1
|
Sánchez JM, López-Laguna H, Parladé E, Somma AD, Livieri AL, Álamo P, Mangues R, Unzueta U, Villaverde A, Vázquez E. Structural Stabilization of Clinically Oriented Oligomeric Proteins During their Transit through Synthetic Secretory Amyloids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309427. [PMID: 38501900 DOI: 10.1002/advs.202309427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Indexed: 03/20/2024]
Abstract
Developing time-sustained drug delivery systems is a main goal in innovative medicines. Inspired by the architecture of secretory granules from the mammalian endocrine system it has generated non-toxic microscale amyloid materials through the coordination between divalent metals and poly-histidine stretches. Like their natural counterparts that keep the functionalities of the assembled protein, those synthetic structures release biologically active proteins during a slow self-disintegration process occurring in vitro and upon in vivo administration. Being these granules formed by a single pure protein species and therefore, chemically homogenous, they act as highly promising time-sustained drug delivery systems. Despite their enormous clinical potential, the nature of the clustering process and the quality of the released protein have been so far neglected issues. By using diverse polypeptide species and their protein-only oligomeric nanoscale versions as convenient models, a conformational rearrangement and a stabilization of the building blocks during their transit through the secretory granules, being the released material structurally distinguishable from the original source is proved here. This fact indicates a dynamic nature of secretory amyloids that act as conformational arrangers rather than as plain, inert protein-recruiting/protein-releasing granular depots.
Collapse
Affiliation(s)
- Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC, Av. Velez Sarsfield 1611, Córdoba, X5016GCA, Argentina
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| | - Angela Di Somma
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Department of Chemical Sciences, University of Naples "Federico II", Vicinale Cupa Cintia 26, Naples, 20126, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, Naples, 80131, Italy
| | - Andrea L Livieri
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
| | - Patricia Álamo
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, 08025, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, 08025, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| |
Collapse
|
2
|
Upadhyay A, Sundaria N, Dhiman R, Prajapati VK, Prasad A, Mishra A. Complex Inclusion Bodies and Defective Proteome Hubs in Neurodegenerative Disease: New Clues, New Challenges. Neuroscientist 2022; 28:271-282. [PMID: 33530848 DOI: 10.1177/1073858421989582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A healthy physiological environment of cells represents the dynamic homeostasis of crowded molecules. A subset of cellular proteome forms protein quality control (PQC) machinery to maintain an uninterrupted synthesis of new polypeptides and targeted elimination of old or defective proteins. The process of PQC may get overwhelmed under specific genetic mutations, environmental stress conditions, and aging-associated perturbances. Many of these conditions may lead to the generation of various types of aberrant protein species that may or may not accumulate as large cellular inclusions. These proteinaceous formations, referred to as inclusion bodies (IBs), could be membrane-bound or membrane-less, cytoplasmic, or nuclear. Most importantly, they could either be toxic or protective. Under acute stress conditions, the formation of aggregates may cause proteostasis failure, leading to large-scale changes in the cellular proteome compositions. However, the large insoluble IBs may act as reservoirs for many soluble proteins with high aggregation propensities, which can overwhelm the cellular chaperoning capacity and protein degradation machinery. The kinetic equilibrium between folding and unfolding, misfolding, and refolding; aggregation and degradation is perturbed in one or many neurodegenerative disorders (NDDs) associated with dementia, cognitive impairments, movement, and behavioural losses. However, a detailed interplay of IBs into the manifestation of the NDDs is unknown, and a very primitive knowledge of structural compositions of amyloid inclusions is present. The present article presents a brief evolutionary background of IBs; their functional relevance for prokaryotes, plants, and animals; and associated involvement in neuronal proteostasis.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Naveen Sundaria
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| |
Collapse
|
3
|
Khomenko VA, Sidorin EV, Bakholdina SI, Naberezhnykh GA, Kim NY, Stenkova AM, Chernysheva NY, Isaeva MP, Solov'eva TF. Inclusion Bodies of Recombinant OmpF Porin from Yersinia pseudotuberculosis: Properties and Structural Characterization. BIOCHEMISTRY (MOSCOW) 2019; 84:672-685. [PMID: 31238867 DOI: 10.1134/s0006297919060105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mature pore-forming OmpF protein from the outer membrane of Yersinia pseudotuberculosis was expressed in Escherichia coli in the form of inclusion bodies (IBs) under different cultivation conditions. The properties and structural organization of the IBs as well as the structure of the recombinant porin (rOmpF) solubilized from the IBs were investigated using electron microscopy, dynamic light scattering, optical spectroscopy, and specific hydrophobic dyes. The size, shape, and stability of the IBs under denaturing solutions were determined. It was found that the IBs were readily soluble in SDS and more resistant to urea. Dissolution of the IBs in both denaturing agents led to formation of a heterogeneous in size population of oligomeric particles. The IBs contained an intermediate form of the rOmpF with native-like secondary structure and elements of tertiary structure, which was able to penetrate a lipid bilayer and adopt a functionally active conformation. There were no significant differences in the properties and structure between the examined IBs formed at different concentrations of the inducer (IPTG). However, the content of amyloids in the IBs increased with increasing concentration of the inducer. These results contribute to the development of new approaches for the production of active proteins from IBs, as well as biologically and functionally active IBs.
