1
|
Monks L, Rigo A, Mazutti M, Vladimir Oliveira J, Valduga E. Use of chemical, enzymatic and ultrasound-assisted methods for cell disruption to obtain carotenoids. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2013.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Assessment of Carotenoids Recovery through Cell Rupture of Sporidiobolus salmonicolor CBS 2636 Using Compressed Fluids. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-010-0493-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Rayat ACME, Micheletti M, Lye GJ. Evaluation of cell disruption effects on primary recovery of antibody fragments using microscale bioprocessing techniques. Biotechnol Prog 2011; 26:1312-21. [PMID: 20945488 DOI: 10.1002/btpr.450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intracellular antibody Fab' fragments periplasmically expressed in Escherichia coli require the release of Fab' from the cells before initial product recovery. This work demonstrates the utility of microscale bioprocessing techniques to evaluate the influence of different cell disruption operations on subsequent solid-liquid separation and product recovery. Initially, the industrial method of Fab' release by thermochemical extraction was established experimentally at the microwell scale and was observed to yield Fab' release consistent with the larger scale process. The influence of two further cell disruption operations, homogenization and sonication, on subsequent Fab' recovery by microfiltration was also examined. The results showed that the heat-extracted cells give better dead-end microfiltration performance in terms of permeate flux and specific cake resistance. In contrast, the cell suspensions prepared by homogenization and sonication showed more efficient product release but with lower product purity and poorer microfiltration performance. Having established the various microscale methods the linked sequence was automated on the deck of a laboratory robotic platform and used to show how different conditions during thermochemical extraction impacted on the optimal performance of the linked unit operations. The results illustrate the power of microscale techniques to evaluate crucial unit operation interactions in a bioprocess sequence using only microliter volumes of feed.
Collapse
Affiliation(s)
- Andrea C M E Rayat
- Dept. of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E7JE, UK
| | | | | |
Collapse
|
4
|
Assessment of Cell Disruption and Carotenoids Extraction from Sporidiobolus salmonicolor (CBS 2636). FOOD BIOPROCESS TECH 2008. [DOI: 10.1007/s11947-008-0133-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Goyal D, Sahoo DK, Sahni G. Hydrophobic interaction expanded bed adsorption chromatography (HI-EBAC) based facile purification of recombinant Streptokinase from E. coli inclusion bodies. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 850:384-91. [PMID: 17188946 DOI: 10.1016/j.jchromb.2006.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 12/03/2006] [Accepted: 12/09/2006] [Indexed: 10/23/2022]
Abstract
The downstream processing of recombinant streptokinase (rSK), a protein used for dissolution of blood clots has been investigated employing Escherichia coli inclusion bodies obtained after direct chemical extraction followed by expanded bed adsorption chromatography (EBAC). Streptokinase was over-expressed using high cell density (final OD(600)=40) culture of recombinant E. coli, and an SK protein concentration of 1080 mg l(-1) was achieved. The wet cell pellet after centrifugation was re-suspended in 8M urea containing buffer resulting in direct extraction of almost 97% of cellular proteins into solution. Compared to mechanical disruption using sonication, the direct extraction helped in simultaneous cell lysis and inclusion body (IB) solubilization in a single integrated step. The post-extraction solution containing cell debris and cellular proteins was diluted and directly loaded on to an EBAC column containing Streamline phenyl, without clarification. By passing the solution four times through the column and using 1M NaCl during loading, 82.7% rSK activity could be recovered in the 10mM sodium phosphate buffer used for elution. A 3-fold increase in specific activity of rSK, from 0.18 x 10(5) in cell lysate to 0.53 x 10(5)IU mg(-1) resulted after this step. rSK was further purified to near-homogeneity (specific activity=0.96 x 10(5)IU mg(-1)) by a subsequent ion-exchange step operated in packed bed mode. An overall downstream recovery of 63% rSK was achieved after EBAC and ion exchange chromatography. The paper thus describes the purification of rSK using a three-step regime involving simple, efficient and highly facile steps.
