1
|
Tetrachloromethane-Degrading Bacterial Enrichment Cultures and Isolates from a Contaminated Aquifer. Microorganisms 2015; 3:327-43. [PMID: 27682092 PMCID: PMC5023247 DOI: 10.3390/microorganisms3030327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/09/2015] [Accepted: 06/18/2015] [Indexed: 01/05/2023] Open
Abstract
Abstract: The prokaryotic community of a groundwater aquifer exposed to high concentrations of tetrachloromethane (CCl4) for more than three decades was followed by terminal restriction fragment length polymorphism (T-RFLP) during pump-and-treat remediation at the contamination source. Bacterial enrichments and isolates were obtained under selective anoxic conditions, and degraded 10 mg·L−1 CCl4, with less than 10% transient formation of chloroform. Dichloromethane and chloromethane were not detected. Several tetrachloromethane-degrading strains were isolated from these enrichments, including bacteria from the Klebsiella and Clostridium genera closely related to previously described CCl4 degrading bacteria, and strain TM1, assigned to the genus Pelosinus, for which this property was not yet described. Pelosinus sp. TM1, an oxygen-tolerant, Gram-positive bacterium with strictly anaerobic metabolism, excreted a thermostable metabolite into the culture medium that allowed extracellular CCl4 transformation. As estimated by T-RFLP, phylotypes of CCl4-degrading enrichment cultures represented less than 7%, and archaeal and Pelosinus strains less than 0.5% of the total prokaryotic groundwater community.
Collapse
|
2
|
Lee M, Wells E, Wong YK, Koenig J, Adrian L, Richnow HH, Manefield M. Relative contributions of Dehalobacter and zerovalent iron in the degradation of chlorinated methanes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4481-4489. [PMID: 25764054 DOI: 10.1021/es5052364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The role of bacteria and zerovalent iron (Fe(0)) in the degradation of chlorinated solvents in subsurface environments is of interest to researchers and remediation practitioners alike. Fe(0) used in reactive iron barriers for groundwater remediation positively interacted with enrichment cultures containing Dehalobacter strains in the transformation of halogenated methanes. Chloroform transformation and dichloromethane formation was up to 8-fold faster and 14 times higher, respectively, when a Dehalobacter-containing enrichment culture was combined with Fe(0) compared with Fe(0) alone. The dichloromethane-fermenting culture transformed dichloromethane up to three times faster with Fe(0) compared to without. Compound-specific isotope analysis was employed to compare abiotic and biotic chloroform and dichloromethane degradation. The isotope enrichment factor for the abiotic chloroform/Fe(0) reaction was large at -29.4 ± 2.1‰, while that for chloroform respiration by Dehalobacter was minimal at -4.3 ± 0.45‰. The combined abiotic/biotic dechlorination was -8.3 ± 0.7‰, confirming the predominance of biotic dechlorination. The enrichment factor for dichloromethane fermentation was -15.5 ± 1.5‰; however, in the presence of Fe(0) the factor increased to -23.5 ± 2.1‰, suggesting multiple mechanisms were contributing to dichloromethane degradation. Together the results show that chlorinated methane-metabolizing organisms introduced into reactive iron barriers can have a significant impact on trichloromethane and dichloromethane degradation and that compound-specific isotope analysis can be employed to distinguish between the biotic and abiotic reactions involved.
