1
|
Karlsen ST, Rau MH, Sánchez BJ, Jensen K, Zeidan AA. From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry. FEMS Microbiol Rev 2023; 47:fuad030. [PMID: 37286882 PMCID: PMC10337747 DOI: 10.1093/femsre/fuad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.
Collapse
Affiliation(s)
- Signe T Karlsen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Martin H Rau
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Benjamín J Sánchez
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Kristian Jensen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Ahmad A Zeidan
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| |
Collapse
|
2
|
Henriques D, Minebois R, dos Santos D, Barrio E, Querol A, Balsa-Canto E. A Dynamic Genome-Scale Model Identifies Metabolic Pathways Associated with Cold Tolerance in Saccharomyces kudriavzevii. Microbiol Spectr 2023; 11:e0351922. [PMID: 37227304 PMCID: PMC10269563 DOI: 10.1128/spectrum.03519-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Saccharomyces kudriavzevii is a cold-tolerant species identified as a good alternative for industrial winemaking. Although S. kudriavzevii has never been found in winemaking, its co-occurrence with Saccharomyces cerevisiae in Mediterranean oaks is well documented. This sympatric association is believed to be possible due to the different growth temperatures of the two yeast species. However, the mechanisms behind the cold tolerance of S. kudriavzevii are not well understood. In this work, we propose the use of a dynamic genome-scale model to compare the metabolic routes used by S. kudriavzevii at two temperatures, 25°C and 12°C, to decipher pathways relevant to cold tolerance. The model successfully recovered the dynamics of biomass and external metabolites and allowed us to link the observed phenotype with exact intracellular pathways. The model predicted fluxes that are consistent with previous findings, but it also led to novel results which we further confirmed with intracellular metabolomics and transcriptomic data. The proposed model (along with the corresponding code) provides a comprehensive picture of the mechanisms of cold tolerance that occur within S. kudriavzevii. The proposed strategy offers a systematic approach to explore microbial diversity from extracellular fermentation data at low temperatures. IMPORTANCE Nonconventional yeasts promise to provide new metabolic pathways for producing industrially relevant compounds and tolerating specific stressors such as cold temperatures. The mechanisms behind the cold tolerance of S. kudriavzevii or its sympatric relationship with S. cerevisiae in Mediterranean oaks are not well understood. This study proposes a dynamic genome-scale model to investigate metabolic pathways relevant to cold tolerance. The predictions of the model would indicate the ability of S. kudriavzevii to produce assimilable nitrogen sources from extracellular proteins present in its natural niche. These predictions were further confirmed with metabolomics and transcriptomic data. This finding suggests that not only the different growth temperature preferences but also this proteolytic activity may contribute to the sympatric association with S. cerevisiae. Further exploration of these natural adaptations could lead to novel engineering targets for the biotechnological industry.
Collapse
Affiliation(s)
- David Henriques
- Bioprocess and Biosystems Engineering, IIM-CSIC, Vigo, Spain
| | - Romain Minebois
- Systems Biology of Yeasts of Biotechnological Interest, IATA-CSIC, Paterna, Spain
| | | | - Eladio Barrio
- Genomics Department, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Systems Biology of Yeasts of Biotechnological Interest, IATA-CSIC, Paterna, Spain
| | - Eva Balsa-Canto
- Bioprocess and Biosystems Engineering, IIM-CSIC, Vigo, Spain
| |
Collapse
|
3
|
Moimenta AR, Henriques D, Minebois R, Querol A, Balsa-Canto E. Modelling the physiological status of yeast during wine fermentation enables the prediction of secondary metabolism. Microb Biotechnol 2023; 16:847-861. [PMID: 36722662 PMCID: PMC10034642 DOI: 10.1111/1751-7915.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/28/2022] [Accepted: 01/01/2023] [Indexed: 02/02/2023] Open
Abstract
Saccharomyces non-cerevisiae yeasts are gaining momentum in wine fermentation due to their potential to reduce ethanol content and achieve attractive aroma profiles. However, the design of the fermentation process for new species requires intensive experimentation. The use of mechanistic models could automate process design, yet to date, most fermentation models have focused on primary metabolism. Therefore, these models do not provide insight into the production of secondary metabolites essential for wine quality, such as aromas. In this work, we formulate a continuous model that accounts for the physiological status of yeast, that is, exponential growth, growth under nitrogen starvation and transition to stationary or decay phases. To do so, we assumed that nitrogen starvation is associated with carbohydrate accumulation and the induction of a set of transcriptional changes associated with the stationary phase. The model accurately described the dynamics of time series data for biomass and primary and secondary metabolites obtained for various yeast species in single culture fermentations. We also used the proposed model to explore different process designs, showing how the addition of nitrogen could affect the aromatic profile of wine. This study underlines the potential of incorporating yeast physiology into batch fermentation modelling and provides a new means of automating process design.
