1
|
Wang M, Xu Z, Dong B, Zeng Y, Chen S, Zhang Y, Huang Y, Pei X. An efficient manganese-oxidizing fungus Cladosporium halotolerans strain XM01: Mn(II) oxidization and Cd adsorption behavior. CHEMOSPHERE 2022; 287:132026. [PMID: 34461328 DOI: 10.1016/j.chemosphere.2021.132026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The applications of biogenic Mn oxides (BMOs) formed by Mn-oxidizing fungus in decontaminating heavy metals have attracted increasing attention. In this study, an efficient Mn-oxidizing fungus was isolated from soil and identified as Cladosporium halotolerans strain XM01. The Mn(II) adsorption and oxidation activities of this strain were investigated, showing significantly high removal and oxidation rates of soluble Mn(II) of 99.9% and 88.2%, respectively. Dynamic analysis of the Mn(II) removal process demonstrated the oxidation process of Mn(II) to Mn(III) was the rate-limiting step in the Mn(II) metabolic process. The XRD and SAED characterization showed that more layers were orderly accumulated along the c-axis with the formation of fungal BMOs, which might lead to the decrease in its specific surface area. The adsorption of Cd(II) by the formed BMOs was investigated and compared with two typical abiotic Mn oxides, indicating that the adsorption capacity decreased with the following order: immature BMO, mature BMO, δ-MnO2, acid birnessite, while the fixation capacity decreased in the order of acid birnessite, mature BMO, δ-MnO2, immature BMO. The inverse correlation between the capacity of Cd(II) adsorption and fixation of immature and mature BMOs was probably attributed to the increase in the layer stacking of BMOs. This result indicates an interesting phenomenon of high reservation of Cd(II) resulting from sequential transformation from strong adsorption to strong fixation with the formation of BMOs. This study offers considerable insights into fungal Mn oxidation mechanisms and provides theoretical guidance for fungal BMOs in heavy metals bioremediation.
Collapse
Affiliation(s)
- Mei Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Bin Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yifan Zeng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Sisi Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yangrui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiangjun Pei
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| |
Collapse
|
2
|
Yu W, Campos L, Shi T, Li G, Graham N. Enhanced removal of manganese in organic-rich surface water by combined sodium hypochlorite and potassium permanganate during drinking water treatment. RSC Adv 2015. [DOI: 10.1039/c5ra01643f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Combination of KMnO4and NaClO is beneficial and synergistic for removing Mn2+in water with high concentration of organic matter.
Collapse
Affiliation(s)
- Wenzheng Yu
- Department of Civil and Environmental Engineering
- Imperial College London
- South Kensington Campus
- London SW7 2AZ
- UK
| | - Luiza Campos
- Department of Civil
- Environmental and Geomatic Engineering
- University College London
- London WC1E 6BT
- UK
| | - Tong Shi
- Department of Civil and Environmental Engineering
- Zhejiang Gongshang University
- Hangzhou
- China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Municipal & Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Nigel Graham
- Department of Civil and Environmental Engineering
- Imperial College London
- South Kensington Campus
- London SW7 2AZ
- UK
| |
Collapse
|
3
|
Hedrich S, Johnson DB. Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12206-12212. [PMID: 25251612 DOI: 10.1021/es5030367] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mine waters are widely regarded as environmental pollutants, but are also potential sources of valuable metals. Water draining the Maurliden mine (Sweden) is highly acidic (pH 2.3) and rich in zinc (∼ 460 mg L(-1)) and iron (∼ 400 mg L(-1)), and contains smaller concentrations (0.3-49 mg L(-1)) of other transition metals and arsenic. We have developed novel techniques that promote the concurrent amelioration of acidic waste waters and selective recovery of metals, and have used these systems to treat synthetic Maurliden mine water in the laboratory. The two major metals present were removed via controlled biomineralization: zinc as ZnS in a sulfidogenic bioreactor, and iron as schwertmannite by microbial iron oxidation and precipitation of ferric iron. A small proportion (∼ 11%) of the schwertmannite produced was used to remove arsenic as the initial step in the process, and other chalcophilic metals (copper, cadmium and cobalt) were removed (as sulfides) in the stage 1 metal sulfide precipitation reactor. Results from this work have demonstrated that modular biomineralization units can be effective at processing complex mine waters and generating metal products that may be recycled. The economic and environmental benefits of using an integrated biological approach for treating metal-rich mine waters is discussed.
