1
|
Kadooka C, Tanaka Y, Hira D, Maruyama JI, Goto M, Oka T. Identification of galactofuranose antigens such as galactomannoproteins and fungal-type galactomannan from the yellow koji fungus ( Aspergillus oryzae). Front Microbiol 2023; 14:1110996. [PMID: 36814571 PMCID: PMC9939772 DOI: 10.3389/fmicb.2023.1110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Filamentous fungi belonging to the genus Aspergillus are known to possess galactomannan in their cell walls. Galactomannan is highly antigenic to humans and has been reported to be involved in the pathogenicity of pathogenic filamentous fungi, such as A. fumigatus, and in immune responses. In this study, we aimed to confirm the presence of D-galactofuranose-containing glycans and to clarify the biosynthesis of D-galactofuranose-containing glycans in Aspergillus oryzae, a yellow koji fungus. We found that the galactofuranose antigen is also present in A. oryzae. Deletion of ugmA, which encodes UDP-galactopyranose mutase in A. oryzae, suppressed mycelial elongation, suggesting that D-galactofuranose-containing glycans play an important role in cell wall integrity in A. oryzae. Proton nuclear magnetic resonance spectrometry revealed that the galactofuranose-containing sugar chain was deficient and that core mannan backbone structures were present in ΔugmA A. oryzae, indicating the presence of fungal-type galactomannan in the cell wall fraction of A. oryzae. The findings of this study provide new insights into the cell wall structure of A. oryzae, which is essential for the production of fermented foods in Japan.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan,*Correspondence: Takuji Oka,
| |
Collapse
|
2
|
Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F. Chitin Biosynthesis in Aspergillus Species. J Fungi (Basel) 2023; 9:jof9010089. [PMID: 36675910 PMCID: PMC9865612 DOI: 10.3390/jof9010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.
Collapse
Affiliation(s)
- Veronica S. Brauer
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - André M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Marinaldo P. Cavalcanti-Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Rio de Janeiro 27965-045, Brazil
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
- Correspondence: (L.N.A.R.); (F.A.)
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
- Correspondence: (L.N.A.R.); (F.A.)
| |
Collapse
|
3
|
Lupish B, Hall J, Schwartz C, Ramesh A, Morrison C, Wheeldon I. Genome-wide CRISPR-Cas9 screen reveals a persistent null-hyphal phenotype that maintains high carotenoid production in Yarrowia lipolytica. Biotechnol Bioeng 2022; 119:3623-3631. [PMID: 36042688 PMCID: PMC9825908 DOI: 10.1002/bit.28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
Yarrowia lipolytica is a metabolic engineering host of growing industrial interest due to its ability to metabolize hydrocarbons, fatty acids, glycerol, and other renewable carbon sources. This dimorphic yeast undergoes a stress-induced transition to a multicellular hyphal state, which can negatively impact biosynthetic activity, reduce oxygen and nutrient mass transfer in cell cultures, and increase culture viscosity. Identifying mutations that prevent the formation of hyphae would help alleviate the bioprocess challenges that they create. To this end, we conducted a genome-wide CRISPR screen to identify genetic knockouts that prevent the transition to hyphal morphology. The screen identified five mutants with a null-hyphal phenotype-ΔRAS2, ΔRHO5, ΔSFL1, ΔSNF2, and ΔPAXIP1. Of these hits, only ΔRAS2 suppressed hyphal formation in an engineered lycopene production strain over a multiday culture. The RAS2 knockout was also the only genetic disruption characterized that did not affect lycopene production, producing more than 5 mg L-1 OD-1 from a heterologous pathway with enhanced carbon flux through the mevalonate pathway. These data suggest that a ΔRAS2 mutant of Y. lipolytica could prove useful in engineering a metabolic engineering host of the production of carotenoids and other biochemicals.