Collapse
Affiliation(s)
- Artai R Moimenta
- Bioprocess and Biosystems Engineering, IIM-CSIC, Vigo, Spain
- Applied Mathematics II, University of Vigo, Vigo, Spain
| | - David Henriques
- Bioprocess and Biosystems Engineering, IIM-CSIC, Vigo, Spain
| | - Romain Minebois
- Systems Biology of Yeasts of Biotechnological Interest, IATA-CSIC, Paterna, Spain
| | - Amparo Querol
- Systems Biology of Yeasts of Biotechnological Interest, IATA-CSIC, Paterna, Spain
| | - Eva Balsa-Canto
- Bioprocess and Biosystems Engineering, IIM-CSIC, Vigo, Spain
| |
Collapse
|
4
|
Nonlinear programming reformulation of dynamic flux balance analysis models. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Gencturk E, Ulgen KO. Understanding HMF inhibition on yeast growth coupled with ethanol production for the improvement of bio-based industrial processes. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Moreno-Paz S, Schmitz J, Martins Dos Santos VAP, Suarez-Diez M. Enzyme-constrained models predict the dynamics of Saccharomyces cerevisiae growth in continuous, batch and fed-batch bioreactors. Microb Biotechnol 2022; 15:1434-1445. [PMID: 35048533 PMCID: PMC9049605 DOI: 10.1111/1751-7915.13995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022] Open
Abstract
Genome‐scale, constraint‐based models (GEM) and their derivatives are commonly used to model and gain insights into microbial metabolism. Often, however, their accuracy and predictive power are limited and enable only approximate designs. To improve their usefulness for strain and bioprocess design, we studied here their capacity to accurately predict metabolic changes in response to operational conditions in a bioreactor, as well as intracellular, active reactions. We used flux balance analysis (FBA) and dynamic FBA (dFBA) to predict growth dynamics of the model organism Saccharomyces cerevisiae under different industrially relevant conditions. We compared simulations with the latest developed GEM for this organism (Yeast8) and its enzyme‐constrained version (ecYeast8) herein described with experimental data and found that ecYeast8 outperforms Yeast8 in all the simulations. EcYeast8 was able to predict well‐known traits of yeast metabolism including the onset of the Crabtree effect, the order of substrate consumption during mixed carbon cultivation and production of a target metabolite. We showed how the combination of ecGEM and dFBA links reactor operation and genetic modifications to flux predictions, enabling the prediction of yields and productivities of different strains and (dynamic) production processes. Additionally, we present flux sampling as a tool to analyse flux predictions of ecGEM, of major importance for strain design applications. We showed that constraining protein availability substantially improves accuracy of the description of the metabolic state of the cell under dynamic conditions. This therefore enables more realistic and faithful designs of industrially relevant cell‐based processes and, thus, the usefulness of such models.
Collapse
Affiliation(s)
- Sara Moreno-Paz
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Joep Schmitz
- DSM Biotechnology Center, DSM, Delft, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,Laboratory of Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands.,Lifeglimmer GmbH, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
|
8
|
Abstract
Dynamic flux balance models (DFBM) are used in this study to infer metabolite concentrations that are difficult to measure online. The concentrations are estimated based on few available measurements. To account for uncertainty in initial conditions the DFBM is converted into a variable structure system based on a multiparametric linear programming (mpLP) where different regions of the state space are described by correspondingly different state space models. Using this variable structure system, a special set membership-based estimation approach is proposed to estimate unmeasured concentrations from few available measurements. For unobservable concentrations, upper and lower bounds are estimated. The proposed set membership estimation was applied to batch fermentation of E. coli based on DFBM.
Collapse
|
9
|
Monod model is insufficient to explain biomass growth in nitrogen-limited yeast fermentation. Appl Environ Microbiol 2021; 87:e0108421. [PMID: 34347510 DOI: 10.1128/aem.01084-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is an essential microorganism in food biotechnology; particularly, in wine and beer making. During wine fermentation, yeasts transform sugars present in the grape juice into ethanol and carbon dioxide. The process occurs in batch conditions and is, for the most part, an anaerobic process. Previous studies linked limited-nitrogen conditions with problematic fermentations, with negative consequences for the performance of the process and the quality of the final product. It is, therefore, of the highest interest to anticipate such problems through mathematical models. Here we propose a model to explain fermentations under nitrogen-limited anaerobic conditions. We separated the biomass formation into two phases: growth and carbohydrate accumulation. Growth was modelled using the well-known Monod equation while carbohydrate accumulation was modelled by an empirical function, analogous to a proportional controller activated by the limitation of available nitrogen. We also proposed to formulate the fermentation rate as a function of the total protein content when relevant data are available. The final model was used to successfully explain experiments taken from the literature, performed under normal and nitrogen-limited conditions. Our results revealed that Monod model is insufficient to explain biomass formation kinetics in nitrogen-limited fermentations of S. cerevisiae. The goodness-of-fit of the herewith proposed model is superior to that of previously published models, offering the means to predict, and thus control fermentations. Importance: Problematic fermentations still occur in the winemaking industrial practise. Problems include sluggish rates of fermentation, which have been linked to insufficient levels of assimilable nitrogen. Data and relevant models can help anticipate poor fermentation performance. In this work, we proposed a model to predict biomass growth and fermentation rate under nitrogen-limited conditions and tested its performance with previously published experimental data. Our results show that the well-known Monod equation does not suffice to explain biomass formation.
Collapse
|
10
|
A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the Saccharomyces Genus in Fermentation. mSystems 2021; 6:e0026021. [PMID: 34342535 PMCID: PMC8407324 DOI: 10.1128/msystems.00260-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. IMPORTANCE Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. To test and illustrate its performance, we considered the comparative metabolism of three yeast strains of the Saccharomyces genus in rich medium fermentation. The study revealed that cryotolerant Saccharomyces species might use the γ-aminobutyric acid (GABA) shunt and the production of reducing equivalents as alternative routes to achieve redox balance, a novel biological insight worth being explored further. The proposed model (along with the provided code) can be applied to a wide range of batch processes started with different yeast species and media, offering a systematic and rational approach to prospect nonconventional yeast species metabolism and engineering novel cell factories.