Collapse
Affiliation(s)
- V A Khomenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - E V Sidorin
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - S I Bakholdina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - G A Naberezhnykh
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - N Yu Kim
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - A M Stenkova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - N Yu Chernysheva
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - M P Isaeva
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - T F Solov'eva
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| |
Collapse
|
4
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Eukaryotic aggresomes: from a model of conformational diseases to an emerging type of immobilized biocatalyzers. Appl Microbiol Biotechnol 2015; 100:559-69. [DOI: 10.1007/s00253-015-7107-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/28/2022]
|
6
|
Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:215-60. [DOI: 10.1007/978-3-319-20164-1_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Villaverde A, Corchero JL, Seras-Franzoso J, Garcia-Fruitós E. Functional protein aggregates: just the tip of the iceberg. Nanomedicine (Lond) 2015; 10:2881-91. [PMID: 26370294 DOI: 10.2217/nnm.15.125] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An increasing number of both prokaryotic and eukaryotic cell types are being adapted as platforms for recombinant protein production. The overproduction of proteins in such expression systems leads to the formation of insoluble protein-based aggregates. Although these protein clusters have been poorly studied in most of the eukaryotic systems, aggregates formed in E. coli, named inclusion bodies (IBs), have been deeply characterized in the last decades. Contrary to the general belief, an important fraction of the protein embedded in IB is functional, showing promise in biocatalysis, regenerative medicine and cell therapy. Thus, the exploration of all these functional protein clusters would largely expand their potential in both pharma and biotech industry.
Collapse
Affiliation(s)
- Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Joaquin Seras-Franzoso
- CIBBIM-Nanomedicine, Hospital Universitari Vall d'Hebron & Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08035, Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, 08140, Barcelona, Spain
| |
Collapse
|
8
|
Natalello A, Doglia SM. Insoluble protein assemblies characterized by fourier transform infrared spectroscopy. Methods Mol Biol 2015; 1258:347-69. [PMID: 25447875 DOI: 10.1007/978-1-4939-2205-5_20] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a useful tool for the structural characterization of insoluble protein assemblies, as it allows to obtain information on the protein secondary structures and on their intermolecular interactions. The protocols for FTIR spectroscopy and microspectroscopy measurements in transmission and attenuated total reflection modes will be presented and illustrated in the following examples: bacterial inclusion bodies, self-assembling peptides, thermal aggregates, and amyloid fibrils.