Collapse
Affiliation(s)
- Brian Lupish
- Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jordan Hall
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Cory Schwartz
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Present address:
iBio Inc.San DiegoCaliforniaUSA
| | - Adithya Ramesh
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Clifford Morrison
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Ian Wheeldon
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Center for Industrial BiotechnologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
4
|
Adsul MG, Dixit P, Saini JK, Gupta RP, Ramakumar SSV, Mathur AS. Morphologically favorable mutant of Trichoderma reesei for low viscosity cellulase production. Biotechnol Bioeng 2022; 119:2167-2181. [PMID: 35470437 DOI: 10.1002/bit.28121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/07/2022]
Abstract
Metabolite production by filamentous fungi hampered because of high viscosity generated during growth. Low viscosity fermentation by mold is one of the preferred ways of large scale enzymes production. Cellulolytic enzymes play a key role during the process of lignocellulosic biomass conversion. In this study a mutant RC-23-1 was isolated through mutagenesis (diethyl sulfate followed by UV) of T. reesei RUT-C30. RC-23-1 not only gave higher cellulase production but also generated lower viscosity during enzyme production. Viscosity of mutant growth was more than three times lower than parent strain. RC-23-1 shows unique, yeast like colony morphology on solid media and small pellet like growth in liquid media. This mutant did not spread like mold on solid media. This mutant produces cellulases constitutively when grown in sugars. Using only glucose, the cellulase production was 4.1 FPU/ml. Among polysaccharides (avicel, xylan and pectin), avicel gave maximum of 6.2 FPU/ml and pretreated biomass (rice straw, wheat straw and sugarcane bagasse) produced 5.1-5.8 FPU/ml. At 7L scale reactor, fed-batch process was designed for cellulase production using different carbon and nitrogen sources. Maximum yield of cellulases was 182 FPU/g of lactose consumed was observed in fed-batch process. The produced enzyme used for hydrolysis of acid pretreated rice straw (20% solid loading) and maximum of 60 % glucan conversion was observed. RC-23-1 mutant is good candidate for large scale cellulase production and could be a model strain to study mold to yeast-like transformation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mukund G Adsul
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Pooja Dixit
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Jitendra K Saini
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - S S V Ramakumar
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| |
Collapse
|
5
|
Liu M, Zhang J, Ye J, Qi Q, Hou J. Morphological and Metabolic Engineering of Yarrowia lipolytica to Increase β-Carotene Production. ACS Synth Biol 2021; 10:3551-3560. [PMID: 34762415 DOI: 10.1021/acssynbio.1c00480] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oleaginous yeast Yarrowia lipolytica represents an environmentally friendly platform cell factory for β-carotene production. However, Y. lipolytica is a dimorphic species that can undergo a yeast-to-mycelium transition when exposed to stress. The mycelial form is unfavorable for industrial fermentation. In this study, β-carotene-producing Y. lipolytica strains were constructed via the integration of multiple copies of 13 genes related to the β-carotene biosynthesis pathway. The β-carotene content increased by 11.7-fold compared with the start strain T1. As the β-carotene content increased, the oval-shaped yeast form was gradually replaced by hyphae, implying that the accumulation of β-carotene in Y. lipolytica induces a morphological transition. To relieve this metabolic stress, the strains were morphologically engineered by deleting CLA4 and MHY1 genes to convert the mycelium back to the yeast form, which further increased the β-carotene production by 139%. In fed-batch fermentation, the engineered strain produced 7.6 g/L and 159 mg/g DCW β-carotene, which is the highest titer and content reported to date. The morphological engineering strategy developed here may be useful for enhancing chemical synthesis in dimorphic yeasts.
