1
|
Setter-Lamed E, Moraïs S, Stern J, Lamed R, Bayer EA. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency. Biotechnol J 2017; 12. [PMID: 28901714 DOI: 10.1002/biot.201700205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/06/2017] [Indexed: 11/09/2022]
Abstract
Cellulose deconstruction can be achieved by three distinct enzymatic paradigms: free enzymes, multifunctional enzymes, and self-assembled, multi-enzyme complexes (cellulosomes). To study their comparative efficiency, the simple and efficient cellulolytic system of the aerobic bacterium, Thermobifida fusca, is developed as an enzymatic model. In previous studies, most of its cellulases are successfully converted to the cellulosomal mode and exhibited high cellulolytic activities, except for Cel6B, a key exoglucanase of the T. fusca enzymatic system. Here, the impact of the modular organization of Cel6B on enzymatic activity is investigated. The position of the cellulose-binding module (CBM), its family and linker segment are shown to affect activity. Surprisingly, exchange of the native family-2 CBM to family-3 generates an increase in Cel6B activity on cellulosic substrates. Conversion of Cel6B to the cellulosomal mode by fusing a cohesin to the catalytic module enables formation of divalent enzyme complexes with dockerin-bearing enzymes. The resultant pseudo-cellulosomes, containing Cel6B combined with endoglucanase Cel5A, exhibits enhanced enzymatic activity, compared to mixtures of wild-type enzymes or bifunctional enzymes, unlike similar pseudo-cellulosomes containing endoglucanase Cel6A or proccessive endoglucanase Cel9A. Insight into the different enzymatic paradigms benefits ongoing development of efficient cellulolytic systems for conversion of plant-derived biomass into valuable sugars. NOVELTY STATEMENT The protein engineering of the modular arrangement of a key exoglucanase from a highly cellulolytic bacterium, Thermobifida fusca, served to explore and compare three major enzymatic paradigms for cellulose degradation. This approach revealed highly active chimaeric forms of the exoglucanase that act in synergy together with a potent endoglucanase in bifunctional enzymes or divalent pseudo-cellulosome-like complexes. Such engineered enzymes could be further integrated into larger enzymatic complexes, thereby providing a significant step forward towards conversion of the entire T. fusca free cellulolytic system into the cellulosomal modex and the enhanced conversion of cellulosic biomass into soluble sugars.
Collapse
Affiliation(s)
- Eva Setter-Lamed
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Deng Y, Lin J, Mao Y, Zhang X. Systematic analysis of an evolved Thermobifida fusca muC producing malic acid on organic and inorganic nitrogen sources. Sci Rep 2016; 6:30025. [PMID: 27424527 PMCID: PMC4948018 DOI: 10.1038/srep30025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Thermobifida fusca is a thermophilic actinobacterium. T. fusca muC obtained by adaptive evolution preferred yeast extract to ammonium sulfate for accumulating malic acid and ammonium sulfate for cell growth. We did transcriptome analysis of T. fusca muC on Avicel and cellobiose with addition of ammonium sulfate or yeast extract, respectively by RNAseq. The transcriptional results indicate that ammonium sulfate induced the transcriptions of the genes related to carbohydrate metabolisms significantly more than yeast extract. Importantly, Tfu_2487, encoding histidine-containing protein (HPr), didn’t transcribe on yeast extract at all, while it transcribed highly on ammonium sulfate. In order to understand the impact of HPr on malate production and cell growth of the muC strain, we deleted Tfu_2487 to get a mutant strain: muCΔ2487, which had 1.33 mole/mole-glucose equivalent malate yield, much higher than that on yeast extract. We then developed an E. coli-T. fusca shuttle plasmid for over-expressing HPr in muCΔ2487, a strain without HPr background, forming the muCΔ2487S strain. The muCΔ2487S strain had a much lower malate yield but faster cell growth than the muC strain. The results of both mutant strains confirmed that HPr was the key regulatory protein for T. fusca’s metabolisms on nitrogen sources.
