1
|
Hormozi Jangi SR. Developing a label-free full-range highly selective pH nanobiosensor using a novel high quantum yield pH-responsive activated-protein-protected gold nanocluster prepared by a novel ultrasonication-protein-assisted procedure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124829. [PMID: 39018671 DOI: 10.1016/j.saa.2024.124829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
A novel, label-free, ultra-selective, reproducible, and reversible pH nanobiosensor was developed for analyzing biofluids, food samples, and real water media utilizing a novel activated-protein-protected gold nanocluster with an ultra-narrow emission band, termed as ABSA-AuNCs. The ABSA-AuNCs were synthesized via a novel ultrasonication-protein-assisted procedure, for the first time, using activated bovine serum albumin as both capping and reducing agents. The ABSA-AuNCs revealed a highly narrow symmetric emission spectrum (λmax = 330.0 nm upon excitation at 312-317 nm), and a highly narrow size distribution of 2.9-3.7 nm along with an enhanced quantum yield of 28.3 %. At present, with a full width at half maximum (FWHM) of 14.0 nm, ABSA-AuNCs have the narrowest bandwidth of fluorescent nanomaterials reported to date. The ABSA-AuNCs were characterized for their stability, size, morphology, crystallinity, structural, and optical properties. The ABSA-AuNCs were found to be appropriate for constructing a label-free ultraselective pH nanobiosensor. A linear range over 2.0-11.0, fast response time of less than 5 s, and long-term stability of 99.7 % after 500 min were achieved. The %RSD for repeatability, intra-day reproducibility, and inter-day reproducibility was found to be 1.4 %, 1.7 %, and 2.3 %, in order, to reveal high repeatable and reproducible results. The selectivity of the pH biosensor was evaluated upon the addition of different interferents, indicating an excellent pH selectivity for the ABSA-AuNCs. Real sample analysis proved the feasibility of the ABSA-AuNCs for accurate, precise, and reliable pH sensing in biofluids (undiluted blood and urine), a variety of food samples, and several real water samples.
Collapse
|
2
|
Hormozi Jangi SR. Developing a novel ultraselective and ultrasensitive label-free direct spectrofluorimetric nanobiosensor for direct highly fast field detection of explosive triacetone triperoxide. Anal Chim Acta 2024; 1320:343016. [PMID: 39142787 DOI: 10.1016/j.aca.2024.343016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Direct detection of the notorious explosive triacetone triperoxide (TATP) is very difficult because it lacks facile ionization and UV absorbance or fluorescence. Besides, the current indirect methods are time-consuming and need a pre-step for TATP cleavage to hydrogen peroxide. Moreover, they commonly show significant false-positive results in the presence of some camouflage which limits their field applications. Herein, for the first time, a novel label-free field-applicable spectrofluorimetric nanobiosensor was developed for direct TATP detection using a novel activated-protein protected gold nanocluster (ABSA-AuNCs; QY = 28.3 %) synthesized by a combined protein-assisted-ultrasonication procedure. RESULTS The ABSA-AuNCs revealed a fluorescence spectrum centered at 330.0 nm which was significantly quenched by TATP (binding constant = 154.06 M-1; ΔG = -12.5 kJ mol-1; E(%) = 88.5 %). This phenomenon was used as a basis for direct TATP quantification, providing a working range of 0.01-40.0 mg L-1 and a detection limit of 6.7 μg L-1 which is the lowest LOD provided for TATP detection up to now. A %RSD of 0.9 % and 1.56 % was obtained for repeatability and inter-day reproducibility, respectively. The selectivity was checked against a variety of camouflages, revealing ultra-selectivity. Several synthetic samples prepared by several camouflages and real samples (clay soil and real water media) were analyzed, revealing quantitative recoveries of TATP. SIGNIFICANCE During the production of the notorious explosive TATP, it can be discharged into water and soil. This novel method eliminated the false-positive results of traditional methods and is applicable for direct quantitative detection of camouflaged TATP and its residues in real soil and water samples in a highly short response time (2 min). The camouflaged TATP analysis is important for tracking the terrorist attacks in field conditions and analysis of soil and water can provide a first indication of the location of the production site.
