1
|
Torres M, Hussain H, Dickson AJ. The secretory pathway - the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins. Crit Rev Biotechnol 2022; 43:628-645. [PMID: 35465810 DOI: 10.1080/07388551.2022.2047004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cell factories (in particular the CHO cell system) have been crucial in the rise of biopharmaceuticals. Mammalian cells have compartmentalized organelles where intricate networks of proteins manufacture highly sophisticated biopharmaceuticals in a specialized production pipeline - the secretory pathway. In the bioproduction context, the secretory pathway functioning is key for the effectiveness of cell factories to manufacture these life-changing medicines. This review describes the molecular components and events involved in the secretory pathway, and provides a comprehensive summary of the intracellular steps limiting the production of therapeutic proteins as well as the achievements in engineering CHO cell secretory machinery. We also consider antibody-producing plasma cells (so called "professional" secretory cells) to explore the mechanisms underpinning their unique secretory function/features. Such understandings offer the potential to further enhancement of the current CHO cell production platforms for manufacturing next generation of biopharmaceuticals.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Hirra Hussain
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Hussain H, Patel T, Ozanne AMS, Vito D, Ellis M, Hinchliffe M, Humphreys DP, Stephens PE, Sweeney B, White J, Dickson AJ, Smales CM. A comparative analysis of recombinant Fab and full-length antibody production in Chinese hamster ovary cells. Biotechnol Bioeng 2021; 118:4815-4828. [PMID: 34585737 DOI: 10.1002/bit.27944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 01/05/2023]
Abstract
Monoclonal antibodies are the leading class of biopharmaceuticals in terms of numbers approved for therapeutic purposes. Antigen-binding fragments (Fab) are also used as biotherapeutics and used widely in research applications. The dominant expression systems for full-length antibodies are mammalian cell-based, whereas for Fab molecules the preference has been an expression in bacterial systems. However, advances in CHO and downstream technologies make mammalian systems an equally viable option for small- and large-scale Fab production. Using a panel of full-length IgG antibodies and their corresponding Fab pair with different antigen specificities, we investigated the impact of the IgG and Fab molecule format on production from Chinese hamster ovary (CHO) cells and assessed the cellular capability to process and produce these formats. The full-length antibody format resulted in the recovery of fewer mini-pools posttransfection when compared to the corresponding Fab fragment format that could be interpreted as indicative of a greater overall burden on cells. Antibody-producing cell pools that did recover were subsequently able to achieve higher volumetric protein yields (mg/L) and specific productivity than the corresponding Fab pools. Importantly, when the actual molecules produced per cell of a given format was considered (as opposed to mass), CHO cells produced a greater number of Fab molecules per cell than obtained with the corresponding IgG, suggesting that cells were more efficient at making the smaller Fab molecule. Analysis of cell pools showed that gene copy number was not correlated to the subsequent protein production. The amount of mRNA correlated with secreted Fab production but not IgG, whereby posttranscriptional processes act to limit antibody production. In summary, we provide the first comparative description of how full-length IgG and Fab antibody formats impact on the outcomes of a cell line construction process and identify potential limitations in their production that could be targeted for engineering increases in the efficiency in the manufacture of these recombinant antibody formats.
Collapse
Affiliation(s)
- Hirra Hussain
- Faculty of Science and Engineering, Department of Chemical Engineering and Analytical Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.,CPI, Central Park, Darlington, UK
| | - Tulshi Patel
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK.,Horizon Discovery Biosciences Limited, Cambridge, UK
| | - Angelica M S Ozanne
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK
| | - Davide Vito
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK.,Mestag Therapeutics Limited, Cambridge, UK
| | - Mark Ellis
- Protein Sciences, UCB Pharma, Berkshire, UK
| | | | | | | | - Bernie Sweeney
- Protein Sciences, UCB Pharma, Berkshire, UK.,Lonza Biologics, Berkshire, UK
| | | | - Alan J Dickson
- Faculty of Science and Engineering, Department of Chemical Engineering and Analytical Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Christopher M Smales
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK.,National Institute for Bioprocessing Research and Training, Co Dublin, Ireland
| |
Collapse
|
3
|
Rahaghi FF. Alpha-1 antitrypsin deficiency research and emerging treatment strategies: what's down the road? Ther Adv Chronic Dis 2021; 12_suppl:20406223211014025. [PMID: 34408832 PMCID: PMC8367209 DOI: 10.1177/20406223211014025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/08/2021] [Indexed: 01/29/2023] Open
Abstract
Intravenous infusion of alpha-1 antitrypsin (AAT) was approved by the United States Food and Drug Administration (FDA) to treat emphysema associated with AAT deficiency (AATD) in 1987 and there are now several FDA-approved therapy products on the market, all of which are derived from pooled human plasma. Intravenous AAT therapy has proven clinical efficacy in slowing the decline of lung function associated with AATD progression; however, it is only recommended for individuals with the most severe forms of AATD as there is a lack of evidence that this treatment is effective in treating wild-type heterozygotes (e.g., PI*MS and PI*MZ genotypes), for which the prevalence may be much higher than previously thought. There are large numbers of individuals that are currently left untreated despite displaying symptoms of AATD. Furthermore, not all countries offer AAT augmentation therapy due to its expense and inconvenience for patients. More cost-effective treatments are now being sought that show efficacy for less severe forms of AATD and many new therapeutic technologies are being investigated, such as gene repair and other interference strategies, as well as the use of chemical chaperones. New sources of AAT are also being investigated to ensure there are enough supplies to meet future demand, and new methods of assessing response to treatment are being evaluated. There is currently extensive research into AATD and its treatment, and this chapter aims to highlight important emerging treatment strategies that aim to improve the lives of patients with AATD.
