1
|
Botvynko A, Synytsya A, Čurda L. Synthesis of galactooligosaccharides with four β-galactosidases: Structural comparison of the products by HPLC, ESI-MS and NMR. Biochem Biophys Res Commun 2025; 744:151204. [PMID: 39719767 DOI: 10.1016/j.bbrc.2024.151204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Galactooligosaccharides (GOS) are lactose-derived functional ingredients applied in food products and have great potential in health protection. The conversion of lactose to GOS commonly occurs using β-galactosidases of mould, yeast and bacterial origin. The yield and structure of the resulting GOS depend on the enzyme used and the reaction conditions. This work focuses on the structural analysis of the products obtained with four commercial β-galactosidases Maxilact LGI 5000 (ML), Maxilact A4 MG (MA), Saphera 2600 L (SA) and NOLA Fit 5500 (NL) to evaluate their efficiency and specificity. HPLC, ESI-MS and NMR spectroscopy were applied to characterise the GOS preparations. GOS were separated from the reaction mixture using activated charcoal treatment. HPLC analysis confirmed that most of the monosaccharides and a part of the lactose, but also some other disaccharides, probably allolactose and 6-galactobiose, were retained by charcoal. In all the products, ESI-MS analysis detects oligosaccharides up to hexamers. NMR spectra confirmed the presence of GOS of various configurations and polymerisation degrees and evaluated the specificity of used enzymes. MA preferably forms 1,6- and 1,4-glycosidic bonds, and bacterial enzymes NL and SA also form 1,2- and 1,3- glycosidic bonds, while yeast enzyme ML cannot produce new 1,4-glycosidic bonds. The mould enzyme MA showed the highest trans-galactosylation activity, forming longer GOS oligomers than the other enzymes.
Collapse
Affiliation(s)
- Alina Botvynko
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague, Czech Republic.
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Ladislav Čurda
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
2
|
Belkova M, Janegova T, Hrabarova E, Nahalka J. Physiologically Aggregated LacZ Applied in Trehalose Galactosylation in a Recycled Batch Mode. Life (Basel) 2023; 13:1619. [PMID: 37629477 PMCID: PMC10455999 DOI: 10.3390/life13081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Galactooligosaccharides obtained via β-galactosidase transgalactosylation have health-promoting properties and are widely recognized as effective prebiotics. Trehalose-based galactooligosaccharides could be introduced into food and pharmaceutical industries similarly to trehalose. In light of this, new technological approaches are needed. Recently, in vivo enzyme immobilizations for recombinant proteins have been introduced, and physiological aggregation into active inclusion bodies (aIBs) has emerged as one such method of in vivo immobilization. To prepare LacZ β-galactosidase in the form of aIBs, we used a short 10 amino acid aggregation-prone tag. These native protein particles were simply washed from the cell lysate and applied in trehalose galactosylation in a recycled batch mode. In this study, aIBs entrapped in alginate beads, encapsulated in alginate/cellulose sulfate/poly(methylene-co-guanidine) capsules and magnetized were compared with free aIBs. Alginate/cellulose sulfate/PMCG capsules showed more suitable properties and applicability for biotransformation of trehalose at its high concentration (25%, w/v) and elevated temperature (50 °C).
Collapse
Affiliation(s)
- Martina Belkova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia; (M.B.)
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| | - Tatiana Janegova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia; (M.B.)
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| | - Eva Hrabarova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia; (M.B.)
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| | - Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia; (M.B.)
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
3
|
Cyclic Production of Galacto-Oligosaccharides through Ultrafiltration-Assisted Enzyme Recovery. Processes (Basel) 2023. [DOI: 10.3390/pr11010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Galacto-oligosaccharides (GOS) are prebiotics manufactured enzymatically from lactose as substrate. The growing GOS market facilitates the valorization of dairy by-products which represent cheap and abundant sources of lactose. Large-scale GOS production typically employs soluble enzymes in batch reactors that are commonly associated with low enzyme usability and, therefore, high operational expenditures. In this study, we investigate the possibility of recovering enzymes by ultrafiltration (UF) and reusing them in repeated reaction steps. The proposed process scheme included 24 h batch reaction steps with Biolacta N5, a commercial enzyme preparation of Bacillus circulans origin. The reaction steps were followed by UF steps to separate the carbohydrate products from the enzymes by applying a volume concentration factor of 8.6. Then, the collected biocatalysts were reused for repeated cycles by adding fresh lactose. Enzyme losses were quantified with a direct method by analyzing the underlying relationship between reaction rates and enzyme dosage obtained from additional experiments conducted with known enzyme loads. Within five cycles, the enzyme activity declined gradually from 923 to 8307 U·kg−1, and the half-life was estimated as ca. 15.3 h. The outcomes of this study may serve as a basis for further optimization of the reported process scheme with enhanced enzyme usability.
Collapse
|
4
|
Pravilović R, Todić B, Simović M, Banjanac K, Bezbradica D, Nikacevic N. Kinetic Model for Galacto-Oligosaccharide Synthesis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Radoslava Pravilović
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Branislav Todić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Milica Simović
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Katarina Banjanac
- University of Belgrade, Innovation Centre Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Dejan Bezbradica
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Nikola Nikacevic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Iqbal MW, Riaz T, Mahmood S, Liaqat H, Mushtaq A, Khan S, Amin S, Qi X. Recent Advances in the Production, Analysis, and Application of Galacto-Oligosaccharides. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Sonia Khan
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Punjab, Pakistan
| | - Sabahat Amin
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Liao X, Li Y, Li Y, Xiong W, Pi X. Optimization of the production conditions of tri-GOS and lactosucrose from lactose and sucrose with recombinant β-galactosidase. Prep Biochem Biotechnol 2022; 53:401-411. [PMID: 35792938 DOI: 10.1080/10826068.2022.2095575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Few studies expressed the β-galactosidase encoding gene from L. plantarum in E. coli so far. In the present study, the recombinant β-galactosidase from L. plantarum FMNP01 was used as a catalyst in transgalactosylation to form tri-GOS and lactosucrose. In the presence of lactose and sucrose, six transfer products were formed in the transgalactosylation reaction with recombinant β-galactosidase L.pFMNP01Gal as a catalyst. Three transfer products were tri-galacto-oligosaccharides (tri-GOS), lactosucrose, and lactulose; the other three transfer products needed to be identified further. Based on a single factor test and response surface methodological approach, the optimal transgalactosylation conditions of the production of tri-GOS and lactosucrose were determined as initial sugar concentration of 50%, lactose: sucrose ratio of 1:2, enzyme concentration of 3 U/mL, and reaction time of 6 h at 50 °C resulting in a maximum tri-GOS concentration of 47.69 ± 1.36 g/L and a maximum lactosucrose concentration of 8.18 ± 0.97 g/L.