Collapse
Affiliation(s)
- Deepika Goyal
- Institute of Microbial Technology, Sector - 39A, Chandigarh 160036, India
| | | | | |
Collapse
|
6
|
Park P, Kim E, Chu K. Chemical disruption of yeast cells for the isolation of carotenoid pigments. Sep Purif Technol 2007. [DOI: 10.1016/j.seppur.2006.06.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Leong SSJ, Middelberg APJ. A simplified bioprocess for human alpha-fetoprotein production from inclusion bodies. Biotechnol Bioeng 2007; 97:99-117. [PMID: 17115449 DOI: 10.1002/bit.21271] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A simple and effective Escherichia coli (E. coli) bioprocess is demonstrated for the preparation of recombinant human alpha-fetoprotein (rhAFP), a pharmaceutically promising protein that has important immunomodulatory functions. The new rhAFP process employs only unit operations that are easy to scale and validate, and reduces the complexity embedded in existing inclusion body processing methods. A key requirement in the establishment of this process was the attainment of high purity rhAFP prior to protein refolding because (i) rhAFP binds easily to hydrophobic contaminants once refolded, and (ii) rhAFP aggregates during renaturation, in a contaminant- dependent way. In this work, direct protein extraction from cell suspension was coupled with a DNA precipitation-centrifugation step prior to purification using two simple chromatographic steps. Refolding was conducted using a single-step, redox-optimized dilution refolding protocol, with refolding success determined by reversed phase HPLC analysis, ELISA, and circular dichroism spectroscopy. Quantitation of DNA and protein contaminant loads after each unit operation showed that contaminant levels were reduced to levels comparable to traditional flowsheets. Protein microchemical modification due to carbamylation in this urea-based process was identified and minimized, yielding a final refolded and purified product that was significantly purified from carbamylated variants. Importantly, this work conclusively demonstrates, for the first time, that a chemical extraction process can substitute the more complex traditional inclusion body processing flowsheet, without compromising product purity and yield. This highly intensified and simplified process is expected to be of general utility for the preparation of other therapeutic candidates expressed as inclusion bodies.
Collapse
Affiliation(s)
- Susanna S J Leong
- Centre for Biomolecular Engineering, Division of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
8
|
Lee GH, Cooney D, Middelberg APJ, Choe WS. The economics of inclusion body processing. Bioprocess Biosyst Eng 2006; 29:73-90. [PMID: 16718467 DOI: 10.1007/s00449-006-0047-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 01/15/2006] [Indexed: 11/25/2022]
Abstract
Many recombinant proteins are often over-expressed in host cells, such as Escherichia coli, and are found as insoluble and inactive protein aggregates known as inclusion bodies (IBs). Recently, a novel process for IB extraction and solubilisation, based on chemical extraction, has been reported. While this method has the potential to radically intensify traditional IB processing, the process economics of the new technique have yet to be reported. This study focuses on the evaluation of process economics for several IB processing schemes based on chemical extraction and/or traditional techniques. Simulations and economic analysis were conducted at various processing conditions using granulocyte macrophage-colony stimulating factor, expressed as IBs in E. coli, as a model protein. In most cases, IB processing schemes based on chemical extraction having a shorter downstream cascade demonstrated a competitive economic edge over the conventional route, validating the new process as an economically more viable alternative for IB processing.
Collapse
Affiliation(s)
- G H Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, 117576, Singapore, Singapore
| | | | | | | |
Collapse
|
9
|
|
10
|
Hutchinson MH, Morreale G, Middelberg APJ, Chase HA. Production of enzymatically active ketosteroid isomerase following insoluble expression inEscherichia coli. Biotechnol Bioeng 2006; 95:724-33. [PMID: 16897731 DOI: 10.1002/bit.21043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Enzymatically active Delta(5)-3-ketosteroid isomerase (KSI) protein with a C-terminus his(6)-tag was produced following insoluble expression using Escherichia coli. A simple, integrated process was used to extract and purify the target protein. Chemical extraction was shown to be as effective as homogenization at releasing the inclusion body proteins from the bacterial cells, with complete release taking less than 20 min. An expanded bed adsorption (EBA) column utilizing immobilized metal affinity chromatography (IMAC) was then used to purify the denatured KSI-(His(6)) protein directly from the chemical extract. This integrated process greatly simplifies the recovery and purification of inclusion body proteins by removing the need for mechanical cell disruption, repeated inclusion body centrifugation, and difficult clarification operations. The integrated chemical extraction and EBA process achieved a very high purity (99%) and recovery (89%) of the KSI-(His(6)), with efficient utilization of the adsorbent matrix (9.74 mg KSI-(His(6))/mL adsorbent). Following purification the protein was refolded by dilution to obtain the biologically active protein. Seventy-nine percent of the expressed KSI-(His(6)) protein was recovered as enzymatically active protein with the described extraction, purification, and refolding process. In addition to demonstrating the operation of this intensified inclusion body process, a plate-based concentration assay detecting KSI-(His(6)) is validated. The intensified process in this work requires minimal optimization for recovering novel his-tagged proteins, and further improves the economic advantage of E. coli as a host organism.