Collapse
|
11
|
Cardillo AG, Castellanos MM, Desailly B, Dessoy S, Mariti M, Portela RMC, Scutella B, von Stosch M, Tomba E, Varsakelis C. Towards in silico Process Modeling for Vaccines. Trends Biotechnol 2021; 39:1120-1130. [PMID: 33707043 DOI: 10.1016/j.tibtech.2021.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023]
Abstract
Chemical, manufacturing, and control development timelines occupy a significant part of vaccine end-to-end development. In the on-going race for accelerating timelines, in silico process development constitutes a viable strategy that can be achieved through an artificial intelligence (AI)-driven or a mechanistically oriented approach. In this opinion, we focus on the mechanistic option and report on the modeling competencies required to achieve it. By inspecting the most frequent vaccine process units, we identify fluid mechanics, thermodynamics and transport phenomena, intracellular modeling, hybrid modeling and data science, and model-based design of experiments as the pillars for vaccine development. In addition, we craft a generic pathway for accommodating the modeling competencies into an in silico process development strategy.
Collapse
Affiliation(s)
| | | | - Benoit Desailly
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Sandrine Dessoy
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Marco Mariti
- Technical Research and Development, GSK, 1 Via Fiorentina, 53100 Siena, SI, Italy
| | - Rui M C Portela
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Bernadette Scutella
- Technical Research and Development, GSK, 14200 Shady Grove Rd, Rockville, MD 20850, USA
| | - Moritz von Stosch
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium; Current affiliation: Data How AG, Zürichstrasse 137, 8600 Dübendorf, Switzerland
| | - Emanuele Tomba
- Technical Research and Development, GSK, 1 Via Fiorentina, 53100 Siena, SI, Italy
| | - Christos Varsakelis
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium.
| |
Collapse
|
12
|
Xia J, Wang G, Fan M, Chen M, Wang Z, Zhuang Y. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Bridging substrate intake kinetics and bacterial growth phenotypes with flux balance analysis incorporating proteome allocation. Sci Rep 2020; 10:4283. [PMID: 32152336 PMCID: PMC7062752 DOI: 10.1038/s41598-020-61174-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/24/2020] [Indexed: 11/08/2022] Open
Abstract
Empirical kinetic models such as the Monod equation have been widely applied to relate the cell growth with substrate availability. The Monod equation shares a similar form with the mechanistically-based Michaelis-Menten kinetics for enzymatic processes, which has provoked long-standing and un-concluded conjectures on their relationship. In this work, we integrated proteome allocation principles into a Flux Balance Analysis (FBA) model of Escherichia coli, which quantitatively revealed potential mechanisms that underpin the phenomenological Monod parameters: the maximum specific growth rate could be dictated by the abundance of growth-controlling proteome and growth-pertinent proteome cost; more importantly, the Monod constant (Ks) was shown to relate to the Michaelis constant for substrate transport (Km,g), with the link being dependent on the cell's metabolic strategy. Besides, the proposed model was able to predict glucose uptake rate at given external glucose concentration through the size of available proteome resource for substrate transport and its enzymatic cost, while growth rate and acetate overflow were accurately simulated for two E. coli strains. Bridging the enzymatic kinetics of substrate intake and overall growth phenotypes, this work offers a mechanistic interpretation to the empirical Monod law, and demonstrates the potential of coupling local and global cellular constrains in predictive modelling.
Collapse
|
14
|
Morita K, Matsuda F, Okamoto K, Ishii J, Kondo A, Shimizu H. Repression of mitochondrial metabolism for cytosolic pyruvate-derived chemical production in Saccharomyces cerevisiae. Microb Cell Fact 2019; 18:177. [PMID: 31615527 PMCID: PMC6794801 DOI: 10.1186/s12934-019-1226-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/09/2019] [Indexed: 01/24/2023] Open
Abstract
Background Saccharomyces cerevisiae is a suitable host for the industrial production of pyruvate-derived chemicals such as ethanol and 2,3-butanediol (23BD). For the improvement of the productivity of these chemicals, it is essential to suppress the unnecessary pyruvate consumption in S. cerevisiae to redirect the metabolic flux toward the target chemical production. In this study, mitochondrial pyruvate transporter gene (MPC1) or the essential gene for mitophagy (ATG32) was knocked-out to repress the mitochondrial metabolism and improve the production of pyruvate-derived chemical in S. cerevisiae. Results The growth rates of both aforementioned strains were 1.6-fold higher than that of the control strain. 13C-metabolic flux analysis revealed that both strains presented similar flux distributions and successfully decreased the tricarboxylic acid cycle fluxes by 50% compared to the control strain. Nevertheless, the intracellular metabolite pool sizes were completely different, suggesting distinct metabolic effects of gene knockouts in both strains. This difference was also observed in the test-tube culture for 23BD production. Knockout of ATG32 revealed a 23.6-fold increase in 23BD titer (557.0 ± 20.6 mg/L) compared to the control strain (23.5 ± 12.8 mg/L), whereas the knockout of MPC1 revealed only 14.3-fold increase (336.4 ± 113.5 mg/L). Further investigation using the anaerobic high-density fermentation test revealed that the MPC1 knockout was more effective for ethanol production than the 23BD production. Conclusion These results suggest that the engineering of the mitochondrial transporters and membrane dynamics were effective in controlling the mitochondrial metabolism to improve the productivities of chemicals in yeast cytosol.