Collapse
Affiliation(s)
- Xueyi Liao
- School of Lingnan Chinese Medicine and Pharmacy, Guangdong Jiangmen Chinese Medicine College, Jiangmen, China
| | - Yongjun Li
- School of Lingnan Chinese Medicine and Pharmacy, Guangdong Jiangmen Chinese Medicine College, Jiangmen, China
| | - Yeqing Li
- School of Lingnan Chinese Medicine and Pharmacy, Guangdong Jiangmen Chinese Medicine College, Jiangmen, China
| | - Wenming Xiong
- School of Lingnan Chinese Medicine and Pharmacy, Guangdong Jiangmen Chinese Medicine College, Jiangmen, China
| | - Xiaodi Pi
- School of Lingnan Chinese Medicine and Pharmacy, Guangdong Jiangmen Chinese Medicine College, Jiangmen, China
| |
Collapse
|
7
|
Kadziński L, Łyżeń R, Bury K, Banecki B. Modeling and Optimization of β-Galactosidase Entrapping in Polydimethylsiloxane-Modified Silica Composites. Int J Mol Sci 2022; 23:ijms23105395. [PMID: 35628204 PMCID: PMC9141798 DOI: 10.3390/ijms23105395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Protein entrapment has multiple applications in enzymatic hydrolysis, drug delivery, etc. Here, we report the studies that successfully utilized the Box–Behnken design to model and optimize the parameters of β-galactosidase entrapment in sol–gel-derived silica composites. We have also demonstrated the influence of polymer–polydimethylsiloxane as a composite modifying agent on the activity of entrapped enzymes. We have determined how different sol-gel process parameters influence the activity of entrapped enzymes. The highest impact on β-galactosidase activity was exerted by the water:tetramethoxysilane ratio, followed by polydimethylsiloxane content. Optimized synthesis parameters have been utilized to obtain a composite with maximum β-galactosidase activity. Performed porosity studies have shown that the addition of polydimethylsiloxane increased the pore diameter. Microscopy studies demonstrated that polydimethylsiloxane-modified composites are softer and less rough. Studies of β-galactosidase activity using the o-NPG test showed statistically significant shifts in the enzyme temperature and pH profiles compared to the soluble form. An improvement in the reusability of the enzyme and a significant increase in the thermal stability was also observed. When lactose was used, a strong correlation was observed between the substrate concentration and the type of the catalyzed reaction. Moreover, we have demonstrated that the yields and rates of both lactose hydrolysis and galactooligosaccharides formation were correlated with reaction temperature and with the presence of polydimethylsiloxane. All these findings provide the opportunity for industrial use of optimized PDMS-modified silica composites in lactose elimination from dairy products, e.g., milk or whey.
Collapse
|
8
|
Galacto-Oligosaccharide (GOS) Synthesis during Enzymatic Lactose-Free Milk Production: State of the Art and Emerging Opportunities. BEVERAGES 2022. [DOI: 10.3390/beverages8020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Much attention has recently been paid to β-Galactosidases (β-D-galactoside galactohidrolase; EC 3.2.1.23), commonly known as lactases, due to the lactose intolerance of the human population and the importance of dairy products in the human diet. This enzyme, produced by microorganisms, is being used in the dairy industry for hydrolyzing the lactose found in milk to produce lactose-free milk (LFM). Conventionally, β-galactosidases catalyze the hydrolysis of lactose to produce glucose and galactose in LFM; however, they can also catalyze transgalactosylation reactions that produce a wide range of galactooligosaccharides (GOS), which are functional prebiotic molecules that confer health benefits to human health. In this field, different works aims to identify novel microbial sources of β-galactosidase for removing lactose from milk with the relative GOS production. Lactase extracted from thermophilic microorganisms seems to be more suitable for the transgalactosylation process at relatively high temperatures, as it inhibits microbial contamination. Different immobilization methods, such as adsorption, covalent attachment, chemical aggregation, entrapment and micro-encapsulation, have been used to synthesize lactose-derived oligosaccharides with immobilized β-galactosidases. In this mini-review, particular emphasis has been given to the immobilization techniques and bioreactor configurations developed for GOS synthesis in milk, in order to provide a more detailed overview of the biocatalytic production of milk oligosaccharides at industrial level.
Collapse
|
9
|
Vera C, Guerrero C, Illanes A. Trends in lactose-derived bioactives: synthesis and purification. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 2:393-412. [PMID: 38624767 PMCID: PMC8776390 DOI: 10.1007/s43393-021-00068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Lactose obtained from cheese whey is a low value commodity despite its great potential as raw material for the production of bioactive compounds. Among them, prebiotics stand out as valuable ingredients to be added to food matrices to build up functional foods, which currently represent the most active sector within the food industry. Functional foods market has been growing steadily in the recent decades along with the increasing awareness of the World population about healthy nutrition, and this is having a strong impact on lactose-derived bioactives. Most of them are produced by enzyme biocatalysis because of molecular precision and environmental sustainability considerations. The current status and outlook of the production of lactose-derived bioactive compounds is presented with special emphasis on downstream operations which are critical because of the rather modest lactose conversion and product yields that are attainable. Even though some of these products have already an established market, there are still several challenges referring to the need of developing better catalysts and more cost-effective downstream operations for delivering high quality products at affordable prices. This technological push is expected to broaden the spectrum of lactose-derived bioactive compounds to be produced at industrial scale in the near future. Graphical abstract
Collapse
Affiliation(s)
- Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| |
Collapse
|
10
|
Schulz P, Rizvi SS. Hydrolysis of Lactose in Milk: Current Status and Future Products. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1983590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Patrick Schulz
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Syed S.H. Rizvi
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Baek Y, Ahn Y, Shin J, Suh HJ, Jo K. Evaluation of Safety through Acute and Subacute Tests of Galacto-Oligosaccharide (GOS). Prev Nutr Food Sci 2021; 26:315-320. [PMID: 34737992 PMCID: PMC8531431 DOI: 10.3746/pnf.2021.26.3.315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
Acute and subacute toxicity tests were undertaken on a novel galacto-oligosaccharide (GOS) produced from lactose by β-galactosidase derived from Bacillus circulans. Toxicity was evaluated by single dose oral administration (5,000 mg/kg) and was repeated at day 28 (1,000 mg/kg) in male and female Sprague-Dawley rats. In acute toxicity tests, the protein levels of male rats administered GOS showed a significant difference from controls, but remained within the normal range. There were no GOS-related changes in clinical symptoms, weight, food intake, hematology, blood chemistry, relative organ weight, or severe pathology in rats treated with GOS compared with controls. The no observed adverse effect level of GOS was at least 1,000 mg/kg/d in both male and female rats. Bovine-specific genes were not detected in GOS 70%-based products (NeoGOS-P70, NeoGOS-L70, and organic GOS), indirectly showing the absence of an allergen and that products containing GOS 70% are non-toxic and allergen-free.