Collapse
Affiliation(s)
- Matthew H Hutchinson
- Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | | | | | | |
Collapse
|
11
|
Morreale G, Lee EG, Jones DB, Middelberg APJ. Bioprocess-centered molecular design (BMD) for the efficient production of an interfacially active peptide. Biotechnol Bioeng 2004; 87:912-23. [PMID: 15334418 DOI: 10.1002/bit.20209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The efficient expression and purification of an interfacially active peptide (mLac21) was achieved by using bioprocess-centered molecular design (BMD), wherein key bioprocess considerations are addressed during the initial molecular biology work. The 21 amino acid mLac21 peptide sequence is derived from the lac repressor protein and is shown to have high affinity for the oil-water interface, causing a substantial reduction in interfacial tension following adsorption. The DNA coding for the peptide sequence was cloned into a modified pET-31(b) vector to permit the expression of mLac21 as a fusion to ketosteroid isomerase (KSI). Rational iterative molecular design, taking into account the need for a scaleable bioprocess flowsheet, led to a simple and efficient bioprocess yielding mLac21 at 86% purity following ion exchange chromatography (and >98% following chromatographic polishing). This case study demonstrates that it is possible to produce acceptably pure peptide for potential commodity applications using common scaleable bioprocess unit operations. Moreover, it is shown that BMD is a powerful strategy that can be deployed to reduce bioseparation complexity.
Collapse
Affiliation(s)
- Giacomo Morreale
- Department of Chemical Engineering, University of Cambridge, Pembroke Street, CB2 3RA, UK
| | | | | | | |
Collapse
|
12
|
Abstract
Column-based protein refolding requires a continuous processing capability if reasonable quantities of protein are to be produced. A popular column-based method, size-exclusion chromatography (SEC) refolding, employs size-exclusion matrices to separate unfolded protein from denaturant, thus refolding the protein. In this work, we conduct a comparison of SEC refolding with refolding by batch dilution, using lysozyme as a model protein. Lysozyme refolding yield was found to be extremely sensitive to the chemical composition of the refolding buffer and particularly the concentration of dithiothreitol (DTT) introduced from the denatured protein mixture. SEC refolding was not adversely affected by DTT carry-over as small contaminants in the denatured solution are separated from protein during the refolding operation. We also find that, contrary to previous reports, size-exclusion refolding on batch columns leads to refolding yields slightly better than batch dilution refolding yields at low protein concentrations but this advantage disappears at higher protein concentrations. As batch-mode chromatography would be the limiting step in a column based refolding downstream process, the batch column refolding method was translated to a continuously operating chromatography system (preparative continuous annular chromatography, P-CAC). It was shown that the P-CAC elution profile is similar to that of a stationary column, making scale-up and translation to P-CAC relatively simple. Moreover, it was shown that high refolding yields (72%) at high protein concentration (>1 mg ml(-1)) could be obtained.
Collapse
Affiliation(s)
- Heikki Lanckriet
- Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | | |
Collapse
|
13
|
Choe WS, Clemmitt RH, Chase HA, Middelberg APJ. Coupling of chemical extraction and expanded-bed adsorption for simplified inclusion-body processing: optimization using surface plasmon resonance. Biotechnol Bioeng 2003; 81:221-32. [PMID: 12451558 DOI: 10.1002/bit.10471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integration of the chemical extraction of recombinant inclusion-body protein from Escherichia coli, and its recovery by metal-affinity expanded-bed adsorption (IMAC-EBA) under denaturing conditions, was investigated. The viral coat protein L1 with a hexa-histidine tag was expressed in Escherichia coli HMS174(DE3) as a model protein. Interference of released host DNA with adsorbent fluidization in the EBA step was solved by selective precipitation using spermine and low-speed centrifugation. However, the capacity and selectivity of the adsorbent for L1 remained lower than anticipated. The binding of L1 to immobilized Ni(2+) was therefore studied in detail using surface plasmon resonance (SPR). The Tris buffer and ethylene-diamine tetraacetic acid (EDTA) used in the extraction mixture were found to interfere significantly with the L1-Ni(2+) interaction. The SPR studies suggest that L1 binding could be improved by replacing the Tris buffer with HEPES and by adding CaCl(2) to inactivate the EDTA. The modified chemical extraction conditions resulted in effective L1 extraction from cytoplasmic inclusion bodies, at high cell density (OD(600 )= 80) and without the use of reducing agent, into a medium optimized for subsequent IMAC recovery. The modified buffer conditions resulted in an improved binding capacity and a good L1 purification factor (12.7) and recovery yield (71%). This work demonstrates that it is possible to reduce the complexity and hence the cost associated with traditional processes used to prepare purified denatured protein, ready for refolding, from cytoplasmic inclusion bodies.