Collapse
|
3
|
Zeng YJ, Wu XL, Yang HR, Zong MH, Lou WY. 1,4-α-Glucosidase from Fusarium solani for Controllable Biosynthesis of Silver Nanoparticles and Their Multifunctional Applications. Int J Mol Sci 2023; 24:ijms24065865. [PMID: 36982937 PMCID: PMC10057468 DOI: 10.3390/ijms24065865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
In the study, monodispersed silver nanoparticles (AgNPs) with an average diameter of 9.57 nm were efficiently and controllably biosynthesized by a reductase from Fusarium solani DO7 only in the presence of β-NADPH and polyvinyl pyrrolidone (PVP). The reductase responsible for AgNP formation in F. solani DO7 was further confirmed as 1,4-α-glucosidase. Meanwhile, based on the debate on the antibacterial mechanism of AgNPs, this study elucidated in further depth that antibacterial action of AgNPs was achieved by absorbing to the cell membrane and destabilizing the membrane, leading to cell death. Moreover, AgNPs could accelerate the catalytic reaction of 4-nitroaniline, and 86.9% of 4-nitroaniline was converted to p-phenylene diamine in only 20 min by AgNPs of controllable size and morphology. Our study highlights a simple, green, and cost-effective process for biosynthesizing AgNPs with uniform sizes and excellent antibacterial activity and catalytic reduction of 4-nitroaniline.
Collapse
Affiliation(s)
- Ying-Jie Zeng
- College of Food Science & Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Hui-Rong Yang
- College of Food Science & Technology, Southwest Minzu University, Chengdu 610041, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
4
|
Jafari M, Tashkhourian J, Absalan G. Chiral recognition of naproxen enantiomers based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:77-84. [PMID: 28549294 DOI: 10.1016/j.saa.2017.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/10/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
A simple, fast and green method for chiral recognition of S- and R-naproxen has been introduced. The method was based on quenching of the fluorescence intensity of bovine serum albumin-stabilized gold nanoclusters in the presence of naproxen enantiomers. The quenching intensity in the presence of S-naproxen was higher than R-naproxen when phosphate buffer solution at pH7.0 was used. The chiral recognition occurred due to steric effect between bovine serum albumin conformation and naproxen enantiomers. Two linear determination range were established as 7.4×10-7-9.1×10-6 and 9.1×10-6-3.1×10-5molL-1 for both enantiomers and detection limits of 7.4×10-8molL-1 and 9.5×10-8molL-1 were obtained for S- and R-naproxen, respectively. The developed method showed good repeatability and reproducibility for the analysis of a synthetic sample. To make the procedure applicable to biological samples, the removal of heavy metals from the sample is suggested before any analytical attempt.
Collapse
Affiliation(s)
- Marzieh Jafari
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Javad Tashkhourian
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran.
| | - Ghodratollah Absalan
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran.
| |
Collapse
|
5
|
Barbasz A, Oćwieja M, Walas S. Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells. Toxicol Mech Methods 2016; 27:58-71. [DOI: 10.1080/15376516.2016.1251520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anna Barbasz
- Institute of Biology, Pedagogical University of Cracow, Cracow, Poland
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, Poland
| | - Stanisław Walas
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| |
Collapse
|
6
|
Zhao P, He K, Han Y, Zhang Z, Yu M, Wang H, Huang Y, Nie Z, Yao S. Near-infrared dual-emission quantum dots-gold nanoclusters nanohybrid via co-template synthesis for ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and in vivo. Anal Chem 2016; 87:9998-10005. [PMID: 26358143 DOI: 10.1021/acs.analchem.5b02614] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Near-infrared (NIR) quantum dots (QDs) have emerged as an attractive bioimaging toolkit for exploring biological events because they can provide deep imaging penetration and low fluorescence background. However, the quantitation process of such NIR QDs generally relies on single-emission intensity change, which is susceptible to a variety of environmental factors. Herein, for the first time, we proposed a protein-directed co-template strategy to synthesize a NIR-based, dual-emission fluorescent nanohybrid (DEFN) constructed from far-red gold nanoclusters and NIR PbS QDs (AuNCs-PbS-QDs). The convenient protein-directed co-template synthesis avoids the tedious chemical coupling and modification required in conventional preparation approaches of