Collapse
Affiliation(s)
- Youngjin Baek
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea.,Department of R&D, Neo Cremar Co., Ltd., Seoul 05702, Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Jungcheul Shin
- Department of R&D, Neo Cremar Co., Ltd., Seoul 05702, Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| |
Collapse
|
12
|
Ambrogi V, Bottacini F, Cao L, Kuipers B, Schoterman M, van Sinderen D. Galacto-oligosaccharides as infant prebiotics: production, application, bioactive activities and future perspectives. Crit Rev Food Sci Nutr 2021; 63:753-766. [PMID: 34477457 DOI: 10.1080/10408398.2021.1953437] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Galacto-oligosaccharides (GOS) are non-digestible oligosaccharides characterized by a mix of structures that vary in their degree of polymerization (DP) and glycosidic linkage between the galactose moieties or between galactose and glucose. They have enjoyed extensive scientific scrutiny, and their health-promoting effects are supported by a large number of scientific and clinical studies. A variety of GOS-associated health-promoting effects have been reported, such as growth promotion of beneficial bacteria, in particular bifidobacteria and lactobacilli, inhibition of pathogen adhesion and improvement of gut barrier function. GOS have attracted significant interest from food industries for their versatility as a bioactive ingredient and in particular as a functional component of infant formulations. These oligosaccharides are produced in a kinetically-controlled reaction involving lactose transgalactosylation, being catalyzed by particular β-galactosidases of bacterial or fungal origin. Despite the well-established technology applied for GOS production, this process may still meet with technological challenges when employed at an industrial scale. The current review will cover relevant scientific literature on the beneficial physiological properties of GOS as a prebiotic for the infant gut microbiota, details of GOS structures, the associated reaction mechanism of β-galactosidase, and its (large-scale) production.
Collapse
Affiliation(s)
- Valentina Ambrogi
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Linqiu Cao
- FrieslandCampina, Amersfoort, The Netherlands
| | - Bas Kuipers
- FrieslandCampina, Amersfoort, The Netherlands
| | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Hackenhaar CR, Spolidoro LS, Flores EEE, Klein MP, Hertz PF. Batch synthesis of galactooligosaccharides from co-products of milk processing using immobilized β-galactosidase from Bacillus circulans. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, Fernandez-Lafuente R. Immobilization of papain: A review. Int J Biol Macromol 2021; 188:94-113. [PMID: 34375660 DOI: 10.1016/j.ijbiomac.2021.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Papain is a cysteine protease from papaya, with many applications due to its broad specificity. This paper reviews for first time the immobilization of papain on different supports (organic, inorganic or hybrid supports) presenting some of the features of the utilized immobilization strategies (e.g., epoxide, glutaraldehyde, genipin, glyoxyl for covalent immobilization). Special focus is placed on the preparation of magnetic biocatalysts, which will permit the simple recovery of the biocatalyst even if the medium is a suspension. Problems specific to the immobilization of proteases (e.g., steric problems when hydrolyzing large proteins) are also defined. The benefits of a proper immobilization (enzyme stabilization, widening of the operation window) are discussed, together with some artifacts that may suggest an enzyme stabilization that may be unrelated to enzyme rigidification.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddad 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddad 21589, Saudi Arabia
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Center of Excellence in Bionanoscience Research, External advisory board, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
15
|
Wahba MI. Carrageenan stabilized calcium pectinate beads and their utilization as immobilization matrices. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Wang G, Wang H, Chen Y, Pei X, Sun W, Liu L, Wang F, Umar Yaqoob M, Tao W, Xiao Z, Jin Y, Yang ST, Lin D, Wang M. Optimization and comparison of the production of galactooligosaccharides using free or immobilized Aspergillus oryzae β-galactosidase, followed by purification using silica gel. Food Chem 2021; 362:130195. [PMID: 34082294 DOI: 10.1016/j.foodchem.2021.130195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 04/25/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to optimize and compare the production of galactooligosaccharides (GOSs) by free and cotton cloth-immobilized Aspergillus oryzae β-galactosidase, and perform economical evaluation of production of GOSs (100%) between them. Using the response surface method, the optimal reaction time (3.9 h), initial lactose concentration (57.13%), and enzyme to lactose ratio (44.81 U/g) were obtained for the free enzyme, which provided a GOSs yield of 32.62%. For the immobilized enzyme, the optimal yield of GOSs (32.48%) was obtained under reaction time (3.09 h), initial lactose concentration (52.74%), and temperature (50.0 ℃). And it showed desirable reusability during five successive enzymatic reactions. The recovery rate of GOSs (100%) is 65% using silica gel filtration chromatography. The economical evaluation showed almost no difference in the manufacturing cost for the GOSs (100%) between these two systems, and that the recovery rate had a great impact on the cost.