Collapse
Affiliation(s)
- Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan, 20126, Italy,
| | | |
Collapse
|
9
|
Ramón A, Señorale-Pose M, Marín M. Inclusion bodies: not that bad…. Front Microbiol 2014; 5:56. [PMID: 24592259 PMCID: PMC3924032 DOI: 10.3389/fmicb.2014.00056] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/28/2014] [Indexed: 12/03/2022] Open
Abstract
The formation of inclusion bodies (IBs) constitute a frequent event during the production of heterologous proteins in bacterial hosts. Although the mechanisms leading to their formation are not completely understood, empirical data have been exploited trying to predict the aggregation propensity of specific proteins while a great number of strategies have been developed to avoid the generation of IBs. However, in many cases, the formation of such aggregates can be considered an advantage for basic research as for protein production. In this review, we focus on this positive side of IBs formation in bacteria. We present a compilation on recent advances on the understanding of IBs formation and their utilization as a model to understand protein aggregation and to explore strategies to control this process. We include recent information about their composition and structure, their use as an attractive approach to produce low cost proteins and other promising applications in Biomedicine.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Mario Señorale-Pose
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
10
|
Cano-Garrido O, Rodríguez-Carmona E, Díez-Gil C, Vázquez E, Elizondo E, Cubarsi R, Seras-Franzoso J, Corchero JL, Rinas U, Ratera I, Ventosa N, Veciana J, Villaverde A, García-Fruitós E. Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 2013; 9:6134-42. [PMID: 23220450 DOI: 10.1016/j.actbio.2012.11.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/20/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
Abstract
Slow protein release from amyloidal materials is a molecular platform used by nature to control protein hormone secretion in the endocrine system. The molecular mechanics of the sustained protein release from amyloids remains essentially unexplored. Inclusion bodies (IBs) are natural amyloids that occur as discrete protein nanoparticles in recombinant bacteria. These protein clusters have been recently explored as protein-based functional biomaterials with diverse biomedical applications, and adapted as nanopills to deliver recombinant protein drugs into mammalian cells. Interestingly, the slow protein release from IBs does not significantly affect the particulate organization and morphology of the material, suggesting the occurrence of a tight scaffold. Here, we have determined, by using a combined set of analytical approaches, a sponge-like supramolecular organization of IBs combining differently folded protein versions (amyloid and native-like), which supports both mechanical stability and sustained protein delivery. Apart from offering structural clues about how amyloid materials release their monomeric protein components, these findings open exciting possibilities for the tailored development of smart biofunctional materials, adapted to mimic the functions of amyloid-based secretory glands of higher organisms.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Seras-Franzoso J, Peebo K, Luis Corchero J, Tsimbouri PM, Unzueta U, Rinas U, Dalby MJ, Vazquez E, García-Fruitós E, Villaverde A. A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine (Lond) 2013; 8:1587-99. [PMID: 23394133 DOI: 10.2217/nnm.12.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Bacterial inclusion bodies (IBs) are protein-based, amyloidal nanomaterials that mechanically stimulate mammalian cell proliferation upon surface decoration. However, their biological performance as potentially functional scaffolds in mammalian cell culture still needs to be explored. MATERIALS & METHODS Using fluorescent proteins, we demonstrate significant membrane penetration of surface-attached IBs and a corresponding intracellular bioavailability of the protein material. RESULTS When IBs are formed by protein drugs, such as the intracellular acting human chaperone Hsp70 or the extracellular/intracellular acting human FGF-2, IB components intervene on top-growing cells, namely by rescuing them from chemically induced apoptosis or by stimulating cell division under serum starvation, respectively. Protein release from IBs seems to mechanistically mimic the sustained secretion of protein hormones from amyloid-like secretory granules in higher organisms. CONCLUSION We propose bacterial IBs as biomimetic nanostructured scaffolds (bioscaffolds) suitable for tissue engineering that, while acting as adhesive materials, partially disintegrate for the slow release of their biologically active building blocks. The bottom-up delivery of protein drugs mediated by bioscaffolds offers a highly promising platform for emerging applications in regenerative medicine.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and Department de Genètica i de MicroBiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sans C, García-Fruitós E, Ferraz RM, González-Montalbán N, Rinas U, López-Santín J, Villaverde A, Álvaro G. Inclusion bodies of fuculose-1-phosphate aldolase as stable and reusable biocatalysts. Biotechnol Prog 2012; 28:421-7. [PMID: 22275283 DOI: 10.1002/btpr.1518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/10/2012] [Indexed: 11/07/2022]
Abstract
Fuculose-1-phosphate aldolase (FucA) has been produced in Escherichia coli as active inclusion bodies (IBs) in batch cultures. The activity of insoluble FucA has been modulated by a proper selection of producing strain, culture media, and process conditions. In some cases, when an optimized defined medium was used, FucA IBs were more active (in terms of specific activity) than the soluble protein version obtained in the same process with a conventional defined medium, supporting the concept that solubility and conformational quality are independent protein parameters. FucA IBs have been tested as biocatalysts, either directly or immobilized into Lentikat beads, in an aldolic reaction between DHAP and (S)-Cbz-alaninal, obtaining product yields ranging from 65 to 76%. The production of an active aldolase as IBs, the possibility of tailoring IBs properties by both genetic and process approaches, and the reusability of IBs by further entrapment in appropriate matrices fully support the principle of using self-assembled enzymatic clusters as tunable mechanically stable and functional biocatalysts.
