1
|
Marques Dos Reis E, Vieira Berti F. Vasculogenic Mimicry-An Overview. Methods Mol Biol 2022; 2514:3-13. [PMID: 35771413 DOI: 10.1007/978-1-0716-2403-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vasculogenic mimicry (VM), a tumor microcirculation model found in melanoma in the last 20 years, is a vascular channel-like structure composed of tumor cells, but without endothelial cells, that stains positive for periodic acid-Schiff (PAS) and negative staining for CD31. VM provides, to the highly aggressive malignant tumor cells, adequate oxygen and nutrient supply for tumor growth and subsequent metastasis process and its presence are related to poor prognosis in patients. VM is independent of endothelial cells, which may partly explain why angiogenesis drug inhibitors have not achieved the expected success for cancer treatment.
Collapse
Affiliation(s)
- Emily Marques Dos Reis
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Fernanda Vieira Berti
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Valdivia A, Mingo G, Aldana V, Pinto MP, Ramirez M, Retamal C, Gonzalez A, Nualart F, Corvalan AH, Owen GI. Fact or Fiction, It Is Time for a Verdict on Vasculogenic Mimicry? Front Oncol 2019; 9:680. [PMID: 31428573 PMCID: PMC6688045 DOI: 10.3389/fonc.2019.00680] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
The term vasculogenic mimicry (VM) refers to the capacity of certain cancer cells to form fluid-conducting structures within a tumor in an endothelial cell (EC)-free manner. Ever since its first report by Maniotis in 1999, the existence of VM has been an extremely contentious issue. The overwhelming consensus of the literature suggests that VM is frequently observed in highly aggressive tumors and correlates to lower patient survival. While the presence of VM in vivo in animal and patient tumors are claimed upon the strong positive staining for glycoproteins (Periodic Acid Schiff, PAS), it is by no means universally accepted. More controversial still is the existence of an in vitro model of VM that principally divides the scientific community. Original reports demonstrated that channels or tubes occur in cancer cell monolayers in vitro when cultured in matrigel and that these structures may support fluid movement. However, several years later many papers emerged stating that connections formed between cancer cells grown on matrigel represented VM. We speculate that this became accepted by the cancer research community and now the vast majority of the scientific literature reports both presence and mechanisms of VM based on intercellular connections, not the presence of fluid conducting tubes. In this opinion paper, we call upon evidence from an exhaustive review of the literature and original data to argue that the majority of in vitro studies presented as VM do not correspond to this phenomenon. Furthermore, we raise doubts on the validity of concluding the presence of VM in patient samples and animal models based solely on the presence of PAS+ staining. We outline the requirement for new biomarkers of VM and present criteria by which VM should be defined in vitro and in vivo.
Collapse
Affiliation(s)
- Andrés Valdivia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriel Mingo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Varina Aldana
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio P Pinto
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Ramirez
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudio Retamal
- Faculty of Medicine and Science, Center of Cellular Biology and Biomedicine (CEBICEM), Universidad San Sebastian, Santiago, Chile
| | - Alfonso Gonzalez
- Faculty of Medicine and Science, Center of Cellular Biology and Biomedicine (CEBICEM), Universidad San Sebastian, Santiago, Chile
| | - Francisco Nualart
- Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Alejandro H Corvalan
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
3
|
Salinas-Vera YM, Gallardo-Rincón D, García-Vázquez R, Hernández-de la Cruz ON, Marchat LA, González-Barrios JA, Ruíz-García E, Vázquez-Calzada C, Contreras-Sanzón E, Resendiz-Hernández M, Astudillo-de la Vega H, Cruz-Colin JL, Campos-Parra AD, López-Camarillo C. HypoxamiRs Profiling Identify miR-765 as a Regulator of the Early Stages of Vasculogenic Mimicry in SKOV3 Ovarian Cancer Cells. Front Oncol 2019; 9:381. [PMID: 31157166 PMCID: PMC6528691 DOI: 10.3389/fonc.2019.00381] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Vasculogenic mimicry (VM) is a novel cancer hallmark in which malignant cells develop matrix-associated 3D tubular networks with a lumen under hypoxia to supply nutrients needed for tumor growth. Recent studies showed that microRNAs (miRNAs) may have a role in VM regulation. In this study, we examined the relevance of hypoxia-regulated miRNAs (hypoxamiRs) in the early stages of VM formation. Data showed that after 48 h hypoxia