1
|
Sukwong P, Sunwoo IY, Jeong DY, Kim SR, Jeong GT, Kim SK. Enhancement of bioethanol production from Gracilaria verrucosa by Saccharomyces cerevisiae through the overexpression of SNR84 and PGM2. Bioprocess Biosyst Eng 2019; 42:1421-1433. [PMID: 31055665 DOI: 10.1007/s00449-019-02139-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022]
Abstract
A total monosaccharide concentration of 47.0 g/L from 12% (w/v) Gracilaria verrucosa was obtained by hyper thermal acid hydrolysis with 0.2 M HCl at 140°C for 15 min and enzymatic saccharification with CTec2. To improve galactose utilization, we overexpressed two genes, SNR84 and PGM2, in a Saccharomyces cerevisiae CEN-PK2 using CRISPR/Cas-9. The overexpression of both SNR84 and PGM2 improved galactose utilization and ethanol production compared to the overexpression of each gene alone. The overexpression of both SNR84 and PGM2 and of PGM2 and SNR84 singly in S. cerevisiae CEN-PK2 Cas9 produced 20.0, 18.5, and 16.5 g/L ethanol with ethanol yield (YEtOH) values of 0.43, 0.39, and 0.35, respectively. However, S. cerevisiae CEN-PK2 adapted to high concentration of galactose consumed galactose completely and produced 22.0 g/L ethanol at a YEtOH value of 0.47. The overexpression of both SNR84 and PGM2 increased the transcriptional levels of GAL and regulatory genes; however, the transcriptional levels of these genes were lower than those in S. cerevisiae adapted to high galactose concentrations.
Collapse
Affiliation(s)
- Pailin Sukwong
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea
| | - In Yung Sunwoo
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea
| | - Deok Yeol Jeong
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 37224, South Korea
| | - Soo Rin Kim
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 37224, South Korea
| | - Gwi-Taek Jeong
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea
| | - Sung-Koo Kim
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
2
|
Feng K, Costa J, Edwards JS. Next-generation sequencing library construction on a surface. BMC Genomics 2018; 19:416. [PMID: 29848309 PMCID: PMC5975494 DOI: 10.1186/s12864-018-4797-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
Background Next-generation sequencing (NGS) has revolutionized almost all fields of biology, agriculture and medicine, and is widely utilized to analyse genetic variation. Over the past decade, the NGS pipeline has been steadily improved, and the entire process is currently relatively straightforward. However, NGS instrumentation still requires upfront library preparation, which can be a laborious process, requiring significant hands-on time. Herein, we present a simple but robust approach to streamline library preparation by utilizing surface bound transposases to construct DNA libraries directly on a flowcell surface. Results The surface bound transposases directly fragment genomic DNA while simultaneously attaching the library molecules to the flowcell. We sequenced and analysed a Drosophila genome library generated by this surface tagmentation approach, and we showed that our surface bound library quality was comparable to the quality of the library from a commercial kit. In addition to the time and cost savings, our approach does not require PCR amplification of the library, which eliminates potential problems associated with PCR duplicates. Conclusions We described the first study to construct libraries directly on a flowcell. We believe our technique could be incorporated into the existing Illumina sequencing pipeline to simplify the workflow, reduce costs, and improve data quality.