Collapse
Affiliation(s)
- Cristina Sans
- Dept. d'Enginyeria Química, Escola d'Enginyeria, Unitat de Biocatàlisi Aplicada Associada al IQAC (CSIC), Universitat Autònoma de Barcelona, Edifici Q, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Recombinant production has become an invaluable tool for supplying research and therapy with proteins of interest. The target proteins are not in every case soluble and/or correctly folded. That is why different production parameters such as host, cultivation conditions and co-expression of chaperones and foldases are applied in order to yield functional recombinant protein. There has been a constant increase and success in the use of folding promoting agents in recombinant protein production. Recent cases are reviewed and discussed in this chapter. Any impact of such strategies cannot be predicted and has to be analyzed and optimized for the corresponding target protein. The in vivo effects of the agents are at least partially comparable to their in vitro mode of action and have been studied by means of modern systems approaches and even in combination with folding/activity screening assays. Resulting data can be used directly for experimental planning or can be fed into knowledge-based modelling. An overview of such technologies is included in the chapter in order to facilitate a decision about the potential in vivo use of folding promoting agents.
Collapse
Affiliation(s)
- Beatrix Fahnert
- Cardiff School of Biosciences, Cardiff University, Wales, UK.
| |
Collapse
|
14
|
Vazquez E, Corchero JL, Villaverde A. Post-production protein stability: trouble beyond the cell factory. Microb Cell Fact 2011; 10:60. [PMID: 21806813 PMCID: PMC3162505 DOI: 10.1186/1475-2859-10-60] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022] Open
Abstract
Being protein function a conformation-dependent issue, avoiding aggregation during production is a major challenge in biotechnological processes, what is often successfully addressed by convenient upstream, midstream or downstream approaches. Even when obtained in soluble forms, proteins tend to aggregate, especially if stored and manipulated at high concentrations, as is the case of protein drugs for human therapy. Post-production protein aggregation is then a major concern in the pharmaceutical industry, as protein stability, pharmacokinetics, bioavailability, immunogenicity and side effects are largely dependent on the extent of aggregates formation. Apart from acting at the formulation level, the recombinant nature of protein drugs allows intervening at upstream stages through protein engineering, to produce analogue protein versions with higher stability and enhanced therapeutic values.
Collapse
Affiliation(s)
- Esther Vazquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
15
|
Domingo-Espín J, Vazquez E, Ganz J, Conchillo O, García-Fruitós E, Cedano J, Unzueta U, Petegnief V, Gonzalez-Montalbán N, Planas AM, Daura X, Peluffo H, Ferrer-Miralles N, Villaverde A. Nanoparticulate architecture of protein-based artificial viruses is supported by protein-DNA interactions. Nanomedicine (Lond) 2011; 6:1047-61. [PMID: 21651444 DOI: 10.2217/nnm.11.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED AIM & METHODS: We have produced two chimerical peptides of 10.2 kDa, each contain four biologically active domains, which act as building blocks of protein-based nonviral vehicles for gene therapy. In solution, these peptides tend to aggregate as amorphous clusters of more than 1000 nm, while the presence of DNA promotes their architectonic reorganization as mechanically stable nanometric spherical entities of approximately 80 nm that penetrate mammalian cells through arginine-glycine-aspartic acid cell-binding domains and promote significant transgene expression levels. RESULTS & CONCLUSION The structural analysis of the protein in these hybrid nanoparticles indicates a molecular conformation with predominance of α-helix and the absence of cross-molecular, β-sheet-supported protein interactions. The nanoscale organizing forces generated by DNA-protein interactions can then be observed as a potentially tunable, critical factor in the design of protein-only based artificial viruses for gene therapy.