Collapse
Affiliation(s)
- Keisuke Morita
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumio Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Okamoto
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Shimizu
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Serrano-Bermúdez LM, González Barrios AF, Montoya D. Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content. PLoS One 2018; 13:e0209447. [PMID: 30571717 PMCID: PMC6301710 DOI: 10.1371/journal.pone.0209447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extensive experimentation has been conducted to increment 1,3-propanediol (PDO) production using Clostridium butyricum cultures in glycerol, but computational predictions are limited. Previously, we reconstructed the genome-scale metabolic (GSM) model iCbu641, the first such model of a PDO-producing Clostridium strain, which was validated at steady state using flux balance analysis (FBA). However, the prediction ability of FBA is limited for batch and fed-batch cultures, which are the most often employed industrial processes. RESULTS We used the iCbu641 GSM model to develop a dynamic flux balance analysis (DFBA) approach to predict the PDO production of the Colombian strain Clostridium sp IBUN 158B. First, we compared the predictions of the dynamic optimization approach (DOA), static optimization approach (SOA), and direct approach (DA). We found no differences between approaches, but the DOA simulation duration was nearly 5000 times that of the SOA and DA simulations. Experimental results at glycerol limitation and glycerol excess allowed for validating dynamic predictions of growth, glycerol consumption, and PDO formation. These results indicated a 4.4% error in PDO prediction and therefore validated the previously proposed objective functions. We performed two global sensitivity analyses, finding that the kinetic input parameters of glycerol uptake flux had the most significant effect on PDO predictions. The other input parameters evaluated during global sensitivity analysis were biomass composition (precursors and macromolecules), death constants, and the kinetic parameters of acetic acid secretion flux. These last input parameters, all obtained from other Clostridium butyricum cultures, were used to develop a population balance model (PBM). Finally, we simulated fed-batch cultures, predicting a final PDO production near to 66 g/L, almost three times the PDO predicted in the best batch culture. CONCLUSIONS We developed and validated a dynamic approach to predict PDO production using the iCbu641 GSM model and the previously proposed objective functions. This validated approach was used to propose a population model and then an increment in predictions of PDO production through fed-batch cultures. Therefore, this dynamic model could predict different scenarios, including its integration into downstream processes to predict technical-economic feasibilities and reducing the time and costs associated with experimentation.
Collapse
Affiliation(s)
- Luis Miguel Serrano-Bermúdez
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera, Bogotá D.C., Colombia
- Grupo Cundinamarca Agroambiental, Departamento de Ingeniería Ambiental, Universidad de Cundinamarca, Facatativá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá D.C., Colombia
| | - Dolly Montoya
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera, Bogotá D.C., Colombia
| |
Collapse
|
16
|
Simulation and optimization of dynamic flux balance analysis models using an interior point method reformulation. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
|
18
|
Henriques D, Alonso-Del-Real J, Querol A, Balsa-Canto E. Saccharomyces cerevisiae and S. kudriavzevii Synthetic Wine Fermentation Performance Dissected by Predictive Modeling. Front Microbiol 2018; 9:88. [PMID: 29456524 PMCID: PMC5801724 DOI: 10.3389/fmicb.2018.00088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
Wineries face unprecedented challenges due to new market demands and climate change effects on wine quality. New yeast starters including non-conventional Saccharomyces species, such as S. kudriavzevii, may contribute to deal with some of these challenges. The design of new fermentations using non-conventional yeasts requires an improved understanding of the physiology and metabolism of these cells. Dynamic modeling brings the potential of exploring the most relevant mechanisms and designing optimal processes more systematically. In this work we explore mechanisms by means of a model selection, reduction and cross-validation pipeline which enables to dissect the most relevant fermentation features for the species under consideration, Saccharomyces cerevisiae T73 and Saccharomyces kudriavzevii CR85. The pipeline involved the comparison of a collection of models which incorporate several alternative mechanisms with emphasis on the inhibitory effects due to temperature and ethanol. We focused on defining a minimal model with the minimum number of parameters, to maximize the identifiability and the quality of cross-validation. The selected model was then used to highlight differences in behavior between species. The analysis of model parameters would indicate that the specific growth rate and the transport of hexoses at initial times are higher for S. cervisiae T73 while S. kudriavzevii CR85 diverts more flux for glycerol production and cellular maintenance. As a result, the fermentations with S. kudriavzevii CR85 are typically slower; produce less ethanol but higher glycerol. Finally, we also explored optimal initial inoculation and process temperature to find the best compromise between final product characteristics and fermentation duration. Results reveal that the production of glycerol is distinctive in S. kudriavzevii CR85, it was not possible to achieve the same production of glycerol with S. cervisiae T73 in any of the conditions tested. This result brings the idea that the optimal design of mixed cultures may have an enormous potential for the improvement of final wine quality.
Collapse
Affiliation(s)
| | - Javier Alonso-Del-Real
- Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, IATA-CSIC, Valencia, Spain
| | - Amparo Querol
- Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, IATA-CSIC, Valencia, Spain
| | | |
Collapse
|
19
|
Chen J, Daniell J, Griffin D, Li X, Henson MA. Experimental testing of a spatiotemporal metabolic model for carbon monoxide fermentation with Clostridium autoethanogenum. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
A genome-scale dynamic flux balance analysis model of Streptomyces tsukubaensis NRRL18488 to predict the targets for increasing FK506 production. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Bosi E, Bacci G, Mengoni A, Fondi M. Perspectives and Challenges in Microbial Communities Metabolic Modeling. Front Genet 2017; 8:88. [PMID: 28680442 PMCID: PMC5478693 DOI: 10.3389/fgene.2017.00088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/09/2017] [Indexed: 01/31/2023] Open
Abstract
Bacteria have evolved to efficiently interact each other, forming complex entities known as microbial communities. These "super-organisms" play a central role in maintaining the health of their eukaryotic hosts and in the cycling of elements like carbon and nitrogen. However, despite their crucial importance, the mechanisms that influence the functioning of microbial communities and their relationship with environmental perturbations are obscure. The study of microbial communities was boosted by tremendous advances in sequencing technologies, and in particular by the possibility to determine genomic sequences of bacteria directly from environmental samples. Indeed, with the advent of metagenomics, it has become possible to investigate, on a previously unparalleled scale, the taxonomical composition and the functional genetic elements present in a specific community. Notwithstanding, the metagenomic approach per se suffers some limitations, among which the impossibility of modeling molecular-level (e.g., metabolic) interactions occurring between community members, as well as their effects on the overall stability of the entire system. The family of constraint-based methods, such as flux balance analysis, has been fruitfully used to translate genome sequences in predictive, genome-scale modeling platforms. Although these techniques have been initially developed for analyzing single, well-known model organisms, their recent improvements allowed engaging in multi-organism in silico analyses characterized by a considerable predictive capability. In the face of these advances, here we focus on providing an overview of the possibilities and challenges related to the modeling of metabolic interactions within a bacterial community, discussing the feasibility and the perspectives of this kind of analysis in the (near) future.