Collapse
Affiliation(s)
- Geng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haidong Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yucheng Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xun Pei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wanjing Sun
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lujie Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Umar Yaqoob
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wenjing Tao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhiping Xiao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuyue Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Dongqiang Lin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Minqi Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
Ambrogi V, Bottacini F, O'Callaghan J, Casey E, van Breen J, Schoemaker B, Cao L, Kuipers B, O'Connell Motherway M, Schoterman M, van Sinderen D. Infant-Associated Bifidobacterial β-Galactosidases and Their Ability to Synthesize Galacto-Oligosaccharides. Front Microbiol 2021; 12:662959. [PMID: 34012427 PMCID: PMC8126724 DOI: 10.3389/fmicb.2021.662959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Galacto-oligosaccharides (GOS) represent non-digestible glycans that are commercially produced by transgalactosylation of lactose, and that are widely used as functional food ingredients in prebiotic formulations, in particular in infant nutrition. GOS consumption has been reported to enhance growth of specific bacteria in the gut, in particular bifidobacteria, thereby supporting a balanced gut microbiota. In a previous study, we assessed the hydrolytic activity and substrate specificity of seventeen predicted β-galactosidases encoded by various species and strains of infant-associated bifidobacteria. In the current study, we further characterized seven out of these seventeen bifidobacterial β-galactosidases in terms of their kinetics, enzyme stability and oligomeric state. Accordingly, we established whether these β-galactosidases are capable of synthesizing GOS via enzymatic transgalactosylation employing lactose as the feed substrate. Our findings show that the seven selected enzymes all possess such transgalactosylation activity, though they appear to differ in their efficiency by which they perform this reaction. From chromatography analysis, it seems that these enzymes generate two distinct GOS mixtures: GOS with a relatively short or long degree of polymerization profile. These findings may be the stepping stone for further studies aimed at synthesizing new GOS variants with novel and/or enhanced prebiotic activities and potential for industrial applications.
Collapse
Affiliation(s)
- Valentina Ambrogi
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Eoghan Casey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | | | - Linqiu Cao
- FrieslandCampina, Amersfoort, Netherlands
| | | | | | | | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Rengel Dos Passos F, Lopes Maestre K, Florêncio da Silva B, Rodrigues AC, Contini Triques C, Alves Garcia H, Fagundes-Klen MR, Antonio da Silva E, Fiorese ML. Production of a synbiotic composed of galacto-oligosaccharides and Saccharomyces boulardii using enzymatic-fermentative method. Food Chem 2021; 353:129486. [PMID: 33735774 DOI: 10.1016/j.foodchem.2021.129486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Motivated by the search for healthy alimentation and sustainable technological processes, this study aimed to produce a synbiotic composed of the prebiotic galacto-oligosaccharides (GOS) and the probiotic yeast Saccharomyces boulardii, simultaneously, using cheese whey permeate as substrate by enzymatic-fermentative method. A central composite rotatable design with center point was used to evaluate the influence of temperature and enzyme concentration in the GOS and S. boulardii production. The best condition to obtain the prebiotic was at 32 °C and enzyme concentration of 0.175% (w/w), providing 56.84 g L-1 of GOS concentration and Ln(3.59) 107 viable cells mL-1 of S. boulardii production. However, the condition that would favor the simultaneous production of GOS and S. boulardii studied through desirability function is 29.5 °C and 0.14% (w/w) of enzyme concentration. The simultaneous enzymatic-fermentative method showed promising results considering industrial application and can be easily incorporated into dairy production lines as functional food.
Collapse
Affiliation(s)
- Fernanda Rengel Dos Passos
- Postgraduate Program of Chemical Engineering, West Paraná State University - UNIOESTE, Rua da Faculdade 645, Jd. Santa Maria, Toledo 85903-000, PR, Brazil.
| | - Keiti Lopes Maestre
- Postgraduate Program of Chemical Engineering, West Paraná State University - UNIOESTE, Rua da Faculdade 645, Jd. Santa Maria, Toledo 85903-000, PR, Brazil
| | - Beatriz Florêncio da Silva
- West Paraná State University - UNIOESTE, Rua da Faculdade 645, Jd. Santa Maria, Toledo 85903-000, PR, Brazil
| | - Angela Claudia Rodrigues
- Department of Chemistry, Federal University of Technology - Paraná - UTFPR, Av. Brasil, 4232, Parque Independência, Medianeira 85884-000, PR, Brazil
| | - Carina Contini Triques
- Postgraduate Program of Chemical Engineering, West Paraná State University - UNIOESTE, Rua da Faculdade 645, Jd. Santa Maria, Toledo 85903-000, PR, Brazil
| | - Helio Alves Garcia
- Sooro Renner Nutrição S.A. Rod. BR 163 - Km 283,8, Marechal Cândido Rondon, 85960-000 PR, Brazil
| | - Márcia Regina Fagundes-Klen
- Postgraduate Program of Chemical Engineering, West Paraná State University - UNIOESTE, Rua da Faculdade 645, Jd. Santa Maria, Toledo 85903-000, PR, Brazil
| | - Edson Antonio da Silva
- Postgraduate Program of Chemical Engineering, West Paraná State University - UNIOESTE, Rua da Faculdade 645, Jd. Santa Maria, Toledo 85903-000, PR, Brazil
| | - Mônica Lady Fiorese
- Postgraduate Program of Chemical Engineering, West Paraná State University - UNIOESTE, Rua da Faculdade 645, Jd. Santa Maria, Toledo 85903-000, PR, Brazil
| |
Collapse
|
19
|
Bilal M, Xu S, Iqbal HMN, Cheng H. Yarrowia lipolytica as an emerging biotechnological chassis for functional sugars biosynthesis. Crit Rev Food Sci Nutr 2021; 61:535-552. [PMID: 32180435 DOI: 10.1080/10408398.2020.1739000] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional sugars have unique structural and physiological characteristics with applied perspectives for modern biomedical and biotechnological sectors, such as biomedicine, pharmaceutical, cosmeceuticals, green chemistry, and agro-food. They can also be used as starting matrices to produce biologically active metabolites of interests. Though numerous chemical synthesis routes have been proposed and deployed for the synthesis of rare sugars, however, many of them are limited and economically incompetent because of expensive raw starting feedstocks. Whereas, the biosynthesis by enzymatic means are often associated with high catalyst costs and low space-time yields. Microbial production of rare sugars via green routes using bio-renewable resources offers noteworthy solutions to overcome the aforementioned limitations of synthetic and enzymatic synthesis routes. From the microbial-based synthesis perspective, the lipogenic yeast Yarrowia lipolytica is rapidly evolving as the most prevalent and unique "non-model organism" in the bio-production arena. Due to high flux tendency through the tri-carboxylic acid cycle intermediates and precursors such as acetyl-CoA and malonyl-CoA, this yeast has been widely investigated to meet the increasing demand of industrially relevant fine