Collapse
Affiliation(s)
- Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao 266237, P. R. China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao 266237, P. R. China
| | - Jingrun Ye
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao 266237, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao 266237, P. R. China
| |
Collapse
|
6
|
Bliatsiou C, Schrinner K, Waldherr P, Tesche S, Böhm L, Kraume M, Krull R. Rheological characteristics of filamentous cultivation broths and suitable model fluids. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Jeennor S, Anantayanon J, Panchanawaporn S, Chutrakul C, Laoteng K. Morphologically engineered strain of Aspergillus oryzae as a cell chassis for production development of functional lipids. Gene 2019; 718:144073. [DOI: 10.1016/j.gene.2019.144073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/08/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023]
|
8
|
Digital Image Analysis for Morphological State Characterization of a Culture of Filamentous Microorganisms in Production of Antibiotics. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2019. [DOI: 10.4028/www.scientific.net/jbbbe.43.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The paper deals with the application of specific methods of digital image analysis for the monitoring of morphological changes in cultures of filamentous microorganisms. First, a sequence of digital image preprocessing and processing steps is proposed for the treatment of microscopic images of a filamentous culture. The preprocessing step include band pass filtering by the Difference of Gaussians filter featuring a novel approach to the task of parameters tuning, as well as the optimization of image porosity and image objects separation quality. In the processing step, the resulting enhanced images are subject to morphological state characterization using a set of several standard and modified morphological parameters. Descriptions of morphological states of different complexity are then discussed varying from the standard set of mean values of parameters to the set of parameters in their full histogram of value frequencies (distribution) form. For such complex descriptions also new fashions of graphical representation of results without loss of information are compared. The potential of the proposed full description of morphological behavior of the culture is demonstrated using a set of microscopic images taken during an industrial antibiotics production cultivation using a microorganism belonging into the Streptomyces genus. Finally, the cluster analysis is proposed for further automatic quantitative classification and interpretation of complex description of metabolic states.
Collapse
|
9
|
Lin L, Sun Z, Li J, Chen Y, Liu Q, Sun W, Tian C. Disruption of gul-1 decreased the culture viscosity and improved protein secretion in the filamentous fungus Neurospora crassa. Microb Cell Fact 2018; 17:96. [PMID: 29908565 PMCID: PMC6004096 DOI: 10.1186/s12934-018-0944-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The cellulolytic fungus Neurospora crassa is considered a potential host for enzyme and bioethanol production. However, large scale applications are hindered by its filamentous growth. Although previous investigations have shown that mycelial morphology in submerged culture can be controlled by altering physical factors, there is little knowledge available about the potential for morphology control by genetic modification. RESULTS In this study, we screened morphological mutants in the filamentous fungus N. crassa. Of the 90 morphological mutants screened, 14 mutants exhibited considerably higher viscosity compared with that of the wild type strain, and only two mutants showed low-viscosity morphologies in submerged culture. We observed that disruption of gul-1 (NCU01197), which encodes an mRNA binding protein involved in cell wall remodeling, caused pellet formation as the fermentation progressed, and resulted in the most significant decrease in viscosity of culture broth. Moreover, over-expression of gul-1 caused dramatically increased viscosity, suggesting that the gul-1 had an important function in mycelial morphology during submerged cultivation. Transcriptional profiling showed that expression of genes encoding eight GPI-anchored cell wall proteins was lowered in Δgul-1 while expression of genes associated with two non-anchored cell wall proteins was elevated. Meanwhile, the expression levels of two hydrophobin genes were also significantly altered. These results suggested that GUL-1 affected the transcription of cell wall-related genes, thereby influencing cell wall structure and mycelial morphology. Additionally, the deletion of gul-1 caused increased protein secretion, probably due to a defect in cell wall integrity, suggesting this as an alternative strategy of strain improvement for enzyme production. To confirm practical applications, deletion of gul-1 in the hyper-cellulase producing strain (∆ncw-1∆Ncap3m) significantly reduced the viscosity of culture broth. CONCLUSIONS Using the model filamentous fungus N. crassa, genes that affect mycelial morphology in submerged culture were explored through systematic screening of morphological mutants. Disrupting several candidate genes altered viscosities in submerged culture. This work provides an example for controlling fungal morphology in submerged fermentation by genetic engineering, and will be beneficial for industrial fungal strain improvement.