Collapse
Affiliation(s)
- Matthew Lee
- †School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Sydney 2052, Australia
| | - Eliza Wells
- †School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Sydney 2052, Australia
| | - Yie Kuan Wong
- †School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Sydney 2052, Australia
| | - Joanna Koenig
- †School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Sydney 2052, Australia
| | - Lorenz Adrian
- ‡Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoser Strasse 15, Leipzig 04318, Germany
| | - Hans H Richnow
- ‡Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoser Strasse 15, Leipzig 04318, Germany
| | - Mike Manefield
- †School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Sydney 2052, Australia
| |
Collapse
|
3
|
Justicia-Leon SD, Higgins S, Mack EE, Griffiths DR, Tang S, Edwards EA, Löffler FE. Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1851-1858. [PMID: 24392834 DOI: 10.1021/es403582f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chloroform (CF) is a widespread groundwater contaminant not susceptible to aerobic degradation. Under anoxic conditions, CF can undergo abiotic and cometabolic transformation but detoxification is generally not achieved. The recent discovery of distinct Dehalobacter strains that respire CF to dichloromethane (DCM) and ferment DCM to nonchlorinated products promises that bioremediation of CF plumes is feasible. To track both strains, 16S rRNA gene-based qPCR assays specific for either Dehalobacter strain were designed and validated. A laboratory treatability study explored the value of bioaugmentation and biostimulation to achieve CF detoxification using anoxic microcosms established with aquifer material from a CF-contaminated site. Microcosms that received 6% (v/v) of the CF-to-DCM-dechlorinating culture Dhb-CF to achieve an initial Dehalobacter cell titer of 1.6 ± 0.9 × 10(4) mL(-1) dechlorinated CF to stoichiometric amounts of DCM. Subsequent augmentation with 3% (v/v) of the DCM-degrading consortium RM to an initial Dehalobacter cell abundance of 1.2 ± 0.2 × 10(2) mL(-1) achieved complete DCM degradation in microcosms amended with 10 mM bicarbonate. Growth of the CF-respiring and the DCM-degrading Dehalobacter populations and detoxification were also observed in microcosms that received both inocula simultaneously. These findings suggest that anaerobic bioremediation (e.g., bioaugmentation) is a possible remedy at CF- and DCM-contaminated sites without CT, which strongly inhibited CF organohalide respiration and DCM organohalide fermentation.
Collapse
|
4
|
Microbial degradation of chloroform. Appl Microbiol Biotechnol 2012; 96:1395-409. [PMID: 23093177 DOI: 10.1007/s00253-012-4494-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Chloroform (CF) is largely produced by both anthropogenic and natural sources. It is detected in ground and surface water sources and it represents the most abundant halocarbon in the atmosphere. Microbial CF degradation occurs under both aerobic and anaerobic conditions. Apart from a few reports describing the utilization of CF as a terminal electron acceptor during growth, CF degradation was mainly reported as a cometabolic process. CF aerobic cometabolism is supported by growth on short-chain alkanes (i.e., methane, propane, butane, and hexane), aromatic hydrocarbons (i.e., toluene and phenol), and ammonia via the activity of monooxygenases (MOs) operatively divided into different families. The main factors affecting CF cometabolism are (1) the inhibition of CF degradation exerted by the growth substrate, (2) the need for reductant supply to maintain MO activity, and (3) the toxicity of CF degradation products. Under anaerobic conditions, CF degradation was mainly associated to the activity of methanogens, although some examples of CF-degrading sulfate-reducing, fermenting, and acetogenic bacteria are reported in the literature. Higher CF toxicity levels and lower degradation rates were shown by anaerobic systems in comparison to the aerobic ones. Applied physiological and genetic aspects of microbial cometabolism of CF will be presented along with bioremediation perspectives.
Collapse
|
5
|
Strathmann TJ. Redox Reactivity of Organically Complexed Iron(II) Species with Aquatic Contaminants. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1071.ch014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Timothy J. Strathmann
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
6
|
Penny C, Vuilleumier S, Bringel F. Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation. FEMS Microbiol Ecol 2010; 74:257-75. [DOI: 10.1111/j.1574-6941.2010.00935.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Grostern A, Duhamel M, Dworatzek S, Edwards EA. Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 2010; 12:1053-60. [PMID: 20089043 DOI: 10.1111/j.1462-2920.2009.02150.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloroform (CF), or trichloromethane, is an ubiquitous environmental pollutant because of its widespread industrial use, historically poor disposal and recalcitrance to biodegradation. Chloroform is a potent inhibitor of metabolism and no known organism uses it as a growth substrate. We discovered that CF was rapidly and sustainably dechlorinated in the course of investigating anaerobic reductive dechlorination of 1,1,1-trichloroethane in a Dehalobacter-containing culture. Like 1,1,1-trichloroethane dechlorination in this culture, CF dechlorination was a growth-linked respiratory process, requiring H(2) as an electron donor and CF as an electron acceptor. Moreover, the same specific reductive dehalogenase likely catalyzed both reactions. This Dehalobacter population appears specialized for substrates with three halogen substituents on the same carbon atom, with widespread implications for bioremediation.