chemicals, including functional sugars. Incredible interest in Y. lipolytica originates from its robust tolerance to unstable pH, salt levels, and organic compounds, which subsequently enable easy bioprocess optimization. Meaningfully, GRAS (generally recognized as safe) status creates Y. lipolytica as an attractive and environmentally friendly microbial host for the manufacturing of nutraceuticals, fermented food, and dietary supplements. In this review, we highlight the recent and state-of-the-art research progress on Y. lipolytica as a host to synthesize bio-based compounds of interest beyond the realm of well-known fatty acid production. The unique physicochemical properties, biotechnological applications, and biosynthesis of an array of value-added functional sugars including erythritol, threitol, fructooligosaccharides, galactooligosaccharides, isomalto-oligosaccharides, isomaltulose, trehalose, erythrulose, xylitol, and mannitol using sustainable carbon sources are thoroughly vetted. Finally, we conclude with perspectives that would be helpful to engineer Y. lipolytica in greening the twenty-first century biomedical and biotechnological sectors of the modern world.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo León, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Sass AC, Jördening HJ. Immobilization of β-Galactosidase From Aspergillus oryzae on Electrospun Gelatin Nanofiber Mats for the Production of Galactooligosaccharides. Appl Biochem Biotechnol 2020; 191:1155-1170. [PMID: 31981098 PMCID: PMC7320046 DOI: 10.1007/s12010-020-03252-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/08/2020] [Indexed: 11/30/2022]
Abstract
Two simple and easily reproducible methods for the immobilization of β-galactosidase (β-gal) from Aspergillus oryzae on electrospun gelatin nanofiber mats (GFM) were developed. The process was optimized regarding the electrospinning solvent system and the subsequent cross-linking of GFM in order to increase their stability in water. β-Gal was covalently immobilized on activated gelatin nanofiber mats with hexamethylenediamine (HMDA) as a bifunctional linker and secondly via entrapment into the gelatin nanofibers during the electrospinning process (suspension electrospinning). Optimal immobilization parameters for covalent immobilization were determined to be at pH 7.5, 40 °C, β-gal concentration of 1 mg/mL and immobilization time of 24.5 h. For suspension electrospinning, the optimal immobilization parameters were identified at pH 4.5 and β-gal concentration of 0.027 wt.% in the electrospinning solution. The pH and temperature optima of immobilized β-gal shifted from 30 °C, pH 4.5 (free enzyme) to pH 3.5, 50 °C (covalent immobilization) and pH 3.5, 40 °C (suspension electrospinning). Striking differences in the Michaelis constant (KM) of immobilized β-gal compared with free enzyme were observed with a reduction of KM up to 50% for immobilized enzyme. The maximum velocity (vmax) of immobilization by suspension electrospinning was almost 20 times higher than that of covalent immobilization. The maximum GOS yield for free β-gal was found to be 27.7% and 31% for immobilized β-gal.
Collapse
Affiliation(s)
- Ann-Cathérine Sass
- Institute of Technical Chemistry, Department of Carbohydrate Technology, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Hans-Joachim Jördening
- Institute of Technical Chemistry, Department of Carbohydrate Technology, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
A novel β-galactosidase from Klebsiella oxytoca ZJUH1705 for efficient production of galacto-oligosaccharides from lactose. Appl Microbiol Biotechnol 2020; 104:6161-6172. [DOI: 10.1007/s00253-020-10679-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
|
22
|
Optimization for galactooligosaccharides synthesis: A potential alternative for gut health and immunity. Life Sci 2020; 245:117353. [DOI: 10.1016/j.lfs.2020.117353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/23/2022]
|
23
|
Weinborn V, Li Y, Shah IM, Yu H, Dallas DC, German JB, Mills DA, Chen X, Barile D. Production of functional mimics of human milk oligosaccharides by enzymatic glycosylation of bovine milk oligosaccharides. Int Dairy J 2019; 102. [PMID: 32089591 DOI: 10.1016/j.idairyj.2019.104583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Consumption of mothers' milk is associated with reduced incidence and severity of enteric infections, leading to reduced morbidity in breastfed infants. Fucosylated and sialylated human milk oligosaccharides (HMO) are important for both direct antimicrobial action - likely via a decoy effect - and indirect antimicrobial action through commensal growth enhancement. Bovine milk oligosaccharides (BMO) are a potential source of HMO-mimics as BMO resemble HMO; however, they have simpler and less fucosylated structures. BMO isolated at large scales from bovine whey permeate were modified by the addition of fucose and/or sialic acid to generate HMO-like glycans using high-yield and cost-effective one-pot multienzyme approaches. Quadrupole time-of-flight LC/MS analysis revealed that 22 oligosaccharides were synthesized and 9 had identical composition to known HMO. Preliminary anti-adherence activity assays indicated that fucosylated BMO decreased the uptake of enterohemorrhagic Escherichia coli O157:H7 by human intestinal epithelial Caco-2 cells more effectively than native BMO.
Collapse
Affiliation(s)
- Valerie Weinborn
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Glycohub, Inc., 4070 Truxel Road, Sacramento, CA 95834, USA.,Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Glycohub, Inc., 4070 Truxel Road, Sacramento, CA 95834, USA.,Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David C Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - J Bruce German
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
24
|
Lappa IK, Papadaki A, Kachrimanidou V, Terpou A, Koulougliotis D, Eriotou E, Kopsahelis N. Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods 2019; 8:E347. [PMID: 31443236 PMCID: PMC6723228 DOI: 10.3390/foods8080347] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/27/2022] Open
Abstract
Cheese whey constitutes one of the most polluting by-products of the food industry, due to its high organic load. Thus, in order to mitigate the environmental concerns, a large number of valorization approaches have been reported; mainly targeting the recovery of whey proteins and whey lactose from cheese whey for further exploitation as renewable resources. Most studies are predominantly focused on the separate implementation, either of whey protein or lactose, to configure processes that will formulate value-added products. Likewise, approaches for cheese whey valorization, so far, do not exploit the full potential of cheese whey, particularly with respect to food applications. Nonetheless, within the concept of integrated biorefinery design and the transition to circular economy, it is imperative to develop consolidated bioprocesses that will foster a holistic exploitation of cheese whey. Therefore, the aim of this article is to elaborate on the recent advances regarding the conversion of whey to high value-added products, focusing on food applications. Moreover, novel integrated biorefining concepts are proposed, to inaugurate the complete exploitation of cheese whey to formulate novel products with diversified end applications. Within the context of circular economy, it is envisaged that high value-added products will be reintroduced in the food supply chain, thereby enhancing sustainability and creating "zero waste" processes.