and 12 h incubation on matrigel SKOV3 ovarian cancer cells undergo the formation of matrix-associated intercellular connections referred hereafter as 3D channels-like structures, which arose previous to the apparition of canonical tubular structures representative of VM. Comprehensive profiling of 754 mature miRNAs at the onset of hypoxia-induced 3D channels-like structures showed that 11 hypoxamiRs were modulated (FC>1.5; p < 0.05) in SKOV3 cells (9 downregulated and 2 upregulated). Bioinformatic analysis of the set of regulated miRNAs showed that they might impact cellular pathways related with tumorigenesis. Moreover, overall survival analysis in a cohort of ovarian cancer patients (n = 485) indicated that low miR-765, miR-193b, miR-148a and high miR-138 levels were associated with worst patients outcome. In particular, miR-765 was severely downregulated after hypoxia (FC < 32.02; p < 0.05), and predicted to target a number of protein-encoding genes involved in angiogenesis and VM. Functional assays showed that ectopic restoration of miR-765 in SKOV3 cells resulted in a significant inhibition of hypoxia-induced 3D channels-like formation that was associated with a reduced number of branch points and patterned tubular-like structures. Mechanistic studies confirmed that miR-765 decreased the levels of VEGFA, AKT1 and SRC-α transducers and exerted a negative regulation of VEGFA by specific binding to its 3'UTR. Finally, overall survival analysis of a cohort of ovarian cancer patients (n = 1435) indicates that high levels of VEGFA, AKT1 and SRC-α and low miR-765 expression were associated with worst patients outcome. In conclusion, here we reported a novel hypoxamiRs signature which constitutes a molecular guide for further clinical and functional studies on the early stages of VM. Our data also suggested that miR-765 coordinates the formation of 3D channels-like structures through modulation of VEGFA/AKT1/SRC-α axis in SKOV3 ovarian cancer cells.
Collapse
Affiliation(s)
- Yarely M. Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Translacional y Departamento de Tumores Gastro-Intestinales, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Raúl García-Vázquez
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Erika Ruíz-García
- Laboratorio de Medicina Translacional y Departamento de Tumores Gastro-Intestinales, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | - Horacio Astudillo-de la Vega
- Laboratorio de Investigación Translacional en Cáncer y Terapia Celular, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - José L. Cruz-Colin
- Subdirección de Investigación Básica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alma D. Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| |
Collapse
|
4
|
Bevilacqua C, Ducos B. Laser microdissection: A powerful tool for genomics at cell level. Mol Aspects Med 2017; 59:5-27. [PMID: 28927943 DOI: 10.1016/j.mam.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Laser microdissection (LM) has become widely democratized over the last fifteen years. Instruments have evolved to offer more powerful and efficient lasers as well as new options for sample collection and preparation. Technological evolutions have also focused on the post-microdissection analysis capabilities, opening up investigations in all disciplines of experimental and clinical biology, thanks to the advent of new high-throughput methods of genome analysis, including RNAseq and proteomics, now globally known as microgenomics, i.e. analysis of biomolecules at the cell level. In spite of the advances these rapidly developing methods have allowed, the workflow for sampling and collection by LM remains a critical step in insuring sample integrity in terms of histology (accurate cell identification) and biochemistry (reliable analyzes of biomolecules). In this review, we describe the sample processing as well as the strengths and limiting factors of LM applied to the specific selection of one or more cells of interest from a heterogeneous tissue. We will see how the latest developments in protocols and methods have made LM a powerful and sometimes essential tool for genomic and proteomic analyzes of tiny amounts of biomolecules extracted from few cells isolated from a complex tissue, in their physiological context, thus offering new opportunities for understanding fundamental physiological and/or patho-physiological processes.
Collapse
Affiliation(s)
- Claudia Bevilacqua
- GABI, Plateforme @BRIDGE, INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy en Josas, France.
| | - Bertrand Ducos
- LPS-ENS, CNRS UMR 8550, UPMC, Université Denis Diderot, PSL Research University, 24 Rue Lhomond, 75005 Paris France; High Throughput qPCR Core Facility, IBENS, 46 Rue d'Ulm, 75005 Paris France; Laser Microdissection Facility of Montagne Sainte Geneviève, CIRB Collège de France, Place Marcellin Berthelot, 75005 Paris France.
