature. The three-center H bonds have very small mean lifetimes in all three cases of MD simulation. In the minor groove of the hydrated model, a spine of hydration is found as observed by x-ray crystallography and other theoretical simulations. On the basis of the rms deviations, it appears that the fully hydrated simulation has not reached a plateau at the end of the run, while the implicit simulation at constant energy seems to have converged. At constant temperature, very large oscillations in rms deviations are observed.
Collapse