Collapse
Affiliation(s)
- Woo-Seok Choe
- Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | | | | | | |
Collapse
|
14
|
Tin Lee C, Morreale G, Middelberg APJ. Combined in-fermenter extraction and cross-flow microfiltration for improved inclusion body processing. Biotechnol Bioeng 2003; 85:103-13. [PMID: 14705017 DOI: 10.1002/bit.10878] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study we demonstrate a new in-fermenter chemical extraction procedure that degrades the cell wall of Escherichia coli and releases inclusion bodies (IBs) into the fermentation medium. We then prove that cross-flow microfiltration can be used to remove 91% of soluble contaminants from the released IBs. The extraction protocol, based on a combination of Triton X-100, EDTA, and intracellular T7 lysozyme, effectively released most of the intracellular soluble content without solubilising the IBs. Cross-flow microfiltration using a 0.2 microm ceramic membrane successfully recovered the granulocyte macrophage-colony stimulating factor (GM-CSF) IBs with removal of 91% of the soluble contaminants and virtually no loss of IBs to the permeate. The filtration efficiency, in terms of both flux and transmission, was significantly enhanced by in-fermenter Benzonase digestion of nucleic acids following chemical extraction. Both the extraction and filtration methods exerted their efficacy directly on a crude fermentation broth, eliminating the need for cell recovery and resuspension in buffer. The processes demonstrated here can all be performed using just a fermenter and a single cross-flow filtration unit, demonstrating a high level of process intensification. Furthermore, there is considerable scope to also use the microfiltration system to subsequently solubilise the IBs, to separate the denatured protein from cell debris, and to refold the protein using diafiltration. In this way refolded protein can potentially be obtained, in a relatively pure state, using only two unit operations.
Collapse
Affiliation(s)
- Chew Tin Lee
- Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | | | | |
Collapse
|
15
|
Choe WS, Clemmitt RH, Chase HA, Middelberg APJ. Comparison of histidine-tag capture chemistries for purification following chemical extraction. J Chromatogr A 2002; 953:111-21. [PMID: 12058925 DOI: 10.1016/s0021-9673(02)00154-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purification of a 6x-histidine tagged viral coat protein (L1) in expanded mode directly following chemical extraction from the cytoplasm of Escherichia coli HMS174(DE3) is investigated. Chelating adsorbents based on the ligands iminodiacetic acid (IDA) and nitrilotriacetic acid, using chelated metal ions Ni2+ and Cu2+, were compared. The use of Ni2+-IDA resulted in a high purification factor (9.7) and moderate recovery yield (58%). However, the eluted fractions had an overall L1 purity less than 50% and were therefore significantly contaminated with other host proteins. In batch tests, Cu2+-IDA was found to be superior to all other combinations as it was characterised by higher binding capacities and faster adsorption kinetics. A subsequent immobilised metal affinity chromatography-expanded bed adsorption experiment using Cu2+-IDA resulted in a higher L1 purification factor (20), recovery yield (71%) and purity (89%). The process presented here combines direct chemical extraction with expanded bed recovery. It is simpler than traditional methods, and should find more widespread application in the recovery of inclusion body proteins. Robust pseudo-affinity ligands such as metal chelates show potential for selective primary recovery of unfolded proteins, and could be used for further processing such as on-column refolding.
Collapse
Affiliation(s)
- Woo-Seok Choe
- Department of Chemical Engineering, University of Cambridge, UK
| | | | | | | |
Collapse
|
16
|
Choe W, Clemmitt R, Rito-Palomares M, Chase H, Middelberg A. Bioprocess Intensification: A Radical New Process for Recovering Inclusion Body Protein. FOOD AND BIOPRODUCTS PROCESSING 2002. [DOI: 10.1205/096030802753479106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|