Collapse
Affiliation(s)
- Ariel Grostern
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada, M5S 3E5
| | | | | | | |
Collapse
|
8
|
Watanabe K, Manefield M, Lee M, Kouzuma A. Electron shuttles in biotechnology. Curr Opin Biotechnol 2009; 20:633-41. [DOI: 10.1016/j.copbio.2009.09.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/10/2009] [Accepted: 09/12/2009] [Indexed: 10/20/2022]
|
9
|
Van der Zee FP, Cervantes FJ. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 2009; 27:256-77. [PMID: 19500549 DOI: 10.1016/j.biotechadv.2009.01.004] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/06/2009] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
Abstract
During the last two decades, extensive research has explored the catalytic effects of different organic molecules with redox mediating properties on the anaerobic (bio)transformation of a wide variety of organic and inorganic compounds. The accumulated evidence points at a major role of electron shuttles in the redox conversion of several distinct contaminants, both by chemical and biological mechanisms. Many microorganisms are capable of reducing redox mediators linked to the anaerobic oxidation of organic and inorganic substrates. Electron shuttles can also be chemically reduced by electron donors commonly found in anaerobic environments (e.g. sulfide and ferrous iron). Reduced electron shuttles can transfer electrons to several distinct electron-withdrawing compounds, such as azo dyes, polyhalogenated compounds, nitroaromatics and oxidized metalloids, among others. Moreover, reduced molecules with redox properties can support the microbial reduction of electron acceptors, such as nitrate, arsenate and perchlorate. The aim of this review paper is to summarize the results of reductive (bio)transformation processes catalyzed by electron shuttles and to indicate which aspects should be further investigated to enhance the applicability of redox mediators on the (bio)transformation of contaminants.
Collapse
Affiliation(s)
- Frank P Van der Zee
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | |
Collapse
|
10
|
Fu QS, Boonchayaanant B, Tang W, Trost BM, Criddle CS. Simple menaquinones reduce carbon tetrachloride and iron (III). Biodegradation 2008; 20:109-16. [DOI: 10.1007/s10532-008-9204-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
|
11
|
Guerrero-Barajas C, Field JA. Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins. Biodegradation 2005; 16:215-28. [PMID: 15865146 DOI: 10.1007/s10532-004-0638-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Carbon tetrachloride (CT) is an important groundwater pollutant which is only subject to biotransformation in the absence of oxygen. The anaerobic biotransformation of CT is influenced by electron shuttling compounds. The purpose of this study was to evaluate the impact of redox active vitamins on CT (100 microM) metabolism in a methanogenic sludge consortium (0.5 g VSS l(-1)) supplied with volatile fatty acids as electron donor (0.2 g COD l(-1)). The redox active vitamins, tested at concentrations ranging from 0.5 to 20 microM, were riboflavin (RF) and two forms of vitamin B12, cyanocobalamin (CNB12) and hydroxycobalamin (HOB12), and these were compared with a redox mediating quinone, anthraquinone-2,6-disulfonate (AQDS). Substoichiometric concentrations of RF, CNB12, HOB12 at molar ratios of vitamin: CT as low as 0.005 significantly increased rates of CT-bioconversion. These are the lowest molar ratios of vitamin B12 reported having an impact on dechlorination. Additionally, this study constitutes the first report of RF having a role in reductive dechlorination. At molar ratios of 0.1 vitamin: CT, RF, CNB12, HOB12 increased the first order rate constant of CT bioconversion by 4.0-, 13.3-and 13.6-fold, respectively. The redox active vitamins also enhanced the rates of abiotic CT conversion in heat killed sludge treatments, but the rates were approximately 4- to 5-fold lower than the corresponding vitamin enhanced rates of biological CT conversion. The addition of CNB12 or HOB12 to the live methanogenic sludge consortium increased the yield of inorganic chloride (Cl-) from CT-converted. Chloroform was a transient intermediate in CNB12 or HOB12 supplemented cultures. In contrast, the addition of RF increased the yield of chloroform from CT-converted. Taken as a whole the results clearly demonstrate that very low concentrations of redox active vitamins could potentially play an important role in accelerating the anaerobic the bioremediation of CT as well as influencing the proportions of biotransformation products formed.