| |
Collapse
|
5
|
Structural and functional identification of vasculogenic mimicry in vitro. Sci Rep 2017; 7:6985. [PMID: 28765613 PMCID: PMC5539303 DOI: 10.1038/s41598-017-07622-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Vasculogenic mimicry (VM) describes a process by which cancer cells establish an alternative perfusion pathway in an endothelial cell-free manner. Despite its strong correlation with reduced patient survival, controversy still surrounds the existence of an in vitro model of VM. Furthermore, many studies that claim to demonstrate VM fail to provide solid evidence of true hollow channels, raising concerns as to whether actual VM is actually being examined. Herein, we provide a standardized in vitro assay that recreates the formation of functional hollow channels using ovarian cancer cell lines, cancer spheres and primary cultures derived from ovarian cancer ascites. X-ray microtomography 3D-reconstruction, fluorescence confocal microscopy and dye microinjection conclusively confirm the existence of functional glycoprotein-rich lined tubular structures in vitro and demonstrate that many of structures reported in the literature may not represent VM. This assay may be useful to design and test future VM-blocking anticancer therapies.
Collapse
|
6
|
Mokrani N, Felfoul O, Afkhami Zarreh F, Mohammadi M, Aloyz R, Batist G, Martel S. Magnetotactic bacteria penetration into multicellular tumor spheroids for targeted therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2010:4371-4. [PMID: 21096454 DOI: 10.1109/iembs.2010.5627105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Preliminary experiments showed that MC-1 magnetotactic bacteria (MTB) could be used for the delivery of therapeutic agents to tumoral lesions. Each bacterium can provide a significant thrust propulsion force generated by two flagella bundles exceeding 4pN. Furthermore, a chain of single-domain magnetosomes embedded in the cell allows computer directional control and tracking using a magnetic resonance imaging (MRI) system. Although these embedded functionalities suggest that MTB when under the influence of an external computer could be considered as biological microrobots with the potential of targeting tumors, little is known about their level of penetration in tumoral tissues. In this paper, in vitro experiments were performed to assess the capability of these bacteria to penetrate tumor tissue for the delivery of therapeutic agents. Multicellular tumor spheroids were used since they reproduce many properties of solid tumors. The results show the ability of these MTB when submitted to a directional magnetic field to penetrate inside a 3D multicellular tumor spheroid through openings present in the tissue.
Collapse
Affiliation(s)
- Nisryn Mokrani
- NanoRobotics Laboratory, Department of Computer and Software Engineering, École Polytechnique de Montréal, (Québec) Canada, H3C 3A7.
| | | | | | | | | | | | | |
Collapse
|
7
|
Moco S, Schneider B, Vervoort J. Plant Micrometabolomics: The Analysis of Endogenous Metabolites Present in a Plant Cell or Tissue. J Proteome Res 2009; 8:1694-703. [DOI: 10.1021/pr800973r] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sofia Moco
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, and Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Bernd Schneider
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, and Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, and Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
8
|
Demou ZN, Hendrix MJC. Microgenomics profile the endogenous angiogenic phenotype in subpopulations of aggressive melanoma. J Cell Biochem 2009; 105:562-73. [PMID: 18655191 DOI: 10.1002/jcb.21855] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Beyond the elemental role of blood vessels in tumor growth, fluid conducting networks lacking endothelium (termed vasculogenic mimicry) were identified previously in metastatic melanoma and other cancer types. The etiology remains unclear, though it appears to involve dysregulation of the tumor-specific phenotype and transdifferentiation. Instigating the molecular deciphering of this phenomenon, we established a novel technique for microdissecting the spontaneously formed vascular-like networks and the randomly arranged cells (nests) from living 3D cultures of melanoma and performed microgenomics analysis. For the first time we show that despite the shared genotype, transcription was differentially regulated among the phenotypically distinct melanoma structures in vasculogenic mimicry. Several angiogenesis-specific genes were differentially expressed in higher levels in network cells of both uveal and cutaneous melanoma with intriguing representation of the ephrin family of angiogenesis factors, which was confirmed with immunocytochemistry. Interestingly, the adjacent nest-cells over-expressed ECM-related genes. Moreover, expression of angiogenesis-specific genes in melanoma resembled that of normal microvascular cells and was enhanced in melanoma disseminating hematogenously. The findings suggest that melanoma plasticity could enable autopoiesis of vascular-mimicking elements within the tumor infrastructure with significant clinical implications, such as response to anti-angiogenic treatments. Identifying factors regulating tumor plasticity and heterogeneity at the molecular level is essential in designing effective anti-cancer therapies.
Collapse
Affiliation(s)
- Zoe N Demou
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614-4314, USA
| | | |
Collapse
|