Collapse
Affiliation(s)
- Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
- Department of Food and Nutritional Sciences, University of Reading, Berkshire RG6 6AP, UK.
| | - Antonia Terpou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | | | - Effimia Eriotou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|
25
|
Simović M, Milivojević A, Ćorović M, Banjanac K, Bezbradica D. Whey valorization using transgalactosylation activity of immobilized β‐galactosidase. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Milica Simović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
| | - Ana Milivojević
- Innovation Center Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
| | - Marija Ćorović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
| | - Katarina Banjanac
- Innovation Center Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
- Directorate of Measures and Precious Metals Group for Metrology in Chemistry Mike Alasa 1411000 Beograd Serbia
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
| |
Collapse
|
26
|
Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front Nutr 2019; 6:78. [PMID: 31214595 PMCID: PMC6554340 DOI: 10.3389/fnut.2019.00078] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Fructo- and galacto-oligosaccharides (FOS and GOS) are non-digestible oligosaccharides with prebiotic properties that can be incorporated into a wide number of products. This review details the general outlines for the production of FOS and GOS, both by enzymatic synthesis using disaccharides or other substrates, and by hydrolysis of polysaccharides. Special emphasis is laid on technological aspects, raw materials, properties, and applications.
Collapse
Affiliation(s)
- Gonçalo N. Martins
- Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | - E. Elizabeth Tymczyszyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Paula C. Castilho
- Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
27
|
Guerrero C, Valdivia F, Ubilla C, Ramírez N, Gómez M, Aburto C, Vera C, Illanes A. Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase. BIORESOURCE TECHNOLOGY 2019; 278:296-302. [PMID: 30708333 DOI: 10.1016/j.biortech.2018.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Lactulose synthesis from fructose and lactose in continuous packed-bed reactor operation with glyoxyl-agarose immobilized Aspergillus oryzae β-galactosidase is reported for the first time. Alternative strategies to conventional batch synthesis have been scarcely explored for lactulose synthesis. The effect of flow rate, substrates ratio and biocatalyst-inert packing material mass ratio (MB/MIM) were studied on reactor performance. Increase in any of these variables produced an increase in lactulose yield (YLu) being higher than obtained in batch synthesis at comparable conditions. Maximum YLu of 0.6 g·g-1 was obtained at 50 °C, pH 4.5, 50% w/w total sugars, 15 mL·min-1, fructose/lactose molar ratio of 12 and MB/MIM of 1/8 g·g-1; at such conditions yield of transgalactosylated oligosaccharides (YTOS) was 0.16 g·g-1, selectivity (lactulose/TOS molar ratio) was 5.4 and lactose conversion (XLactose) was 28%. Reactor operation with recycle had no significant effect on yield, producing only some decrease in productivity.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| | - Felipe Valdivia
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Claudia Ubilla
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Nicolás Ramírez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Matías Gómez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|
28
|
Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production. Food Chem 2019; 286:362-367. [PMID: 30827619 DOI: 10.1016/j.foodchem.2019.01.212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 01/06/2023]
Abstract
The β-galactosidase from Aspergillus oryzae produces galactooligosaccharides with beneficial prebiotic effects through the transglycosylation of lactose. However, its low galactooligosaccharide yield greatly limits its use in industrial applications. Rational design and site-directed mutagenesis were used to produce three mutants of A. oryzae β-galactosidase: N140C, W806F, and N140C/W806F. The galactooligosaccharide yields of N140C (50.7%), W806F (49.3%), and N140C/W806F (59.8%) represent substantial improvements over that of the wild-type (35.7%). The galactooligosaccharide yield of N140C/W806F is the highest reported to date. Our rational design approach suggests novel strategies for further study of the β-galactosidase reaction mechanism and has produced mutants may be more useful in industrial applications than wild-type A. oryzae β-galactosidase.
