1
|
Martin GG, McIntosh AL, Huang H, Gupta S, Atshaves BP, Landrock KK, Landrock D, Kier AB, Schroeder F. The human liver fatty acid binding protein T94A variant alters the structure, stability, and interaction with fibrates. Biochemistry 2013; 52:9347-57. [PMID: 24299557 PMCID: PMC3930105 DOI: 10.1021/bi401014k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the human liver fatty acid binding protein (L-FABP) T94A variant arises from the most commonly occurring single-nucleotide polymorphism in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in the complete loss of ligand binding ability and function analogous to that seen with L-FABP gene ablation. This possibility was addressed using the recombinant human wild-type (WT) T94T and T94A variant L-FABP and cultured primary human hepatocytes. Nonconservative replacement of the medium-sized, polar, uncharged T residue with a smaller, nonpolar, aliphatic A residue at position 94 of the human L-FABP significantly increased the L-FABP α-helical structure content at the expense of β-sheet content and concomitantly decreased the thermal stability. T94A did not alter the binding affinities for peroxisome proliferator-activated receptor α (PPARα) agonist ligands (phytanic acid, fenofibrate, and fenofibric acid). While T94A did not alter the impact of phytanic acid and only slightly altered that of fenofibrate on the human L-FABP secondary structure, the active metabolite fenofibric acid altered the T94A secondary structure much more than that of the WT T94T L-FABP. Finally, in cultured primary human hepatocytes, the T94A variant exhibited a significantly reduced extent of fibrate-mediated induction of PPARα-regulated proteins such as L-FABP, FATP5, and PPARα itself. Thus, while the T94A substitution did not alter the affinity of the human L-FABP for PPARα agonist ligands, it significantly altered the human L-FABP structure, stability, and conformational and functional response to fibrate.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| | - Shipra Gupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Barbara P. Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Kerstin K. Landrock
- Department of Pathobiology, Texas A&M University, TVMC College Station, TX 77843-4467
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, TVMC College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| |
Collapse
|
2
|
Beaugé L, Dipolo R, Bollo M, Cousido A, Berberián G, Podjarny A. Metabolic regulation of the squid nerve Na(+)/Ca (2+) exchanger: recent developments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:149-61. [PMID: 23224877 DOI: 10.1007/978-1-4614-4756-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
In squid nerves, MgATP modulation of the Na(+)/Ca(2+) exchanger requires the presence of a cytosolic protein which becomes phosphorylated during the process. This factor has been recently identified. Mass spectroscopy and Western blot analysis established that it is a member of the lipocalin superfamily of lipid-binding proteins (LBP or FABP) of 132 amino acids. We called it regulatory protein of squid nerve sodium/calcium exchanger (ReP1-NCXSQ, access to GenBank EU981897).ReP1-NCXSQ was cloned, expressed, and purified. Circular dichroism, far-UV, and infrared spectroscopy suggest a secondary structure, predominantly of beta-sheets. The tertiary structure prediction provides ten beta-sheets and two alpha-helices, characteristic of most of LPB. Functional experiments showed that, to be active, ReP1-NCXSQ must be phosphorylated by MgATP, through the action of a kinase present in the plasma membrane. Moreover, PO4-ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. An additional crucial observation was that, in proteoliposomes containing only the purified Na(+)/Ca(2+) exchanger, PO4-ReP1-NCXSQ promotes activation; therefore, this upregulation has no other requirement than a lipid membrane and the incorporated exchanger protein.Recently, we solved the crystal structure of ReP1-NCXSQ which was as predicted: a "barrel" consisting of ten beta-sheets and two alpha-helices. Inside the barrel is the fatty acid coordinated by hydrogen bonds with Arg126 and Tyr128. Point mutations showed that neither Tyr20Ala, Arg58Val, Ser99Ala, nor Arg126Val is necessary for protein phosphorylation or activity. On the other hand, Tyr128 is essential for activity but not for phosphorylation. We can conclude that (1) for the first time, a role of an LBP is demonstrated in the metabolic regulation of an ion exchanger; (2) phosphorylation of this LBP can be separated from the activation capacity; and (3) Tyr128, a candidate to coordinate lipid binding inside the barrel, is essential for activity.