Collapse
Affiliation(s)
- Joan Domingo-Espín
- Institute for Biotechnology & Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
García-Fruitós E, Sabate R, de Groot NS, Villaverde A, Ventura S. Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS J 2011; 278:2419-27. [PMID: 21569209 DOI: 10.1111/j.1742-4658.2011.08165.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inclusion bodies are insoluble protein aggregates usually found in recombinant bacteria when they are forced to produce heterologous protein species. These particles are formed by polypeptides that cross-interact through sterospecific contacts and that are steadily deposited in either the cell's cytoplasm or the periplasm. An important fraction of eukaryotic proteins form inclusion bodies in bacteria, which has posed major problems in the development of the biotechnology industry. Over the last decade, the fine dissection of the quality control system in bacteria and the recognition of the amyloid-like architecture of inclusion bodies have provided dramatic insights on the dynamic biology of these aggregates. We discuss here the relevant aspects, in the interface between cell physiology and structural biology, which make inclusion bodies unique models for the study of protein aggregation, amyloid formation and prion biology in a physiologically relevant background.
Collapse
Affiliation(s)
- Elena García-Fruitós
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
García-Fruitós E. Inclusion bodies: a new concept. Microb Cell Fact 2010; 9:80. [PMID: 21040537 PMCID: PMC2987918 DOI: 10.1186/1475-2859-9-80] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 11/01/2010] [Indexed: 01/10/2023] Open
Abstract
In the last decades, the understanding of inclusion body biology and consequently, of their properties and potential biotechnological applications have dramatically changed. Therefore, the development of new purification protocols aimed to preserve those properties is becoming a pushing demand.
Collapse
Affiliation(s)
- Elena García-Fruitós
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
18
|
Rodríguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, García-Fruitós E. Isolation of cell-free bacterial inclusion bodies. Microb Cell Fact 2010; 9:71. [PMID: 20849629 PMCID: PMC2949796 DOI: 10.1186/1475-2859-9-71] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023] Open
Abstract
Background Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Results Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10-1 cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. Conclusions The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.
Collapse
Affiliation(s)
- Escarlata Rodríguez-Carmona
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Villa R, Lotti M, Gatti-Lafranconi P. Components of the E. coli envelope are affected by and can react to protein over-production in the cytoplasm. Microb Cell Fact 2009; 8:32. [PMID: 19500339 PMCID: PMC2701923 DOI: 10.1186/1475-2859-8-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/05/2009] [Indexed: 11/30/2022] Open
Abstract
Background Protein over-expression in bacteria is still the easiest, cheapest and therefore preferred way to obtain large amounts of proteins for industrial and laboratory scale preparations. Several studies emphasized the importance of understanding cellular and molecular mechanisms triggered by protein over-production in order to obtain higher yield and better quality of the recombinant product. Almost every step leading to a fully functional polypeptide has been investigated, from mRNA stability to the role of molecular chaperones, from aggregation to bottlenecks in the secretory pathway. In this context, we focused on the still poorly addressed relationship between protein production in the cytoplasm and the bacterial envelope, an active and reactive cell compartment that controls interactions with the environment and several major cellular processes. Results available to date show that the accumulation of foreign proteins in the cytoplasm induces changes in the membrane lipids and in the levels of mRNAs for some membrane proteins. However, a direct connection between membrane protein expression levels and soluble/aggregated protein accumulation in the cytoplasm has never been reported. Results By the use of a combined physiological and proteomic approach, we investigated the effects on the cell membrane of E. coli of the overexpression of two recombinant proteins, the B. cepacia lipase (BCL) and the green fluorescent protein (GFP). Both polypeptides are expressed in the cytoplasm at similar levels but GFP is fully soluble whereas inactive BCL accumulates in inclusion bodies. Growth and viability of the transformed cells were tested in the presence of different drugs. We found that chloramphenycol preferentially inhibited the strain over-producing GFP while SDS was more effective when BCL inclusion bodies accumulated in the cytoplasm. In contrast, both proteins induced a similar response in the membrane proteome, i.e. increased levels of LamB, OmpF, OmpA and TolC. Under all tested conditions, the lipopolysaccharide was not affected, suggesting that a specific rather than a generalized rearrangement of the envelope was induced. Conclusion Taking together physiological and biochemical evidence, our work indicates that the E. coli envelope can sense protein over-expression in the cytoplasm and react by modulating the abundance of some membrane proteins, with possible consequences on the membrane traffic of small solutes, i.e. nutrients, drugs and metabolites. Such a response seems to be independent on the nature of the protein being over-expressed. On the other hand both our data reported herein and previous results indicate that membrane lipids may act as a second stress sensor responsive to the aggregation state of the recombinant protein and further contribute to changes in cellular exchanges with the environment.