Collapse
Affiliation(s)
| | | | - Alessio Mengoni
- Department of Biology, University of FlorenceFlorence, Italy
| | | |
Collapse
|
22
|
Sánchez BJ, Nielsen J. Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr Biol (Camb) 2016; 7:846-58. [PMID: 26079294 DOI: 10.1039/c5ib00083a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published and are currently used for metabolic engineering and elucidating biological interactions. Here we review the history of yeast's GEMs, focusing on recent developments. We study how these models are typically evaluated, using both descriptive and predictive metrics. Additionally, we analyze the different ways in which all levels of omics data (from gene expression to flux) have been integrated in yeast GEMs. Relevant conclusions and current challenges for both GEM evaluation and omic integration are highlighted.
Collapse
Affiliation(s)
- Benjamín J Sánchez
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden.
| | | |
Collapse
|
23
|
Chen J, Gomez JA, Höffner K, Phalak P, Barton PI, Henson MA. Spatiotemporal modeling of microbial metabolism. BMC SYSTEMS BIOLOGY 2016; 10:21. [PMID: 26932448 PMCID: PMC4774267 DOI: 10.1186/s12918-016-0259-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/22/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Microbial systems in which the extracellular environment varies both spatially and temporally are very common in nature and in engineering applications. While the use of genome-scale metabolic reconstructions for steady-state flux balance analysis (FBA) and extensions for dynamic FBA are common, the development of spatiotemporal metabolic models has received little attention. RESULTS We present a general methodology for spatiotemporal metabolic modeling based on combining genome-scale reconstructions with fundamental transport equations that govern the relevant convective and/or diffusional processes in time and spatially varying environments. Our solution procedure involves spatial discretization of the partial differential equation model followed by numerical integration of the resulting system of ordinary differential equations with embedded linear programs using DFBAlab, a MATLAB code that performs reliable and efficient dynamic FBA simulations. We demonstrate our methodology by solving spatiotemporal metabolic models for two systems of considerable practical interest: (1) a bubble column reactor with the syngas fermenting bacterium Clostridium ljungdahlii; and (2) a chronic wound biofilm with the human pathogen Pseudomonas aeruginosa. Despite the complexity of the discretized models which consist of 900 ODEs/600 LPs and 250 ODEs/250 LPs, respectively, we show that the proposed computational framework allows efficient and robust model solution. CONCLUSIONS Our study establishes a new paradigm for formulating and solving genome-scale metabolic models with both time and spatial variations and has wide applicability to natural and engineered microbial systems.
Collapse
Affiliation(s)
- Jin Chen
- Department of Chemical Engineering, University of Massachusetts, 240 Thatcher Way, Life Science Laboratories Building, Amherst, MA, 01003, USA.
| | - Jose A Gomez
- Department of Chemical Engineering, Process Systems Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Kai Höffner
- Department of Chemical Engineering, Process Systems Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Poonam Phalak
- Department of Chemical Engineering, University of Massachusetts, 240 Thatcher Way, Life Science Laboratories Building, Amherst, MA, 01003, USA.
| | - Paul I Barton
- Department of Chemical Engineering, Process Systems Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Michael A Henson
- Department of Chemical Engineering, University of Massachusetts, 240 Thatcher Way, Life Science Laboratories Building, Amherst, MA, 01003, USA.
| |
Collapse
|
24
|
Abstract
Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated.
Collapse
Affiliation(s)
- Michael A Henson
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, U.S.A.
| |
Collapse
|
25
|
Contador CA, Shene C, Olivera A, Yoshikuni Y, Buschmann A, Andrews BA, Asenjo JA. Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock. Metab Eng Commun 2015; 2:76-84. [PMID: 34150511 PMCID: PMC8193247 DOI: 10.1016/j.meteno.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/19/2015] [Indexed: 11/13/2022] Open
Abstract
Macroalgae have high potential to be an efficient, and sustainable feedstock for the production of biofuels and other more valuable chemicals. Attempts have been made to enable the co-fermentation of alginate and mannitol by Saccharomyces cerevisiae to unlock the full potential of this marine biomass. However, the efficient use of the sugars derived from macroalgae depends on the equilibrium of cofactors derived from the alginate and mannitol catabolic pathways. There are a number of strong metabolic limitations that have to be tackled before this bioconversion can be carried out efficiently by engineered yeast cells. An analysis of the redox balance during ethanol fermentation from alginate and mannitol by Saccharomyces cerevisiae using metabolic engineering tools was carried out. To represent the strain designed for conversion of macroalgae carbohydrates to ethanol, a context-specific model was derived from the available yeast genome-scale metabolic reconstructions. Flux balance analysis and dynamic simulations were used to determine the flux distributions. The model indicates that ethanol production is determined by the activity of 4-deoxy-l-erythro-5-hexoseulose uronate (DEHU) reductase (DehR) and its preferences for NADH or NADPH which influences strongly the flow of cellular resources. Different scenarios were explored to determine the equilibrium between NAD(H) and NADP(H) that will lead to increased ethanol yields on mannitol and DEHU under anaerobic conditions. When rates of mannitol dehydrogenase and DehRNADH tend to be close to a ratio in the range 1–1.6, high growth rates and ethanol yields were predicted. The analysis shows a number of metabolic limitations that are not easily identified through experimental procedures such as quantifying the impact of the cofactor preference by DEHU reductase in the system, the low flux into the alginate catabolic pathway, and a detailed analysis of the redox balance. These results show that production of ethanol and other chemicals can be optimized if a redox balance is achieved. A possible methodology to achieve this balance is presented. This paper shows how metabolic engineering tools are essential to comprehend and overcome this limitation. We studied a strain designed for bioconversion of macroalgae sugars to ethanol. A genome-scale model was used to simulate biomass and by-product formation. The characterization of the current metabolic state of the strain was achieved. Biofuel production depends on the redox balance derived from alginate and mannitol. Flux split into DehR determines the redox balance, by-products and ethanol level.