Collapse
Affiliation(s)
- Luis Beaugé
- Laboratorio de Biofísica, Instituto de Investigación Médica, Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
3
|
Berberián G, Podjarny A, DiPolo R, Beaugé L. Metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger: recent kinetic, biochemical and structural developments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 108:47-63. [PMID: 21964458 DOI: 10.1016/j.pbiomolbio.2011.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/30/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
Abstract
The Na⁺/Ca²⁺ exchangers are structural membrane proteins, essential for the extrusion of Ca²⁺ from most animal cells. Apart from the transport sites, they have several interacting ionic and metabolic sites located at the intracellular loop of the exchanger protein. One of these, the intracellular Ca²⁺ regulatory sites, are essential and must be occupied by Ca²⁺ to allow any type of ion (Na⁺ or Ca²⁺) translocation. Intracellular protons and Na⁺ are inhibitory by reducing the affinity of the regulatory sites for Ca²⁺; MgATP stimulates by antagonizing H⁺ and Na⁺. We have proposed a kinetic scheme to explain all ionic and metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger. This model uniquely accounts for most of the new kinetic data provided here; however, none of the existing models can explain the trans effects of the Ca(i)²⁺-regulatory sites on external cation transport sites; i.e. all models are incomplete. MgATP up-regulation of the squid Na⁺/Ca²⁺ exchanger requires a cytosolic protein, which has been recently identified as a member of the lipocalin super family of Lipid Binding Proteins (LBP or FABP) of 132 amino acids (ReP1-NCXSQ, access to GenBank EU981897). This protein was cloned, expressed and purified. To be active, ReP1-NCXSQ must be phosphorylated from MgATP by a kinase present in the plasma membrane. Phosphorylated ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. Experiments with proteoliposomes proved that this up-regulation can take place just with the lipid membrane and the exchanger protein. The structure of ReP1-NCXSQ predicted from the amino acid sequence has been confirmed by X-ray crystal analysis; it has a "barrel" formed by ten beta sheets and two alpha helices, with a lipid coordinated by hydrogen bonds with Arg 126 and Tyr 128.
Collapse
Affiliation(s)
- Graciela Berberián
- Laboratorio de Biofísica, Instituto de Investigación Médica "Mercedes y Martín Ferreyra" (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
4
|
Berberián G, Bollo M, Montich G, Roberts G, Degiorgis JA, Dipolo R, Beaugé L. A novel lipid binding protein is a factor required for MgATP stimulation of the squid nerve Na+/Ca2+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1255-62. [PMID: 19168028 DOI: 10.1016/j.bbamem.2008.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/23/2008] [Accepted: 12/29/2008] [Indexed: 11/26/2022]
Abstract
Here we identify a cytosolic factor essential for MgATP up-regulation of the squid nerve Na(+)/Ca(2+) exchanger. Mass spectroscopy and Western blot analysis established that this factor is a member of the lipocalin super family of lipid binding proteins of 132 amino acids in length. We named it Regulatory protein of the squid nerve sodium calcium exchanger (ReP1-NCXSQ). ReP-1-NCXSQ was cloned, over expressed and purified. Far-UV circular dichroism and infrared spectra suggest a majority of beta-strand in the secondary structure. Moreover, the predicted tertiary structure indicates ten beta-sheets and two short alpha-helices characteristic of most lipid binding proteins. Functional experiments showed that in order to be active ReP1-NCXSQ must become phosphorylated in the presence of MgATP by a kinase that is Staurosporin insensitive. Even more, the phosphorylated ReP1-NCXSQ is able to stimulate the exchanger in the absence of ATP. In addition to the identification of a new member of the lipid binding protein family, this work shows, for the first time, the requirement of a lipid binding protein for metabolic regulation of an ion transporting system.
Collapse
Affiliation(s)
- Graciela Berberián
- Laboratorio de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
5
|
Nolan V, Perduca M, Monaco HL, Maggio B, Montich GG. Interactions of chicken liver basic fatty acid-binding protein with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:98-106. [PMID: 12659950 DOI: 10.1016/s0005-2736(03)00030-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interactions of chicken liver basic fatty acid-binding protein (Lb-FABP) with large unilamellar vesicles (LUVs) of palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidylglycerol (POPG) were studied by binding assays, Fourier transform infrared (FT-IR) spectroscopy, monolayers at air-water interface, and low-angle X-ray diffraction. Lb-FABP binds to POPG LUVs at low ionic strength but not at 0.1 M NaCl. The infrared (IR) spectra of the POPG membrane-bound protein showed a decrease of the band corresponding to beta-structures as compared to the protein in solution. In addition, a cooperative decrease of the beta-edge band above 70 degrees C in solution was also evident, while the transition was less cooperative and took place at lower temperature for the POPG membrane-bound protein. Low- and wide-angle X-ray diffraction experiments with lipid multilayers indicate that binding of the protein produces a rearrangement of the membrane structure, increasing the interlamellar spacing and decreasing the compactness of the lipids.