DEFNs. Additionally, the dual-emission signals of AuNCs-PbS-QDs exhibit two well-resolved emission peaks (640 and 813 nm) separated by 173 nm, which can eliminate environmental interferences by the built-in correction of ratiometric signal, resulting in a more favorable system for bioimaging and biosensing. Next, the target-responsive capability of this NIR-based DEFN to ascorbic acid (AA) was discovered, enabling the proposed DEFN to ratiometrically detect AA with a linear range of 3-40 μM and a detection limit of 1.5 μM. This DEFN sensor possesses high selectivity, rapid response, and excellent photostability. Moreover, the feasibility of this NIR nanosensor has been fully proved by the ratiometric detection of AA for fruit internal quality assessment, in vitro cellular imaging, and in vivo imaging in nude mice.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and ‡College of Biology, Hunan University , Changsha, People's Republic of China
| | - Kaiyu He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and ‡College of Biology, Hunan University , Changsha, People's Republic of China
| | - Yitao Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and ‡College of Biology, Hunan University , Changsha, People's Republic of China
| | - Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and ‡College of Biology, Hunan University , Changsha, People's Republic of China
| | - Mengze Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and ‡College of Biology, Hunan University , Changsha, People's Republic of China
| | - Honghui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and ‡College of Biology, Hunan University , Changsha, People's Republic of China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and ‡College of Biology, Hunan University , Changsha, People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and ‡College of Biology, Hunan University , Changsha, People's Republic of China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and ‡College of Biology, Hunan University , Changsha, People's Republic of China
| |
Collapse
|
7
|
Silver nanoparticles synthesis using H2 as reducing agent in toluene–supercritical CO2 microemulsion. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2014.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Gebregeorgis A, Bhan C, Wilson O, Raghavan D. Characterization of Silver/Bovine Serum Albumin (Ag/BSA) nanoparticles structure: Morphological, compositional, and interaction studies. J Colloid Interface Sci 2013; 389:31-41. [DOI: 10.1016/j.jcis.2012.08.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/16/2012] [Accepted: 08/18/2012] [Indexed: 01/29/2023]
|
9
|
Rodríguez-Galván A, Contreras-Torres FF, Basiuk EV, Heredia A, Basiuk VA. Deposition of silver nanoparticles onto human serum albumin-functionalised multi-walled carbon nanotubes. CAN J CHEM ENG 2012. [DOI: 10.1002/cjce.21657] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Zhang J, Han B. Supercritical CO2-continuous microemulsions and compressed CO2-expanded reverse microemulsions. J Supercrit Fluids 2009. [DOI: 10.1016/j.supflu.2008.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Depalo N, Mallardi A, Comparelli R, Striccoli M, Agostiano A, Curri ML. Luminescent nanocrystals in phospholipid micelles for bioconjugation: An optical and structural investigation. J Colloid Interface Sci 2008; 325:558-66. [DOI: 10.1016/j.jcis.2008.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 11/29/2022]
|
12
|
Li W, Zhang J, Zhang C, Feng X, Han B, Yang G. Synthesis of alpha-chymotrypsin/polymer composites by a reverse micelle/gas antisolvent method. Colloids Surf B Biointerfaces 2007; 59:11-5. [PMID: 17532613 DOI: 10.1016/j.colsurfb.2007.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 04/03/2007] [Accepted: 04/10/2007] [Indexed: 11/18/2022]
Abstract
Alpha-chymotrypsin (CT)/polyvinylpyrrolidone (PVP) composites was synthesized by combination of reverse micelles and CO(2). In this method, the two reverse micellar solutions containing CT and PVP, respectively, were first mixed, then compressed CO(2) was used as an antisolvent to precipitate the CT and PVP simultaneously and CT/PVP composites were successfully prepared. The morphology of the obtained CT/PVP composites was characterized by transmission electron microscopy (TEM). The FTIR spectra of the composites showed that there was interaction between CT and PVP. The storage activity of the enzyme immobilized on the polymer by this method was higher than that of the pure enzyme. This method has some advantages and can be easily applied to the synthesis of some other enzyme/polymer composites.
Collapse
Affiliation(s)
- Wei Li
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | | | | | |
Collapse
|