Collapse
Affiliation(s)
- Franck F Rahaghi
- Advanced Lung Disease Clinic, Cleveland Clinic Florida, 2950 Cleveland Clinic Boulevard, Weston, FL 33331, USA
| |
Collapse
|
4
|
Valdez-Cruz NA, García-Hernández E, Espitia C, Cobos-Marín L, Altamirano C, Bando-Campos CG, Cofas-Vargas LF, Coronado-Aceves EW, González-Hernández RA, Hernández-Peralta P, Juárez-López D, Ortega-Portilla PA, Restrepo-Pineda S, Zelada-Cordero P, Trujillo-Roldán MA. Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microb Cell Fact 2021; 20:88. [PMID: 33888152 PMCID: PMC8061467 DOI: 10.1186/s12934-021-01576-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 is a novel β-coronavirus that caused the COVID-19 pandemic disease, which spread rapidly, infecting more than 134 million people, and killing almost 2.9 million thus far. Based on the urgent need for therapeutic and prophylactic strategies, the identification and characterization of antibodies has been accelerated, since they have been fundamental in treating other viral diseases. Here, we summarized in an integrative manner the present understanding of the immune response and physiopathology caused by SARS-CoV-2, including the activation of the humoral immune response in SARS-CoV-2 infection and therefore, the synthesis of antibodies. Furthermore, we also discussed about the antibodies that can be generated in COVID-19 convalescent sera and their associated clinical studies, including a detailed characterization of a variety of human antibodies and identification of antibodies from other sources, which have powerful neutralizing capacities. Accordingly, the development of effective treatments to mitigate COVID-19 is expected. Finally, we reviewed the challenges faced in producing potential therapeutic antibodies and nanobodies by cell factories at an industrial level while ensuring their quality, efficacy, and safety.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México.
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Laura Cobos-Marín
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil N° 2950, Valparaíso, Chile
| | - Carlos G Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Luis F Cofas-Vargas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Enrique W Coronado-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Ricardo A González-Hernández
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Pablo Hernández-Peralta
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Daniel Juárez-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Paola A Ortega-Portilla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Sara Restrepo-Pineda
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Patricio Zelada-Cordero
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México.
| |
Collapse
|
5
|
De Poi SP, Xie J, Smales CM, Proud CG. Constitutively active Rheb mutants [T23M] and [E40K] drive increased production and secretion of recombinant protein in Chinese hamster ovary cells. Biotechnol Bioeng 2021; 118:2422-2434. [PMID: 33694218 DOI: 10.1002/bit.27748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/10/2022]
Abstract
Monoclonal antibodies (mAbs) are high value agents used for disease therapy ("biologic drugs") or as diagnostic tools which are widely used in the healthcare sector. They are generally manufactured in mammalian cells, in particular Chinese hamster ovary (CHO) cells cultured in defined media, and are harvested from the medium. Rheb is a small GTPase which, when bound to GTP, activates mechanistic target of rapamycin complex 1, a protein kinase that drives anabolic processes including protein synthesis and ribosome biogenesis. Here, we show that certain constitutively active mutants of Rheb drive faster protein synthesis in CHO cells and increase the expression of proteins involved in the processing of secreted proteins in the endoplasmic reticulum, which expands in response to expression of Rheb mutants. Active Rheb mutants, in particular Rheb[T23M], drive increased cell number under serum-free conditions similar to those used in the biotechnology industry. Rheb[T23M] also enhances the expression of the reporter protein luciferase and, especially strongly, the secreted Gaussia luciferase. Moreover, Rheb[T23M] markedly (2-3 fold) enhances the amount of this luciferase and of a model immunoglobulin secreted into the medium. Our data clearly demonstrate that expressing Rheb[T23M] in CHO cells provides a simple approach to promoting their growth in defined medium and the production of secreted proteins of high commercial value.