Collapse
Affiliation(s)
- C A Contador
- Centre for Biotechnology and Bioengineering, CeBiB, Chile.,Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| | - C Shene
- Centre for Biotechnology and Bioengineering, CeBiB, Chile.,Department of Chemical Engineering, University of La Frontera, Temuco, Chile
| | - A Olivera
- Centre for Biotechnology and Bioengineering, CeBiB, Chile.,Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| | | | - A Buschmann
- Centre for Biotechnology and Bioengineering, CeBiB, Chile.,Consorcio BALBiofuel, Camino Chiquihue km6, Puerto Montt, Chile and Centro i-mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - B A Andrews
- Centre for Biotechnology and Bioengineering, CeBiB, Chile.,Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| | - J A Asenjo
- Centre for Biotechnology and Bioengineering, CeBiB, Chile.,Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| |
Collapse
|
26
|
Zhuang KH, Herrgård MJ. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production. Metab Eng 2015; 31:1-12. [PMID: 26116515 DOI: 10.1016/j.ymben.2015.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/06/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales.
Collapse
Affiliation(s)
- Kai H Zhuang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm DK-2930, Denmark.
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm DK-2930, Denmark.
| |
Collapse
|
27
|
Chen J, Gomez JA, Höffner K, Barton PI, Henson MA. Metabolic modeling of synthesis gas fermentation in bubble column reactors. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:89. [PMID: 26106448 PMCID: PMC4477499 DOI: 10.1186/s13068-015-0272-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/09/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. RESULTS We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. CONCLUSIONS Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.
Collapse
Affiliation(s)
- Jin Chen
- />Department of Chemical Engineering, University of Massachusetts, Amherst, MA 010003 USA
| | - Jose A. Gomez
- />Process Systems Engineering Laboratory, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kai Höffner
- />Process Systems Engineering Laboratory, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Paul I. Barton
- />Process Systems Engineering Laboratory, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Michael A. Henson
- />Department of Chemical Engineering, University of Massachusetts, Amherst, MA 010003 USA
| |
Collapse
|
28
|
Lisha KP, Sarkar D. In silico analysis of bioethanol production from glucose/xylose mixtures during fed-batch fermentation of co-culture and mono-culture systems. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0320-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Sánchez BJ, Pérez-Correa JR, Agosin E. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization. Metab Eng 2014; 25:159-73. [DOI: 10.1016/j.ymben.2014.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
|
30
|
Ip K, Donoghue N, Kim MK, Lun DS. Constraint-based modeling of heterologous pathways: Application and experimental demonstration for overproduction of fatty acids inEscherichia coli. Biotechnol Bioeng 2014; 111:2056-66. [DOI: 10.1002/bit.25261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Kuhn Ip
- Phenomics and Bioinformatics Research Centre; School of Information Technology and Mathematical Sciences, and Australian Centre for Plant Functional Genomics; University of South Australia; Mawson Lakes SA 5095 Australia
- Center for Computational and Integrative Biology and Department of Computer Science; Rutgers University; Camden New Jersey 08102
| | - Neil Donoghue
- Phenomics and Bioinformatics Research Centre; School of Information Technology and Mathematical Sciences, and Australian Centre for Plant Functional Genomics; University of South Australia; Mawson Lakes SA 5095 Australia
| | - Min Kyung Kim
- Center for Computational and Integrative Biology and Department of Computer Science; Rutgers University; Camden New Jersey 08102
| | - Desmond S. Lun
- Phenomics and Bioinformatics Research Centre; School of Information Technology and Mathematical Sciences, and Australian Centre for Plant Functional Genomics; University of South Australia; Mawson Lakes SA 5095 Australia
- Center for Computational and Integrative Biology and Department of Computer Science; Rutgers University; Camden New Jersey 08102
| |
Collapse
|
31
|
Fernández-Castané A, Fehér T, Carbonell P, Pauthenier C, Faulon JL. Computer-aided design for metabolic engineering. J Biotechnol 2014; 192 Pt B:302-13. [PMID: 24704607 DOI: 10.1016/j.jbiotec.2014.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
Abstract
The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes.
Collapse
Affiliation(s)
- Alfred Fernández-Castané
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| | - Tamás Fehér
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| | - Pablo Carbonell
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| | - Cyrille Pauthenier
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| | - Jean-Loup Faulon
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| |
Collapse
|
32
|
Antoniewicz MR. Dynamic metabolic flux analysis—tools for probing transient states of metabolic networks. Curr Opin Biotechnol 2013; 24:973-8. [DOI: 10.1016/j.copbio.2013.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/16/2022]
|
33
|
Tepper N, Noor E, Amador-Noguez D, Haraldsdóttir HS, Milo R, Rabinowitz J, Liebermeister W, Shlomi T. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load. PLoS One 2013; 8:e75370. [PMID: 24086517 PMCID: PMC3784570 DOI: 10.1371/journal.pone.0075370] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022] Open
Abstract
Steady-state metabolite concentrations in a microorganism typically span several orders of magnitude. The underlying principles governing these concentrations remain poorly understood. Here, we hypothesize that observed variation can be explained in terms of a compromise between factors that favor minimizing metabolite pool sizes (e.g. limited solvent capacity) and the need to effectively utilize existing enzymes. The latter requires adequate thermodynamic driving force in metabolic reactions so that forward flux substantially exceeds reverse flux. To test this hypothesis, we developed a method, metabolic tug-of-war (mTOW), which computes steady-state metabolite concentrations in microorganisms on a genome-scale. mTOW is shown to explain up to 55% of the observed variation in measured metabolite concentrations in E. coli and C. acetobutylicum across various growth media. Our approach, based strictly on first thermodynamic principles, is the first method that successfully predicts high-throughput metabolite concentration data in bacteria across conditions.