Collapse
Affiliation(s)
- Riccardo Villa
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, Milano, Italy.
| | | | | |
Collapse
|
21
|
Effects of recombinant protein misfolding and aggregation on bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:263-9. [DOI: 10.1016/j.bbapap.2008.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 10/09/2008] [Accepted: 10/23/2008] [Indexed: 11/23/2022]
|
22
|
Stampolidis P, Kaderbhai NN, Kaderbhai MA. Periplasmically-exported lupanine hydroxylase undergoes transition from soluble to functional inclusion bodies in Escherichia coli. Arch Biochem Biophys 2009; 484:8-15. [PMID: 19467626 DOI: 10.1016/j.abb.2009.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Pseudomonas lupanine hydroxylase is a periplasmic-localised, two domain quinocytochrome c enzyme. It requires numerous post-translocation modifications involving signal peptide processing, disulphide bridge formation and, heme linkage in the carboxy-terminal cytochrome c domain to eventually generate a Ca(2+)-bound quino-c hemoprotein that hydroxylates the plant alkaloid, lupanine. An exported, functional recombinant enzyme was generated in Escherichia coli by co-expression with cytochrome c maturation factors. Increased growth temperatures ranging from 18 to 30 degrees C gradually raised the enzyme production to a peak together with its concomitant aggregation as red solid particles, readily activatable in a fully functional form by mild chaotropic treatment. Here, we demonstrate that the exported lupanine hydroxylase undergoes a cascade transition from a soluble to "non-classical" inclusion body form when build-up in the periplasm exceeded a basal threshold concentration. These periplasmic aggregates were distinct from the non-secreted, signal-sequenceless counterpart that occurred as misfolded, non-functional concatamers in the form of classical inclusion bodies. We discuss our findings in the light of current models of how aggregation of lupanine hydroxylase arises in the periplasmic space.
Collapse
Affiliation(s)
- Pavlos Stampolidis
- Institute of Biological Sciences, Cledwyn Building, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DD, United Kingdom
| | | | | |
Collapse
|
23
|
Martínez-Alonso M, González-Montalbán N, García-Fruitós E, Villaverde A. Learning about protein solubility from bacterial inclusion bodies. Microb Cell Fact 2009; 8:4. [PMID: 19133126 PMCID: PMC2630952 DOI: 10.1186/1475-2859-8-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/08/2009] [Indexed: 11/30/2022] Open
Abstract
The progressive solving of the conformation of aggregated proteins and the conceptual understanding of the biology of inclusion bodies in recombinant bacteria is providing exciting insights on protein folding and quality. Interestingly, newest data also show an unexpected functional and structural complexity of soluble recombinant protein species and picture the whole bacterial cell factory scenario as more intricate than formerly believed.
Collapse
Affiliation(s)
- Mónica Martínez-Alonso
- Institute for Biotechnology and Biomedicine and Department of Genetics and Microbiology, Autonomous University of Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
24
|
Invernizzi G, Annoni E, Natalello A, Doglia SM, Lotti M. In vivo aggregation of bovine beta-lactoglobulin is affected by Cys at position 121. Protein Expr Purif 2008; 62:111-5. [PMID: 18662787 DOI: 10.1016/j.pep.2008.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/24/2008] [Accepted: 06/30/2008] [Indexed: 02/02/2023]
Abstract
Bovine beta-lactoglobulin (BLG) has been widely used as a model system to study protein folding and aggregation and for biotechnology applications. Native BLG contains two disulfide bonds and one free cysteine at position 121. This free thiol group has been shown to be responsible for the irreversibility of BLG denaturation in vitro, but nothing is known about its relevance during protein folding inside the cell. Here, we report the expression of soluble wild type recombinant BGL in Escherichia coli cells at about 109 mg rBLG/g wet weight cells and a comparison between the aggregation of wt BLG and its variant C121S upon intracellular expression. We show that in E. coli C121SBLG is more prone to aggregation than the wild type protein and that their different behavior depends on the oxidation of disulfide bonds. Our results underline the key contribution of the unpaired cysteine residue during the oxidative folding pathway and indicate BLG as a useful tool for the study of protein aggregation in vivo.
Collapse
Affiliation(s)
- Gaetano Invernizzi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | | | | | | | | |
Collapse
|