Collapse
Affiliation(s)
- Claudia Guerrero-Barajas
- Department of Chemical and Environmental Engineering, University of Arizona, PO Box 210011, Tucson, AZ 85721-0011, USA
| | | |
Collapse
|
12
|
Guerrero-Barajas C, Field JA. Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnol Bioeng 2005; 89:539-50. [PMID: 15669086 DOI: 10.1002/bit.20379] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chloroform (CF) is an important priority pollutant contaminating groundwater. Reductive dechlorination by anaerobic microorganisms is a promising strategy towards the remediation of CF. The objective of this study was to evaluate the use of redox active vitamins as electron shuttles to enhance the anaerobic biodegradation of CF in an unadapted methanogenic consortium not previously exposed to chlorinated compounds. Only negligible degradation of CF was observed in control cultures lacking redox active vitamins. The addition of riboflavin (RF), cyanocobalamin (CNB12), and hydroxycobalamin (HOB12) enabled biodegradation of CF. The reactions were predominantly catalyzed biologically as evidenced by the lack of any CF conversion in heat-killed controls amended with the cobalamins or minor conversion with RF. In live cultures, significant increases in the rate of CF conversion was observed at substoichiometric molar ratios as low as 0.1 to 0.01 vitamin:CF for RF and CNB12, respectively. At the highest molar vitamin:CF ratios tested of 0.2, the first-order rate constant of CF degradation was 5.3- and 91-fold higher in RF and CNB12 amended cultures, respectively, compared to the unamended control culture. The distribution of biotransformation products was highly impacted by the type of redox active vitamin utilized. Cultures supplemented with RF provided high yields of dichloromethane (DCM). On the other hand, cobalamins promoted the near complete mineralization of organochlorine in CF to inorganic chloride and lowered the yield of DCM. In cultures where no or little CF bioconversion occurred, prolonged exposure to CF resulted in cell lysis, as evidenced by the release of intracellular chloride. The results taken as a whole suggest that the anaerobic bioremediation of CF-contaminated sites can greatly be improved with strategies aimed at increasing the concentration of redox active vitamins.
Collapse
Affiliation(s)
- Claudia Guerrero-Barajas
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, Arizona 85721-0011,USA
| | | |
Collapse
|
13
|
Baeseman JL, Novak PJ. Effects of various environmental conditions on the transformation of chlorinated solvents by Methanosarcina thermophila cell exudates. Biotechnol Bioeng 2001; 75:634-41. [PMID: 11745141 DOI: 10.1002/bit.10029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several microbiologically produced biomolecules have been shown to degrade chlorinated contaminants found in groundwater systems. It was discovered that the cell-free exudates of the methanogen Methanosarcina thermophila were capable of carbon tetrachloride (CT) and chloroform (CF) degradation. Characterization of the exudates suggested that the active agents were porphorinogen-type molecules, possibly containing zinc. This research was performed to determine if the exudates from M. thermophila could be used for remediation purposes. The cell exudates were found to be capable of degrading CT, CF, tetrachloroethene, trichloroethene, and 1,1,1-trichloroethane. CT degradation was used to gauge exudate activity under a variety of conditions that would be encountered in the environment. The cell exudates were active when incubated in two types of soil matrices and at temperatures ranging from 4 to 23 degrees C. Over a 35-day period approximately 10.2 micromoles of CT were degraded by M. thermophila exudates. To test the hypothesis that the exudates contained either a zinc porphorinogen or a quinone, experiments were performed with zinc 5,10,15,20-tetra (4-pyridyl)-21 H, 23 H-porphine tetrakis, protoporphyrin IX zinc, and juglone. The two zinc porphyrins were capable of mediating CT degradation at rates comparable to those observed with the M. thermophila exudates; however, juglone was only capable of very slow CT transformation. The electron-transfer activity of the M. thermophila cell exudates was therefore more consistent with the activity of porphorinogens rather than quinones. Finally, in two enrichment cultures established from aquifer material and marine sediment, the possibility of excreted agents capable of degrading CT was evident.
Collapse
Affiliation(s)
- J L Baeseman
- Department of Civil Engineering, University of Minnesota, 122 Civil Engineering Building, 500 Pillsbury Drive S.E., Minneapolis, MN 55455-0220, USA
| | | |
Collapse
|