Collapse
|
29
|
Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 2019; 48:38-71. [DOI: 10.1039/c8cs00001h] [Citation(s) in RCA: 709] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in developing organic semiconducting materials (OSMs) for deep-tissue optical imaging, cancer phototherapy and biological photoactivation is summarized.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|
30
|
Porciúncula González C, Cagnoni AJ, Mariño KV, Fontana C, Saenz-Méndez P, Irazoqui G, Giacomini C. Enzymatic synthesis of non-natural trisaccharides and galactosides; Insights of their interaction with galectins as a function of their structure. Carbohydr Res 2019; 472:1-15. [DOI: 10.1016/j.carres.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
|
31
|
Fischer C, Kleinschmidt T. Combination of two β-galactosidases during the synthesis of galactooligosaccharides may enhance yield and structural diversity. Biochem Biophys Res Commun 2018; 506:211-215. [DOI: 10.1016/j.bbrc.2018.10.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022]
|
32
|
Gonawan FN, Abu Bakar MZ, Abd Karim K, Kamaruddin AH. The effect of mass transfer on reaction rates during immobilized β-galactosidase-catalyzed conversion of lactose in hollow fiber membrane. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1516644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fadzil Noor Gonawan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Pulau Pinang, Malaysia
| | - Mohamad Zailani Abu Bakar
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Pulau Pinang, Malaysia
| | - Khairiah Abd Karim
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Pulau Pinang, Malaysia
| | - Azlina Harun Kamaruddin
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Pulau Pinang, Malaysia
| |
Collapse
|
33
|
Suárez S, Guerrero C, Vera C, Illanes A. Effect of particle size and enzyme load on the simultaneous reactions of lactose hydrolysis and transgalactosylation with glyoxyl-agarose immobilized β-galactosidase from Aspergillus oryzae. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Eskandarloo H, Abbaspourrad A. Production of galacto-oligosaccharides from whey permeate using β-galactosidase immobilized on functionalized glass beads. Food Chem 2018; 251:115-124. [DOI: 10.1016/j.foodchem.2018.01.068] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/04/2017] [Accepted: 01/08/2018] [Indexed: 01/11/2023]
|
35
|
Adamíková J, Antošová M, Polakovič M. A Method of Early Phase Selection of Carrier for Aspergillus Oryzae β
-Galactosidase Immobilization for Galactooligosaccharides Production. Biotechnol J 2018; 14:e1800120. [DOI: 10.1002/biot.201800120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jana Adamíková
- Faculty of Chemical and Food Technology; Department of Chemical and Biochemical Engineering; Institute of Chemical and Environmental Engineering; Slovak University of Technology; Radlinského 9 812 37 Bratislava Slovakia
| | - Monika Antošová
- Faculty of Chemical and Food Technology; Department of Chemical and Biochemical Engineering; Institute of Chemical and Environmental Engineering; Slovak University of Technology; Radlinského 9 812 37 Bratislava Slovakia
| | - Milan Polakovič
- Faculty of Chemical and Food Technology; Department of Chemical and Biochemical Engineering; Institute of Chemical and Environmental Engineering; Slovak University of Technology; Radlinského 9 812 37 Bratislava Slovakia
| |
Collapse
|
36
|
Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A. Synthesis of a Fucosylated Trisaccharide Via Transglycosylation by α-L-Fucosidase from Thermotoga maritima. Appl Biochem Biotechnol 2018; 186:681-691. [PMID: 29717409 DOI: 10.1007/s12010-018-2771-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Fucosylated oligosaccharides, such as 2'-fucosyllactose in human milk, have important biological functions such as prebiotics and preventing infection. In this work, the effect of an acceptor substrate (lactose) and the donor substrate 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) on the synthesis of a fucosylated trisaccharide was studied in a transglycosylation reaction using α-L-fucosidase from Thermotoga maritima. Conducting a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), it was demonstrated that synthesized oligosaccharide corresponded to a fucosylated trisaccharide, and high-performance liquid chromatography (HPLC) of the hydrolyzed compound confirmed it was fucosyllactose. As the concentration of the acceptor substrate increased, the concentration and synthesis rate of the fucosylated trisaccharide also increased, and the highest concentration obtained was 0.883 mM (25.2% yield) when using the higher initial lactose concentration (584 mM). Furthermore, the lower donor/acceptor ratio had the highest synthesis, so at the molar ratio of 0.001, a concentration of 0.286 mM was obtained (32.5% yield).
Collapse
Affiliation(s)
- Francisco Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Sergio Alatorre-Santamaría
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Lorena Gómez-Ruiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Gabriela Rodríguez-Serrano
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Mariano García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico.,Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma. Av. Hidalgo Poniente 46, Col. La Estación, 52006, Lerma de Villada, Mexico State, Mexico
| | - Alma Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico.
| |
Collapse
|
37
|
Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. Int J Biol Macromol 2018; 111:667-679. [DOI: 10.1016/j.ijbiomac.2018.01.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
|
38
|
Yu L, O'Sullivan D. Immobilization of whole cells of Lactococcus lactis containing high levels of a hyperthermostable β-galactosidase enzyme in chitosan beads for efficient galacto-oligosaccharide production. J Dairy Sci 2018; 101:2974-2983. [DOI: 10.3168/jds.2017-13770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
|
39
|
Jenab E, Omidghane M, Mussone P, Armada DH, Cartmell J, Montemagno C. Enzymatic conversion of lactose into galacto-oligosaccharides: The effect of process parameters, kinetics, foam architecture, and product characterization. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Fischer C, Kleinschmidt T. Synthesis of Galactooligosaccharides in Milk and Whey: A Review. Compr Rev Food Sci Food Saf 2018; 17:678-697. [DOI: 10.1111/1541-4337.12344] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Christin Fischer
- Dept. of Applied Biosciences and Process Engineering; Anhalt Univ. of Applied Sciences; Bernburger Str. 55 06366 Köthen Germany
| | - Thomas Kleinschmidt
- Dept. of Applied Biosciences and Process Engineering; Anhalt Univ. of Applied Sciences; Bernburger Str. 55 06366 Köthen Germany
| |
Collapse
|
41
|
Misson M, Jin B, Zhang H. Recirculating Spiral Bioreactor for Galactooligosaccharide Production Using Polymer Nanofiber-β-galactosidase Assembly. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mailin Misson
- Bioprocess
Engineering Research Group, Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Bo Jin
- School
of Chemical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Hu Zhang
- School
of Chemical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
42
|
Guerrero C, Vera C, Serna N, Illanes A. Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. BIORESOURCE TECHNOLOGY 2017; 232:53-63. [PMID: 28214445 DOI: 10.1016/j.biortech.2017.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Aspergillus oryzae β-galactosidase was immobilized in monofunctional glyoxyl-agarose and heterofunctional supports (amino-glyoxyl, carboxy-glyoxyl and chelate-glyoxyl agarose), for obtaining highly active and stable catalysts for lactulose synthesis. Specific activities of the amino-glyoxyl agarose, carboxy-glyoxyl agarose and chelate-glyoxyl agarose derivatives were 3676, 430 and 454IU/g biocatalyst with half-life values at 50°C of 247, 100 and 100h respectively. Specific activities of 3490, 2559 and 1060IU/g were obtained for fine, standard and macro agarose respectively. High immobilization yield (39.4%) and specific activity of 7700IU/g was obtained with amino-glyoxyl-agarose as support. The highest yields of lactulose synthesis were obtained with monofunctional glyoxyl-agarose. Selectivity of lactulose synthesis was influenced by the support functionalization: glyoxyl-agarose and amino-glyoxyl-agarose derivatives retained the selectivity of the free enzyme, while selectivity with the carboxy-glyoxyl-agarose and chelate-glyoxyl-agarose derivatives was reduced, favoring the synthesis of transgalactosylated oligosaccharides over lactulose.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Nestor Serna
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|
43
|
|
44
|
Saravanan R, Shubethar S, Narayanan S, Jain M, Lade S, Jadhav D, Maheswaran P, Avalakki UK, Dubey AK. A novel process for the production of high-purity galactooligosaccharides (GOS) using consortium of microbes. Prep Biochem Biotechnol 2017; 47:245-253. [PMID: 27715472 DOI: 10.1080/10826068.2016.1207082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Galactooligosaccharides (GOS) are nondigestible dietary fibers which have a beneficial effect on human health by promoting the growth of probiotic bacteria in the gut. In addition, other health benefits have been reported from oligosaccharides consumption such as stimulation of intestinal mobility, colon cancer prevention, mineral absorption as well as protection against certain pathogenic bacterial infections. The goal of this research was to develop an efficient biotransformation system using a consortium of microbes for the production of ≥85% pure GOS and reusing the cell biomass in repeated cycles of biotransformation. Production of GOS by lactose transgalactosylation using whole cells of Sporobolomyces singularis MTCC 5491 as a source of β-galactosidase and monosaccharides utilization by yeast isolate (NUTIDY007) were studied. For increasing the purity of GOS, growth and bioconversion parameters on the transgalactosylation by the whole cells were investigated. Further, continuous production of GOS was studied in a reactor with microfiltration membrane system. A maximum GOS purity of 42% was achieved using single culture of S. singularis. Under optimized conditions, single culture of S. singularis produced a maximum of 56% pure GOS. Addition of second culture to the reaction mixture for utilization of glucose significantly increased the GOS purity from 56% to ≥85%. The product consisted of tri- to penta-galactooligosaccharides. Trisaccharides were the main component of the reaction mixture. A maximum productivity of 10.9 g/L/hr was obtained under the optimum conditions.