Collapse
Affiliation(s)
- Sabrina Hedrich
- School of Biological Sciences, College of Natural Sciences, Bangor University , Deiniol Road, Bangor LL57 2UW, United Kingdom
| | | |
Collapse
|
4
|
Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters. MINERALS 2014. [DOI: 10.3390/min4020279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Hedrich S, Johnson DB. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters. BIORESOURCE TECHNOLOGY 2012; 106:44-9. [PMID: 22197072 DOI: 10.1016/j.biortech.2011.11.130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 05/21/2023]
Abstract
A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to <1mg/L. The system was highly effective in selectively removing iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals.
Collapse
Affiliation(s)
- Sabrina Hedrich
- School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | | |
Collapse
|
6
|
Wang W, Shao Z, Liu Y, Wang G. Removal of multi-heavy metals using biogenic manganese oxides generated by a deep-sea sedimentary bacterium – Brachybacterium sp. strain Mn32. Microbiology (Reading) 2009; 155:1989-1996. [DOI: 10.1099/mic.0.024141-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A deep-sea manganese-oxidizing bacterium,Brachybacteriumsp. strain Mn32, showed high Mn(II) resistance (MIC 55 mM) and Mn(II)-oxidizing/removing abilities. Strain Mn32 removed Mn(II) by two pathways: (1) oxidizing soluble Mn(II) to insoluble biogenic Mn oxides – birnessite (δ-MnO2group) and manganite (γ-MnOOH); (2) the biogenic Mn oxides further adsorb more Mn(II) from the culture. The generated biogenic Mn oxides surround the cell surfaces of strain Mn32 and provide a high capacity to adsorb Zn(II) and Ni(II). Mn(II) oxidation by strain Mn32 was inhibited by both sodium azide ando-phenanthroline, suggesting the involvement of a metalloenzyme which was induced by Mn(II). X-ray diffraction analysis showed that the crystal structures of the biogenic Mn oxides were different from those of commercial pyrolusite (β-MnO2group) and fresh chemically synthesized vernadite (δ-MnO2group). The biogenic Mn oxides generated by strain Mn32 showed two to three times higher Zn(II) and Ni(II) adsorption abilities than commercial and fresh synthetic MnO2. The crystal structure and the biogenic MnO2types may be important factors for the high heavy metal adsorption ability of strain Mn32. This study provides potential applications of a new marine Mn(II)-oxidizing bacterium in heavy metal bioremediation and increases our basic knowledge of microbial manganese oxidation mechanisms.
Collapse
Affiliation(s)
- Wenming Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zongze Shao
- The Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Yanjun Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
7
|
Tani Y, Ohashi M, Miyata N, Seyama H, Iwahori K, Soma M. Sorption of Co(II), Ni(II), and Zn(II) on biogenic manganese oxides produced by a Mn-oxidizing fungus, strain KR21-2. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2004; 39:2641-2660. [PMID: 15509014 DOI: 10.1081/ese-200027021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The characteristics of Co(II), Ni(II), and Zn(II) sorption on freshly produced biogenic Mn oxides by a Mn-oxidizing fungus, strain KR21-2, were investigated. The biogenic Mn oxides showed about 10-fold higher efficiencies for sorbing the metal ions than a synthetic Mn oxide (gamma-MnO2) on the basis of unit weight and unit surface area. The order of sorption efficiency on the biogenic Mn oxides was Co(II) > Zn(II) > Ni(II), while that on the synthetic Mn oxide was Zn(II) > Co(II) > Ni(II). These sorption selectivities were confirmed by both sorption isotherms and competitive sorption experiments. Two-step extraction, using 10mM CuSO4 solution for exchangeable sorbed ions and 10-20mM hydroxylamine hydrochloride for ions bound to reducible Mn oxide phase, showed higher irreversibility of Co(II) and Ni(II) sorption on the biogenic Mn oxides while Zn(II) sorption was mostly reversible (Cu(II)-exchangeable). Sorptions of Co(II), Ni(II), and Zn(II) on the synthetic Mn oxide were, however, found to be mostly reversible. Higher irreversibility of Co(II) and Ni(II) sorption on the biogenic Mn oxides may partly explain higher accumulation of these metal ions in Mn oxide phases in natural environments. The results obtained in this study raise the possibility to applying the biogenic Mn oxide formation to treatment of water contaminated with toxic metal ions.
Collapse
Affiliation(s)
- Yukinori Tani
- Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|