Collapse
Affiliation(s)
- Naama Tepper
- Department of Computer Science, Technion–IIT, Haifa, Israel
| | - Elad Noor
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Amador-Noguez
- Chemistry and Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | | | - Ron Milo
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Josh Rabinowitz
- Chemistry and Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | | | - Tomer Shlomi
- Department of Computer Science, Technion–IIT, Haifa, Israel
- * E-mail:
| |
Collapse
|
34
|
Lisha KP, Sarkar D. Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production. Bioprocess Biosyst Eng 2013; 37:617-27. [PMID: 23921448 DOI: 10.1007/s00449-013-1027-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/25/2013] [Indexed: 11/25/2022]
Abstract
In silico optimization of bioethanol production from lignocellulosic biomasses is investigated by combining process systems engineering approach and systems biology approach. Lignocellulosic biomass is an attractive sustainable carbon source for fermentative production of bioethanol. For enhanced ethanol production, metabolic engineering of wild-type strains-that can metabolize both hexose and pentose sugars or microbial consortia consisting of substrate-selective microbes-may be advantageous. This study presents a detailed in silico analysis of bioethanol production from glucose-xylose mixtures of various compositions by batch mono-culture and co-culture fermentation of specialized microbes. Dynamic flux balance models based on available genome-scale reconstructions of the microorganisms have been used to analyze bioethanol production, and the maximization of ethanol productivity is addressed by computing optimal aerobic-anaerobic switching times. Effects of ten metabolic engineering strategies that have been suggested in the literature for ethanol overproduction, have been evaluated for their efficiency in enhancing the ethanol productivity in the context of batch mono-culture and co-culture processes.
Collapse
Affiliation(s)
- K P Lisha
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | | |
Collapse
|
35
|
Garcia-Albornoz MA, Nielsen J. Application of Genome-Scale Metabolic Models in Metabolic Engineering. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.0011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
36
|
Caspeta L, Nielsen J. Toward systems metabolic engineering ofAspergillusandPichiaspecies for the production of chemicals and biofuels. Biotechnol J 2013; 8:534-44. [DOI: 10.1002/biot.201200345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/19/2013] [Accepted: 03/14/2013] [Indexed: 12/11/2022]
|
37
|
Hanly TJ, Henson MA. Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:44. [PMID: 23548183 PMCID: PMC3776438 DOI: 10.1186/1754-6834-6-44] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/12/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND A key step in any process that converts lignocellulose to biofuels is the efficient fermentation of both hexose and pentose sugars. The co-culture of respiratory-deficient Saccharomyces cerevisiae and wild-type Scheffersomyces stipitis has been identified as a promising system for microaerobic ethanol production because S. cerevisiae only consumes glucose while S. stipitis efficiently converts xylose to ethanol. RESULTS To better predict how these two yeasts behave in batch co-culture and to optimize system performance, a dynamic flux balance model describing co-culture metabolism was developed from genome-scale metabolic reconstructions of the individual organisms. First a dynamic model was developed for each organism by estimating substrate uptake kinetic parameters from batch pure culture data and evaluating model extensibility to different microaerobic growth conditions. The co-culture model was constructed by combining the two individual models assuming a cellular objective of total growth rate maximization. To obtain accurate predictions of batch co-culture data collected at different microaerobic conditions, the S. cerevisiae maximum glucose uptake rate was reduced from its pure culture value to account for more efficient S. stipitis glucose uptake in co-culture. The dynamic co-culture model was used to predict the inoculum concentration and aeration level that maximized batch ethanol productivity. The model predictions were validated with batch co-culture experiments performed at the optimal conditions. Furthermore, the dynamic model was used to predict how engineered improvements to the S. stipitis xylose transport system could improve co-culture ethanol production. CONCLUSIONS These results demonstrate the utility of the dynamic co-culture metabolic model for guiding process and metabolic engineering efforts aimed at increasing microaerobic ethanol production from glucose/xylose mixtures.
Collapse
Affiliation(s)
- Timothy J Hanly
- Department of Chemical Engineering, University of Massachusetts, Goessmann Lab 159, 686 N. Pleasant St, Amherst, MA 01003-3110, USA
| | - Michael A Henson
- Department of Chemical Engineering, University of Massachusetts, Goessmann Lab 159, 686 N. Pleasant St, Amherst, MA 01003-3110, USA
| |
Collapse
|
38
|
Zhuang K, Bakshi BR, Herrgård MJ. Multi-scale modeling for sustainable chemical production. Biotechnol J 2013; 8:973-84. [PMID: 23520143 DOI: 10.1002/biot.201200272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/18/2013] [Accepted: 02/11/2013] [Indexed: 11/10/2022]
Abstract
With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production.