Collapse
Affiliation(s)
- Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jia Lin
- College of Life Science, North China University of Science and Technology, Tangshan 063000, China
| | - Yin Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaojuan Zhang
- School of pharmaceutical science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Hamid SBA, Islam MM, Das R. Cellulase biocatalysis: key influencing factors and mode of action. CELLULOSE 2015; 22:2157-2182. [DOI: 10.1007/s10570-015-0672-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Luterbacher JS, Moran-Mirabal JM, Burkholder EW, Walker LP. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: Filter paper cellulose. Biotechnol Bioeng 2014; 112:21-31. [DOI: 10.1002/bit.25329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/08/2014] [Accepted: 06/30/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy S. Luterbacher
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York
| | - Jose M. Moran-Mirabal
- Department of Chemistry and Chemical Biology; Arthur N. Bourns Science Building; McMaster University; Hamilton Ontario, Canada L8S4M1
| | - Eric W. Burkholder
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York
| | - Larry P. Walker
- Department of Biological and Environmental Engineering; Riley-Robb Hall; Cornell University; Ithaca New York 14850
| |
Collapse
|
5
|
Dingee JW, Anton AB. The kinetics of p-nitrophenyl-β-D-cellobioside hydrolysis and transglycosylation by Thermobifida fusca Cel5Acd. Carbohydr Res 2010; 345:2507-15. [PMID: 20951981 DOI: 10.1016/j.carres.2010.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
The hydrolysis of p-nitrophenyl-β-1,4-cellobioside (pNP-G2) by the catalytic domain of the retaining-family 5-2 endocellulase Cel5A from Thermobifida fusca (Cel5Acd) was studied. The dominant reaction pathway involves hydrolysis of the aglyconic bond, producing cellobiose (G2) and a 'reporter' species p-nitrophenol (pNP), which was monitored spectrophotometrically to track the reaction. We also detected the production of cellotriose (G3) and p-nitrophenyl-glucoside (pNP-G1), confirming the presence of a competing transglycosylation pathway. We use a mechanistic model of hydrolysis and transglycosylation to derive an expression for the rate of pNP-formation as a function of enzyme concentration, substrate concentration, and several lumped kinetics parameters. The derivation assumes that the quasi-steady-state assumption (QSSA) applies for three intermediate species in the mechanism; we determine conditions under which this assumption is rigorously justified. We integrate the rate expression and compare its integral form to pNP-versus-time data collected for a range of enzyme and substrate concentrations. The integral comparison gives a stringent test of the mechanistic model, and it serves to quantify the lumped kinetics parameters with good statistical precision, particularly a previously unidentified parameter that determines the selectivity of hydrolysis versus transglycosylation. The integrated rate expression accounts well for pNP-versus-time data under all circumstances we have investigated.
Collapse
Affiliation(s)
- John W Dingee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, United States
| | | |
Collapse
|
6
|
Engineering of Clostridium phytofermentans Endoglucanase Cel5A for improved thermostability. Appl Environ Microbiol 2010; 76:4914-7. [PMID: 20511418 DOI: 10.1128/aem.00958-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A family 5 glycoside hydrolase from Clostridium phytofermentans was cloned and engineered through a cellulase cell surface display system in Escherichia coli. The presence of cell surface anchoring, a cellulose binding module, or a His tag greatly influenced the activities of wild-type and mutant enzymes on soluble and solid cellulosic substrates, suggesting the high complexity of cellulase engineering. The best mutant had 92%, 36%, and 46% longer half-lives at 60 degrees C on carboxymethyl cellulose, regenerated amorphous cellulose, and Avicel, respectively.
Collapse
|
7
|
Vincent F, Molin DD, Weiner RM, Bourne Y, Henrissat B. Structure of a polyisoprenoid binding domain from Saccharophagus degradans implicated in plant cell wall breakdown. FEBS Lett 2010; 584:1577-84. [PMID: 20227408 DOI: 10.1016/j.febslet.2010.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 12/01/2022]
Abstract
Saccharophagus degradans belongs to a recently discovered group of marine bacteria equipped with an arsenal of sugar cleaving enzymes coupled to carbohydrate-binding domains to degrade various insoluble complex polysaccharides. The modular Sde-1182 protein consists of a family 2 carbohydrate binding module linked to a X158 domain of unknown function. The 1.9 A and 1.55 A resolution crystal structures of the isolated X158 domain bound to the two related polyisoprenoid molecules, ubiquinone and octaprenyl pyrophosphate, unveil a beta-barrel architecture reminiscent of the YceI-like superfamily that resembles the architecture of the lipocalin fold. This unprecedented association coupling oxidoreduction and carbohydrate recognition events may have implications for effective nutrient uptake in the marine environment.