Collapse
Affiliation(s)
- Kuan Feng
- Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Justin Costa
- Special Projects, Centrillion Technologies, Palo Alto, CA, 94303, USA
| | - Jeremy S Edwards
- Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Internal Medicine, Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA. .,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA. .,University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Ogunnaike BA, Gelmi CA, Edwards JS. A probabilistic framework for microarray data analysis: Fundamental probability models and statistical inference. J Theor Biol 2010; 264:211-22. [DOI: 10.1016/j.jtbi.2010.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 12/07/2009] [Accepted: 02/12/2010] [Indexed: 11/29/2022]
|
4
|
Chetverina HV, Chetverin AB. Nanocolonies: Detection, cloning, and analysis of individual molecules. BIOCHEMISTRY (MOSCOW) 2009; 73:1361-87. [DOI: 10.1134/s0006297908130014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ, Luo S, Zhang L, van Velkinburgh JC, Farmer AD, Lewis S, Beavis WD, Schilkey FD, Virk SM, Black CF, Myers MK, Mader LC, Langley RJ, Utsey JP, Kim RW, Roberts RC, Khalsa SK, Garcia M, Ambriz-Griffith V, Harlan R, Czika W, Martin S, Wolfinger RD, Perrone-Bizzozero NI, Schroth GP, Kingsmore SF. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLoS One 2008; 3:e3625. [PMID: 18985160 PMCID: PMC2576459 DOI: 10.1371/journal.pone.0003625] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/10/2008] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a common, disabling mental illness with high heritability but complex, poorly understood genetic etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read, shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200 transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical, sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls. Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-represented among differentially expressed genes. Twenty three genes with altered expression and involvement in presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for dysfunction in cerebellar cortex in SCZ.
Collapse
Affiliation(s)
- Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Neil A. Miller
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | | | - Ingrid E. Lindquist
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Gregory D. May
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Jim J. Huntley
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Shujun Luo
- Illumina Inc., Hayward, California, United States of America
| | - Lu Zhang
- Illumina Inc., Hayward, California, United States of America
| | | | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Sharon Lewis
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - William D. Beavis
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Selene M. Virk
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - C. Forrest Black
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - M. Kathy Myers
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Lar C. Mader
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Ray J. Langley
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - John P. Utsey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Ryan W. Kim
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Rosalinda C. Roberts
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sat Kirpal Khalsa
- Northern New Mexico College, Española, New Mexico, United States of America
| | - Meredith Garcia
- Northern New Mexico College, Española, New Mexico, United States of America
| | | | - Richard Harlan
- Northern New Mexico College, Española, New Mexico, United States of America
| | - Wendy Czika
- SAS Institute, Cary, North Carolina, United States of America
| | - Stanton Martin
- SAS Institute, Cary, North Carolina, United States of America
| | | | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Gary P. Schroth
- Illumina Inc., Hayward, California, United States of America
| | - Stephen F. Kingsmore
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
6
|
Chetverin AB, Chetverina HV. Molecular Colony Technique: A New Tool for Biomedical Research and Clinical Practice. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2008; 82:219-55. [DOI: 10.1016/s0079-6603(08)00007-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Rieger C, Poppino R, Sheridan R, Moley K, Mitra R, Gottlieb D. Polony analysis of gene expression in ES cells and blastocysts. Nucleic Acids Res 2007; 35:e151. [PMID: 18073198 PMCID: PMC2190707 DOI: 10.1093/nar/gkm1076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Expression profiling of stem cells is challenging due to their small numbers and heterogeneity. The PCR colony (polony) approach has theoretical advantages as an assay for stem cells but has not been applied to small numbers of cells. An assay has been developed that is sensitive enough to detect mRNAs from small numbers of ES cells and from fractions of a single mouse blastocyst. Genes assayed include Oct3, Rex1, Nanog, Cdx2 and GLUT-1. The assay is highly sensitive so that multiple mRNAs from a single blastocyst were easily detected in the same assay. In its present version, the assay is an attractive alternative to conventional RT–PCR for profiling small populations of stem cells. The assay is also amenable to improvements that will increase its sensitivity and ability to analyze many cDNAs simultaneously.