Collapse
Affiliation(s)
- Liangcai Lin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Zhiyong Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yong Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
10
|
Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Bioprocess Biosyst Eng 2018; 41:1029-1038. [DOI: 10.1007/s00449-018-1932-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
11
|
Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C. Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 2012; 163:112-23. [PMID: 22771505 DOI: 10.1016/j.jbiotec.2012.06.024] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/02/2012] [Accepted: 06/25/2012] [Indexed: 11/25/2022]
Abstract
Filamentous fungi have been widely applied in industrial biotechnology for many decades. In submerged culture processes, they typically exhibit a complex morphological life cycle that is related to production performance--a link that is of high interest for process optimization. The fungal forms can vary from dense spherical pellets to viscous mycelia. The resulting morphology has been shown to be influenced strongly by process parameters, including power input through stirring and aeration, mass transfer characteristics, pH value, osmolality and the presence of solid micro-particles. The surface properties of fungal spores and hyphae also play a role. Due to their high industrial relevance, the past years have seen a substantial development of tools and techniques to characterize the growth of fungi and obtain quantitative estimates on their morphological properties. Based on the novel insights available from such studies, more recent studies have been aimed at the precise control of morphology, i.e., morphology engineering, to produce superior bio-processes with filamentous fungi.
Collapse
Affiliation(s)
- Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
BARRY D, WILLIAMS G. Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis. J Microsc 2011; 244:1-20. [DOI: 10.1111/j.1365-2818.2011.03506.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Demain AL. From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol 2006; 33:486-95. [PMID: 16402247 DOI: 10.1007/s10295-005-0076-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 12/24/2005] [Indexed: 10/25/2022]
Abstract
In order for a natural product to become a commercial reality, laboratory improvement of its production process is a necessity since titers produced by wild strains could never compete with the power of synthetic chemistry. Strain improvement by mutagenesis has been a major success. It has mainly been carried out by "brute force" screening or selection, but modern genetic technologies have entered the scene in recent years. For every new strain developed genetically, there is further opportunity to raise titers by medium modifications. Of major interest has been the nutritional control by induction, as well as inhibition and repression by sources of carbon, nitrogen, phosphate and end products. Both strain improvement and nutritional modification contribute to the new process, which is then scaled up by biochemical engineers into pilot scale and later into factory size fermentors.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti (R.I.S.E), Drew University, Madison, NJ 07940, USA.
| |
Collapse
|
14
|
Mizutani O, Nojima A, Yamamoto M, Furukawa K, Fujioka T, Yamagata Y, Abe K, Nakajima T. Disordered cell integrity signaling caused by disruption of the kexB gene in Aspergillus oryzae. EUKARYOTIC CELL 2005; 3:1036-48. [PMID: 15302836 PMCID: PMC500871 DOI: 10.1128/ec.3.4.1036-1048.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We isolated the kexB gene, which encodes a subtilisin-like processing enzyme, from a filamentous fungus, Aspergillus oryzae. To examine the physiological role of kexB in A. oryzae, we constructed a kexB disruptant (DeltakexB), which formed shrunken colonies with poor generation of conidia on Czapek-Dox (CD) agar plates and hyperbranched mycelia in CD liquid medium. The phenotypes of the DeltakexB strain were restored under high osmolarity in both solid and liquid culture conditions. We found that transcription of the mpkA gene, which encodes a putative mitogen-activated protein kinase involved in cell integrity signaling, was significantly higher in DeltakexB cells than in wild-type cells. The DeltakexB cells also contained higher levels of transcripts for cell wall-related genes encoding beta-1,3-glucanosyltransferase and chitin synthases, which is presumably attributable to cell integrity signaling through the increased gene expression of mpkA. As expected, constitutively increased levels of phosphorylated MpkA were observed in DeltakexB cells on the CD plate culture. High osmotic stress greatly downregulated the increased levels of both transcripts of mpkA and the phosphorylated form of MpkA in DeltakexB cells, concomitantly suppressing the morphological defects. These results suggest that the upregulation of transcription levels of mpkA and cell wall biogenesis genes in the DeltakexB strain is autoregulated by phosphorylated MpkA as the active form through cell integrity signaling. We think that KexB is required for precise proteolytic processing of sensor proteins in the cell integrity pathway or of cell wall-related enzymes under transcriptional control by the pathway and that the KexB defect thus induces disordered cell integrity signaling.
Collapse
Affiliation(s)
- Osamu Mizutani
- Laboratory of Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya, Tsutsumi-dori, Aobaku, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Impeller types and feeding modes influence the morphology and protein expression in the submerged culture ofAspergillus oryzae. BIOTECHNOL BIOPROC E 2004. [DOI: 10.1007/bf02942290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|