Collapse
Affiliation(s)
- Florence Vincent
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS and Aix-Marseille Universities, Marseille, France.
| | | | | | | | | |
Collapse
|
8
|
McGrath CE, Vuong TV, Wilson DB. Site-directed mutagenesis to probe catalysis by a Thermobifida fusca -1,3-glucanase (Lam81A). Protein Eng Des Sel 2009; 22:375-82. [DOI: 10.1093/protein/gzp015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Moran-Mirabal JM, Santhanam N, Corgie SC, Craighead HG, Walker LP. Immobilization of cellulose fibrils on solid substrates for cellulase-binding studies through quantitative fluorescence microscopy. Biotechnol Bioeng 2008; 101:1129-41. [PMID: 18563846 DOI: 10.1002/bit.21990] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cellulases, enzymes capable of depolymerizing cellulose polymers into fermentable sugars, are essential components in the production of bioethanol from lignocellulosic materials. Given the importance of these enzymes to the evolving biofuel industry considerable research effort is focused on understanding the interaction between cellulases and cellulose fibrils. This manuscript presents a method that addresses challenges that must be overcome in order to study such interactions through high-resolution fluorescence microscopy. First, it is shown that cellulose can be immobilized on solid substrates through a polymer lift-off technique. The immobilized cellulose aggregates present characteristic morphologies influenced by the patterned feature size used to immobilize it. Thus, through a variety of pattern sizes, cellulose can be immobilized in the form of cellulose particles, cellulose mats or individual cellulose fibrils. Second, it is shown that both cellulose and Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A can be fluorescently tagged and that the labeling does not inhibit the capability of these cellulases to depolymerize cellulose. The combination of the immobilization technique together with fluorescence labeling yields a system that can be used to study cellulose-cellulase interactions with spatial and temporal resolution not available through more conventional techniques which measure ensemble averages. It is shown that with such a system, the kinetics of cellulase binding onto cellulose fibrils and mats can be followed through sequences of fluorescence images. The intensity from the images can then be used to reconstruct binding curves for the cellulases studied. It was found that the complexity of cellulose morphology has a large impact on the binding curve characteristics, with binding curves for individual cellulose fibrils closely following a binding saturation model and binding curves for cellulose mats and particles deviating from it. The behavior observed is interpreted as the effect pore and interstice penetration play in cellulase binding to the accessible surface of cellulose aggregates. These results validate our method for immobilizing nanoscale cellulose fibrils and fibril aggregates on solid supports and lay the foundation for future studies on cellulase-cellulose interactions.
Collapse
Affiliation(s)
- Jose M Moran-Mirabal
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
10
|
Li Y, Wilson DB. Chitin binding by Thermobifida fusca cellulase catalytic domains. Biotechnol Bioeng 2008; 100:644-52. [PMID: 18306418 DOI: 10.1002/bit.21808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cellulose is a linear homopolymer of beta 1-4 linked glucose residues. Chitin is similar to cellulose in structure, and can be described as cellulose with the hydroxyl group on the C2 carbon replaced by an acetylamine group. Both cellulose and chitin form tightly packed, extensively hydrogen-bonded micro-fibrils. Up to now, binding of cellulase catalytic domains (CDs) to chitin has not been reported. In this article, binding of the CDs of Thermobifida fusca Cel6A, Cel6B, Cel48A, Cel5A, and Cel9A to alpha-chitin was investigated. The CDs of endocellulases, Cel6A and Cel5A did not bind to alpha-chitin; one exocellulase, Cel48A CD bound alpha-chitin moderately well; and the exocellulase Cel6B CD and the processive endocellulase Cel9A CD bound extremely tightly to alpha-chitin. Only mutations of Cel6B W329C, W332A and G234S and Cel9A Y206F, Y206S and D261A/R378K caused weaker binding to alpha-chitin than wild-type, and all these mutations were of residues near the catalytic center. One mutant enzyme, Cel9A D261A/R378K had weak chitinase activity, but no soluble products were detected. Chitotriose and chitotetraose were docked successfully to the catalytic cleft of Cel9A. In general, the positioning of the sugar residues in the model structures matched the cellooligosaccharides in the X-ray structure. Our results show that the binding of chitin by a cellulase can provide additional information about its binding to cellulose.