Collapse
Affiliation(s)
- R Saravanan
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Shajahan Shubethar
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - S Narayanan
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Manish Jain
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Shankar Lade
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Deepak Jadhav
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - P Maheswaran
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Uday K Avalakki
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Ashok Kumar Dubey
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| |
Collapse
|
45
|
Continuous Packed Bed Reactor with Immobilized β-Galactosidase for Production of Galactooligosaccharides (GOS). Catalysts 2016. [DOI: 10.3390/catal6120189] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
46
|
Vera C, Córdova A, Aburto C, Guerrero C, Suárez S, Illanes A. Synthesis and purification of galacto-oligosaccharides: state of the art. World J Microbiol Biotechnol 2016; 32:197. [PMID: 27757792 DOI: 10.1007/s11274-016-2159-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
Abstract
Lactose-derived non-digestible oligosaccharides are prominent components of functional foods. Among them, galacto-oligosaccharides (GOS) outstand for being prebiotics whose health-promoting effects are supported on strong scientific evidences, having unique properties as substitutes of human milk oligosaccharides in formulas for newborns and infants. GOS are currently produced enzymatically in a kinetically-controlled reaction of lactose transgalactosylation catalyzed by β-galactosidases from different microbial strains. The enzymatic synthesis of GOS, although being an established technology, still offers many technological challenges and opportunities for further development that has to be considered within the framework of functional foods which is the most rapidly expanding market within the food sector. This paper presents the current technological status of GOS production, its main achievements and challenges. Most of the problems yet to be solved refer to the rather low GOS yields attainable that rarely exceed 40 %, corresponding to lactose conversions around 60 %. This means that the product or reaction (raw GOS) contains significant amounts of residual lactose and monosaccharides (glucose and galactose). Efforts to increase such yields have been for the most part unsuccessful, even though improvements by genetic and protein engineering strategies are to be expected in the near future. Low yields impose a burden on downstream processing to obtain a GOS product of the required purity. Different strategies for raw GOS purification are reviewed and their technological significance is appraised.
Collapse
Affiliation(s)
- Carlos Vera
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Andrés Córdova
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso, Chile.
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Sebastián Suárez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| |
Collapse
|
47
|
Simultaneous synthesis and purification (SSP) of galacto-oligosaccharides in batch operation. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
An J, Zhang L, Li L, Liu D, Cheng H, Wang H, Nawaz MZ, Cheng H, Deng Z. An Alternative Approach to Synthesizing Galactooligosaccharides by Cell-Surface Display of β-Galactosidase on Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3819-3827. [PMID: 27090877 DOI: 10.1021/acs.jafc.5b06138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An alternative strategy for synthesizing galactooligosaccharides (GOS) from an erythritol-producing yeast Yarrowia lipolytica using surface display technology was demonstrated. The engineered strain CGMCC11369 was developed by fusion of the β-galactosidase gene from Aspergillus oryzae to the YlPir1 gene, which codes for a cell wall protein. β-Galactosidase was effectively displayed on the cell surface of Yarrowia lipolytica start strain CGMCC7326. This engineered strain with surface-displayed β-galactosidase efficiently synthesized GOS from lactose. An amount of 160 g/L GOS was produced within 6 h in a solution of 500 g/L lactose and 5 mg/mL cell (dry weight) at pH 5.5 and 60 °C, with a yield of 51% of consumed lactose monohydrate. This newly developed method was applied with waste yeast paste from erythritol industry at least 10 times. The optimal reaction temperature increased to 60 °C, about 20 °C higher than that of free β-galactosidase, which was helpful for enhancing the reaction rate and GOS production.
Collapse
Affiliation(s)
- Jin An
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Lebin Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Lijuan Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Dawen Liu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Huiling Cheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Hengwei Wang
- Innovation & Application Institute, Zhejiang Ocean University , Zhoushan 316022, China
| | - Muhammad Zohaib Nawaz
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
49
|
Córdova A, Astudillo C, Giorno L, Guerrero C, Conidi C, Illanes A, Cassano A. Nanofiltration potential for the purification of highly concentrated enzymatically produced oligosaccharides. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2015.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Córdova A, Astudillo C, Vera C, Guerrero C, Illanes A. Performance of an ultrafiltration membrane bioreactor (UF-MBR) as a processing strategy for the synthesis of galacto-oligosaccharides at high substrate concentrations. J Biotechnol 2016; 223:26-35. [DOI: 10.1016/j.jbiotec.2016.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/19/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
|