Collapse
Affiliation(s)
- Kai Zhuang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| | | | | |
Collapse
|
39
|
Zhuang K, Yang L, Cluett WR, Mahadevan R. Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design. BMC Biotechnol 2013; 13:8. [PMID: 23388063 PMCID: PMC3574860 DOI: 10.1186/1472-6750-13-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background In recent years, constraint-based metabolic models have emerged as an important tool for metabolic engineering; a number of computational algorithms have been developed for identifying metabolic engineering strategies where the production of the desired chemical is coupled with the growth of the organism. A caveat of the existing algorithms is that they do not take the bioprocess into consideration; as a result, while the product yield can be optimized using these algorithms, the product titer and productivity cannot be optimized. In order to address this issue, we developed the Dynamic Strain Scanning Optimization (DySScO) strategy, which integrates the Dynamic Flux Balance Analysis (dFBA) method with existing strain algorithms. Results In order to demonstrate the effective of the DySScO strategy, we applied this strategy to the design of Escherichia coli strains targeted for succinate and 1,4-butanediol production respectively. We evaluated consequences of the tradeoff between growth yield and product yield with respect to titer and productivity, and showed that the DySScO strategy is capable of producing strains that balance the product yield, titer, and productivity. In addition, we evaluated the economic viability of the designed strain, and showed that the economic performance of a strain can be strongly affected by the price difference between the product and the feedstock. Conclusion Our study demonstrated that the DySScO strategy is a useful computational tool for designing microbial strains with balanced yield, titer, and productivity, and has potential applications in evaluating the economic performance of the design strains.
Collapse
Affiliation(s)
- Kai Zhuang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | | | | | | |
Collapse
|
40
|
Abstract
DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated.
Collapse
|
41
|
Xu C, Liu L, Zhang Z, Jin D, Qiu J, Chen M. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl Microbiol Biotechnol 2012. [DOI: 10.1007/s00253-012-4543-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Mahadevan R, Henson MA. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities. Comput Struct Biotechnol J 2012; 3:e201210008. [PMID: 24688668 PMCID: PMC3962185 DOI: 10.5936/csbj.201210008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/22/2022] Open
Abstract
Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.
Collapse
Affiliation(s)
- Radhakrishnan Mahadevan
- 200 College Street, 326 Wallberg Building, Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S3E5, Canada
| | - Michael A Henson
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States of America
| |
Collapse
|
43
|
Jouhten P. Metabolic modelling in the development of cell factories by synthetic biology. Comput Struct Biotechnol J 2012; 3:e201210009. [PMID: 24688669 PMCID: PMC3962133 DOI: 10.5936/csbj.201210009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 11/22/2022] Open
Abstract
Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory.
Collapse
Affiliation(s)
- Paula Jouhten
- VTT Technical Research Centre of Finland, Tietotie 2, 02044 VTT, Espoo, Finland
| |
Collapse
|
44
|
Höffner K, Harwood SM, Barton PI. A reliable simulator for dynamic flux balance analysis. Biotechnol Bioeng 2012; 110:792-802. [DOI: 10.1002/bit.24748] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 12/16/2022]
|
45
|
DNA assembler method for construction of zeaxanthin-producing strains of Saccharomyces cerevisiae. Methods Mol Biol 2012; 898:251-62. [PMID: 22711131 DOI: 10.1007/978-1-61779-918-1_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
DNA assembler enables design and rapid construction of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use the zeaxanthin biosynthetic pathway as an example to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for the construction of the clones, S. cerevisiae transformation, and zeaxanthin production and detection are shown.
Collapse
|
46
|
Setoodeh P, Jahanmiri A, Eslamloueyan R. Hybrid neural modeling framework for simulation and optimization of diauxie-involved fed-batch fermentative succinate production. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Chang DM, Wang TH, Chien IL, Hwang WS. Improved operating policy utilizing aerobic operation for fermentation process to produce bio-ethanol. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Jouhten P, Wiebe M, Penttilä M. Dynamic flux balance analysis of the metabolism ofSaccharomyces cerevisiaeduring the shift from fully respirative or respirofermentative metabolic states to anaerobiosis. FEBS J 2012; 279:3338-54. [DOI: 10.1111/j.1742-4658.2012.08649.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Feng X, Xu Y, Chen Y, Tang YJ. Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput Biol 2012; 8:e1002376. [PMID: 22319437 PMCID: PMC3271021 DOI: 10.1371/journal.pcbi.1002376] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022] Open
Abstract
Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste products (pyruvate and acetate) during batch culture. To decipher MR-1 metabolism, we integrated genome-scale flux balance analysis (FBA) into a multiple-substrate Monod model to perform the dynamic flux balance analysis (dFBA). The dFBA employed a static optimization approach (SOA) by dividing the batch time into small intervals (i.e., ∼400 mini-FBAs), then the Monod model provided time-dependent inflow/outflow fluxes to constrain the mini-FBAs to profile the pseudo-steady-state fluxes in each time interval. The mini-FBAs used a dual-objective function (a weighted combination of "maximizing growth rate" and "minimizing overall flux") to capture trade-offs between optimal growth and minimal enzyme usage. By fitting the experimental data, a bi-level optimization of dFBA revealed that the optimal weight in the dual-objective function was time-dependent: the objective function was constant in the early growth stage, while the functional weight of minimal enzyme usage increased significantly when lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1 metabolisms: 1. the oxidative TCA cycle fluxes increased initially and then decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and gluconeogenesis were stable in the exponential growth period; and 3. the glyoxylate shunt was up-regulated when acetate became the main carbon source for MR-1 growth.
Collapse
Affiliation(s)
- Xueyang Feng
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - You Xu
- Department of Computer Science and Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
50
|
Eslamloueyan R, Setoodeh P. OPTIMIZATION OF FED-BATCH RECOMBINANT YEAST FERMENTATION FOR ETHANOL PRODUCTION USING A REDUCED DYNAMIC FLUX BALANCE MODEL BASED ON ARTIFICIAL NEURAL NETWORKS. CHEM ENG COMMUN 2011. [DOI: 10.1080/00986445.2011.560512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|