Collapse
Affiliation(s)
- Yongchao Li
- Field of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
11
|
Moser F, Irwin D, Chen S, Wilson DB. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 2008; 100:1066-77. [PMID: 18553392 DOI: 10.1002/bit.21856] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
E7, a single domain Family 33 cellulose binding module (CBM) protein, and E8, a non-catalytic, three-domain protein consisting of a Family 33 CBM, a FNIII domain, followed by a Family 2 CBM, were cloned, expressed, purified, and characterized. Western blots showed that E7 and E8 were induced and secreted when Thermobifida fusca was grown on cellobiose, Solka floc, switchgrass, or alfalfa as well as on beta-1,3 linked glucose molecules such as laminaribiose or pachyman. E8 bound well to alpha- and beta-chitin and bacterial microcrystalline cellulose (BMCC) at all pHs tested. E7 bound strongly to beta-chitin, less well to alpha-chitin and more weakly to BMCC than E8. Filter paper binding assays showed that E7 was 28% bound, E8 was 39% bound, a purified CBM2 binding domain from Cel6B was 88% bound, and only 5% of the Cel5A catalytic domain was bound. A C-terminal 6xHis tag influenced binding of both E7 and E8 to these substrates. Filter paper activity assays showed enhanced activity of T. fusca cellulases when E7 or E8 was present. This effect was observed at very low concentrations of cellulases or at very long times into the reaction and was mainly independent of the type of cellulase and the number of cellulases in the mixture. E8, and to a lesser extent E7, significantly enhanced the activity of Serratia marscescens Chitinase C on beta-chitin.
Collapse
MESH Headings
- Actinomycetales/enzymology
- Actinomycetales/genetics
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Cellobiose/metabolism
- Cellulases/chemistry
- Cellulases/genetics
- Cellulases/isolation & purification
- Cellulases/metabolism
- Cellulose/chemistry
- Chitin/chemistry
- Chitin/metabolism
- Chitinases/metabolism
- Cloning, Molecular
- Culture Media
- Disaccharides/metabolism
- Genes, Bacterial
- Glucans/metabolism
- Hydrogen-Ion Concentration
- Kinetics
- Medicago sativa/metabolism
- Molecular Sequence Data
- Panicum/metabolism
- Protein Binding
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Sequence Alignment
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
Collapse
Affiliation(s)
- Felix Moser
- Department of Molecular Biology and Genetics, Cornell University, 458 Biotechnology Building, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
12
|
Kim YJ, Kim DO, Chun OK, Shin DH, Jung H, Lee CY, Wilson DB. Phenolic extraction from apple peel by cellulases from Thermobifida fusca. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:9560-5. [PMID: 16302777 DOI: 10.1021/jf052052j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
With the optimization of the pretreatment conditions for the crude Thermobifida fusca cellulase activity and phenolic release from apple peel, we focused on the activity of individual purified cellulase related to the antioxidant activity. The overall phenolic release was significantly increased in a synergistic manner with combined pretreatment, not with individual pretreatment such as boiling, acid, and pectinase treatment. Approximately 60 mg of reducing sugar equivalent were produced per g of apple peel by treatment with T. fusca crude extract, and up to 3 times more reducing sugars were released when the apple peel was boiled and then treated with acid and pectinase. There was good correlation between the release of phenolics and reducing sugar by cellulase treatment and also between the amount of total phenolics and antioxidant capacity by each enzyme treatment (r2> 0.95). Among the tested enzymes purified from T. fusca cell extract, cellulase activity on apple peel was the highest with cellulase 6A (Cel 6A; 43% digestion), and the highest antioxidant capacity was obtained by incubation with Cel 6B (16 mg vitamin C equiv/g). Synergism in the activity was found from the combined treatment with Cel 6A and 6B in both cellulase activity and antioxidant capacity after 20 h of incubation. Cel 9A (progressive endocellulase) exhibited greater cellulase activity and antioxidant capacity than Cel 9A cd which lacks in cellulose-binding module, indicating that the cellulose-binding domain might play important roles in cellulolysis of apple peel. This study could provide some insights into the action mechanism of various cellulases on the digestion of cellulose-containing byproducts and expand the opportunity for cellulase utilization in the extraction of functional ingredients from the plant-derived byproducts.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Food and Biotechnology, Korea University, Jochiwon 339-700, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang YHP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 2005; 88:797-824. [PMID: 15538721 DOI: 10.1002/bit.20282] [Citation(s) in RCA: 883] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Information pertaining to enzymatic hydrolysis of cellulose by noncomplexed cellulase enzyme systems is reviewed with a particular emphasis on development of aggregated understanding incorporating substrate features in addition to concentration and multiple cellulase components. Topics considered include properties of cellulose, adsorption, cellulose hydrolysis, and quantitative models. A classification scheme is proposed for quantitative models for enzymatic hydrolysis of cellulose based on the number of solubilizing activities and substrate state variables included. We suggest that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis, and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject.