Collapse
Affiliation(s)
- C Rieger
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
8
|
Parallel analysis of tetramerization domain mutants of the human p53 protein using PCR colonies. Genomic Med 2007; 1:113-24. [PMID: 18923936 DOI: 10.1007/s11568-007-9011-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 08/01/2007] [Indexed: 01/21/2023] Open
Abstract
A highly-parallel yeast functional assay, capable of screening approximately 100-1,000 mutants in parallel and designed to screen the activity of transcription activator proteins, was utilized to functionally characterize tetramerization domain mutants of the human p53 transcription factor and tumor suppressor protein. A library containing each of the 19 possible single amino acid substitutions (57 mutants) at three positions in the tetramerization domain of the human p53 protein, was functionally screened in Saccharomyces cerevisiae. Amino acids Leu330 and Ile332, whose side chains form a portion of a hydrophobic pocket that stabilizes the active p53 tetramer, were found to tolerate most hydrophobic amino acid substitutions while hydrophilic substitutions resulted in the inactivation of the protein. Amino acid Gln331 tolerated essentially all mutations. Importantly, highly parallel mutagenesis and cloning techniques were utilized which, in conjunction with recently reported highly parallel DNA sequencing methods, would be capable of increasing throughput an additional 2-3 orders of magnitude.
Collapse
|
9
|
|
10
|
Fredlake CP, Hert DG, Mardis ER, Barron AE. What is the future of electrophoresis in large-scale genomic sequencing? Electrophoresis 2006; 27:3689-702. [PMID: 17031784 DOI: 10.1002/elps.200600408] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although a finished human genome reference sequence is now available, the ability to sequence large, complex genomes remains critically important for researchers in the biological sciences, and in particular, continued human genomic sequence determination will ultimately help to realize the promise of medical care tailored to an individual's unique genetic identity. Many new technologies are being developed to decrease the costs and to dramatically increase the data acquisition rate of such sequencing projects. These new sequencing approaches include Sanger reaction-based technologies that have electrophoresis as the final separation step as well as those that use completely novel, nonelectrophoretic methods to generate sequence data. In this review, we discuss the various advances in sequencing technologies and evaluate the current limitations of novel methods that currently preclude their complete acceptance in large-scale sequencing projects. Our primary goal is to analyze and predict the continuing role of electrophoresis in large-scale DNA sequencing, both in the near and longer term.
Collapse
Affiliation(s)
- Christopher P Fredlake
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
11
|
Goodkind JR, Edwards JS. Gene expression measurement technologies: innovations and ethical considerations. Comput Chem Eng 2005. [DOI: 10.1016/j.compchemeng.2004.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Merritt J, Butz JA, Ogunnaike BA, Edwards JS. Parallel analysis of mutant human glucose 6-phosphate dehydrogenase in yeast using PCR colonies. Biotechnol Bioeng 2005; 92:519-31. [PMID: 16193512 DOI: 10.1002/bit.20726] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We demonstrate a highly parallel strategy to analyze the impact of single nucleotide mutations on protein function. Using our method, it is possible to screen a population and quickly identify a subset of functionally interesting mutants. Our method utilizes a combination of yeast functional complementation, growth competition of mutant pools, and polymerase colonies. A defined mutant human glucose-6-phosphate-dehydrogenase library was constructed which contains all possible single nucleotide missense mutations in the eight-residue glucose-6-phosphate binding peptide of the enzyme. Mutant human enzymes were expressed in a zwf1 (gene encoding yeast homologue) deletion strain of Saccharomyces cerevisiae. Growth rates of the 54 mutant strains arising from this library were measured in parallel in conditions selective for active hG6PD. Several residues were identified which tolerated no mutations (Asp200, His201 and Lys205) and two (Ile199 and Leu203) tolerated several substitutions. Arg198, Tyr202, and Gly204 tolerated only 1-2 specific substitutions. Generalizing from the positions of tolerated and non-tolerated amino acid substitutions, hypotheses were generated about the functional role of specific residues, which could, potentially, be tested using higher resolution/lower throughput methods.
Collapse
Affiliation(s)
- Joshua Merritt
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
13
|
Meyers BC, Galbraith DW, Nelson T, Agrawal V. Methods for transcriptional profiling in plants. Be fruitful and replicate. PLANT PHYSIOLOGY 2004; 135:637-52. [PMID: 15173570 PMCID: PMC514100 DOI: 10.1104/pp.104.040840] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 03/19/2004] [Accepted: 03/19/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Blake C Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA.
| | | | | | | |
Collapse
|