Collapse
Affiliation(s)
- Verónica Nolan
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba CIQUIBIC (CONICET)-Pabellón Argentina, Ciudad Universitaria Córdoba (5000), Argentina
| | | | | | | | | |
Collapse
|
6
|
Farhat IA, Orset S, Moreau P, Blanshard JMV. FTIR Study of Hydration Phenomena in Protein-Sugar Systems. J Colloid Interface Sci 1998; 207:200-208. [PMID: 9792763 DOI: 10.1006/jcis.1998.5751] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hydration of gelatin-sugar systems was studied by Fourier transform infrared spectroscopy in the transmission mode using direct difference methodology. Information on the hydration kinetics of gelatin was obtained from the changes in intensities of the amide bands. Evidence of molecular interactions between the sugar and the carbonyl group of the protein was obtained from the results describing the hydration of the protein. Such interactions depended on both the concentration and the type of sugar present in the system. The effects of the presence of sugars on the kinetics of hydration of gelatin were interpreted in terms of selective hydration of the protein at low RH and specific molecular interactions between the gelatin and the sugar. The partitioning of water between the two components in the system was found to be an important feature in this study. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- IA Farhat
- Department of Applied Biochemistry and Food Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Marianne L. McKelvy
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - Thomas R. Britt
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - Bradley L. Davis
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - J. Kevin Gillie
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - Felicia B. Graves
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - L. Alice Lentz
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| |
Collapse
|
8
|
Coe NR, Bernlohr DA. Physiological properties and functions of intracellular fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1391:287-306. [PMID: 9555061 DOI: 10.1016/s0005-2760(97)00205-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- N R Coe
- Department of Biochemistry, University of Minnesota, 1479 Gorter Ave, St. Paul, MN 55108, USA
| | | |
Collapse
|
9
|
Abstract
Although structural aspects of cytosolic fatty acid binding proteins (FABPs) in mammalian tissues are now well understood, significant advances regarding the physiological function(s) of these proteins have been slow in forthcoming. Part of the difficulty lies in the complexity of the multigene FABP family with nearly twenty identified members. Furthermore, isoelectric focusing and ion exchange chromatography operationally resolve many of the mammalian native FABPs into putative isoforms. However, a more classical biochemical definition of an isoform, i.e. proteins differing by a single amino acid, suggests that the operational definition is too broad. Because at least one putative heart H-FABP isoform, the mammary derived growth inhibitor, was an artifact (Specht et al. (1996) J. Biol. Chem. 271: 1943-49), the ensuing skepticism and confusion cast doubt on the existence of FABP isoforms in general. Yet, increasing data suggest that several FABPs, e.g. human intestinal I-FABP, bovine and mouse heart H-FABP, rabbit myelin P2 protein and bovine liver L-FABP may exist as true isoforms. In contrast, the rat liver L-FABP putative isoforms may actually be due either to bound ligand, post-translational S-thiolation and/or structural conformers. In any case, almost nothing is known regarding possible functions of either the true or putative isoforms in vitro or in vivo. The objective of this article is to critically evaluate which FABPs form biochemically defined or true isoforms versus FABPs that form additional forms, operationally defined as isoforms. In addition, recent developments in the molecular basis for FABP true isoform formation, the processes leading to additional operationally defined putative isoforms and insights into potential function(s) of this unusual aspect of FABP heterogeneity will be examined.
Collapse
Affiliation(s)
- F Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, TVMC, College Station 77843-4466, USA.
| | | | | | | |
Collapse
|
10
|
Graff DK, Pastrana-Rios B, Venyaminov SY, Prendergast FG. The Effects of Chain Length and Thermal Denaturation on Helix-Forming Peptides: A Mode-Specific Analysis Using 2D FT-IR. J Am Chem Soc 1997. [DOI: 10.1021/ja970512m] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. K. Graff
- Contribution from the Department of Pharmacology, The Mayo Clinic and Foundation, 1417 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905, and University of Puerto Rico, Mayaguez Campus, Office M224, Post Street, Mayaguez, Puerto Rico 00681-5000
| | - B. Pastrana-Rios
- Contribution from the Department of Pharmacology, The Mayo Clinic and Foundation, 1417 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905, and University of Puerto Rico, Mayaguez Campus, Office M224, Post Street, Mayaguez, Puerto Rico 00681-5000
| | - S. Yu. Venyaminov
- Contribution from the Department of Pharmacology, The Mayo Clinic and Foundation, 1417 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905, and University of Puerto Rico, Mayaguez Campus, Office M224, Post Street, Mayaguez, Puerto Rico 00681-5000
| | - F. G. Prendergast
- Contribution from the Department of Pharmacology, The Mayo Clinic and Foundation, 1417 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905, and University of Puerto Rico, Mayaguez Campus, Office M224, Post Street, Mayaguez, Puerto Rico 00681-5000
| |
Collapse
|