Collapse
|
14
|
Kiiskinen LL, Palonen H, Linder M, Viikari L, Kruus K. Laccase fromMelanocarpus albomycesbinds effectively to cellulose. FEBS Lett 2004; 576:251-5. [PMID: 15474046 DOI: 10.1016/j.febslet.2004.08.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 08/18/2004] [Accepted: 08/19/2004] [Indexed: 11/29/2022]
Abstract
A laccase from the thermophilic fungus Melanocarpus albomyces was shown to bind to softwood and pure microcrystalline cellulose. The binding isotherm fitted well the Langmuir type one-site binding model. The adsorption parameters indicated that M. albomyces laccase binds with high affinity to cellulose with a relatively low maximum binding capacity, as compared to the values for various cellulases. The binding was shown to be reversible and not influenced by non-specific protein or 0.1-0.5 M Na2SO4. No binding was detected with laccases from Trametes hirsuta or Mauginiella sp., which suggests that binding to cellulose is typical for only some laccases.
Collapse
|
15
|
Abstract
I have been studying the Thermobifida fusca cellulose degrading proteins for the past 25 years. In this period, we have purified and characterized the six extracellular cellulases and an intracellular beta- glucosidase used by T. fusca for cellulose degradation, cloned and sequenced the structural genes encoding these enzymes, and helped to determine the 3-dimensional structures of two of the cellulase catalytic domains. This research determined the mechanism of a novel class of cellulase, family 9 processive endoglucanases, and helped to show that there were two types of exocellulases, ones that attacked the non-reducing ends of cellulose and ones that attacked the reducing ends. It also led to the sequencing of the T. fusca genome by the DOE Joint Genome Institute. We have studied the mechanisms that regulate T. fusca cellulases and have shown that cellobiose is the inducer and that cellulase synthesis is repressed by any good carbon source. A regulatory protein (CelR) that functions in the induction control has been purified, characterized, and its structural gene cloned and expressed in E. coli. I have also carried out research on two rumen bacteria, Prevotella ruminicola and Fibrobacter succinogenes, in collaboration with Professor James Russell, helping to arrange for the genomes of these two organisms to be sequenced by TIGR, funded by a USDA grant to the North American Consortium for Genomics of Fibrolytic Ruminal Biology.
Collapse
Affiliation(s)
- David B Wilson
- Department of Molecular Biology & Genetics, Cornell University, 458 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Jung H, Wilson DB, Walker LP. Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose. Biotechnol Bioeng 2003; 84:151-9. [PMID: 12966571 DOI: 10.1002/bit.10743] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The binding and reversibility of Thermobifida fusca intact Cel5A, Cel5B, and Cel48A and their corresponding catalytic domains (CDs) to bacterial microcrystalline cellulose (BMCC) were studied at 5 degrees C. The binding of the intact cellulases and of corresponding CDs to BMCC was irreversible in all regions: Langmuir binding (region I), interstice penetration (region II), and interstice saturation (region III). The three cellulose binding domains (CBMs) bind reversibly in "region I" although their respective CDs do not. The irreversible binding of these enzymes in the Langmuir region does not satisfy the Langmuir assumption; however, the overall fit of the Interstice Saturation model, which includes binding in MBCC interstices as well as on the freely accessible surface (Jung et al., 2002a) is good. The main limitation of the model is that it does not explicitly address a mechanism for forming the enzyme-substrate complex within the active site of the CDs.
Collapse
Affiliation(s)
- Hyungil Jung
- Department of Biological and Environmental Engineering, 232 Riley-Robb Hall, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|