Collapse
Affiliation(s)
- Stuart P De Poi
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jianling Xie
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Southampton, Southampton, UK.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - C Mark Smales
- Centre for Industrial Biotechnology and School of Biosciences, University of Kent, Canterbury, UK
| | - Christopher G Proud
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Sun T, Kwok WC, Chua KJ, Lo TM, Potter J, Yew WS, Chesnut JD, Hwang IY, Chang MW. Development of a Proline-Based Selection System for Reliable Genetic Engineering in Chinese Hamster Ovary Cells. ACS Synth Biol 2020; 9:1864-1872. [PMID: 32470293 DOI: 10.1021/acssynbio.0c00221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chinese hamster ovary (CHO) cells are the superior host cell culture models used for the bioproduction of therapeutic proteins. One of the prerequisites for bioproduction using CHO cell lines is the need to generate stable CHO cell lines with optimal expression output. Antibiotic selection is commonly employed to isolate and select CHO cell lines with stable expression, despite its potential negative impact on cellular metabolism and expression level. Herein, we present a novel proline-based selection system for the isolation of stable CHO cell lines. The system exploits a dysfunctional proline metabolism pathway in CHO cells by using a pyrroline-5-carboxylate synthase gene as a selection marker, enabling selection to be made using proline-free media. The selection system was demonstrated by expressing green fluorescent protein (GFP) and a monoclonal antibody. When GFP was expressed, more than 90% of stable transfectants were enriched within 2 weeks of the selection period. When a monoclonal antibody was expressed, we achieved comparable titers (3.35 ± 0.47 μg/mL) with G418 and Zeocin-based selections (1.65 ± 0.46 and 2.25 ± 0.07 μg/mL, respectively). We further developed a proline-based coselection by using S. cerevisiae PRO1 and PRO2 genes as markers, which enables the generation of 99.5% double-transgenic cells. The proline-based selection expands available selection tools and provides an alternative to antibiotic-based selections in CHO cell line development.
Collapse
Affiliation(s)
- Tao Sun
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Wee Chiew Kwok
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Koon Jiew Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Tat-Ming Lo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Jason Potter
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, California 92008, United States
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Jonathan D. Chesnut
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, California 92008, United States
| | - In Young Hwang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
7
|
Vito D, Eriksen JC, Skjødt C, Weilguny D, Rasmussen SK, Smales CM. Defining lncRNAs Correlated with CHO Cell Growth and IgG Productivity by RNA-Seq. iScience 2019; 23:100785. [PMID: 31962234 PMCID: PMC6971398 DOI: 10.1016/j.isci.2019.100785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/05/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
How the long non-coding RNA (lncRNA) genome in recombinant protein producing Chinese hamster ovary (CHO) cell lines relates to phenotype is not well described. We therefore defined the CHO cell lncRNA transcriptome from cells grown in controlled miniature bioreactors under fed-batch conditions using RNA-Seq to identify lncRNAs and how the expression of these changes throughout growth and between IgG producers. We identify lncRNAs including Adapt15, linked to ER stress, GAS5, linked to mTOR signaling/growth arrest, and PVT1, linked to Myc expression, which are differentially regulated during fed-batch culture and whose expression correlates to productivity and growth. Changes in (non)-coding RNA expression between the seed train and the equivalent day of fed-batch culture are also reported and compared with existing datasets. Collectively, we present a comprehensive lncRNA CHO cell profiling and identify targets for engineering growth and productivity characteristics of CHO cells. The CHO cell lncRNA transcriptome is defined using RNA-Seq Correlations between lncRNA expression and CHO cell growth and IgG productivity found Expression of lncRNAs involved in ER stress correlates to productivity Expression of lncRNAs involved in mTOR signaling/growth arrest correlates to growth
Collapse
Affiliation(s)
- Davide Vito
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Jens Christian Eriksen
- Symphogen A/S, Pederstrupvej 93, DK-2750 Ballerup, Denmark; AGC Biologics, Vandtårnsvej 83, DK-2860 Søborg, Denmark
| | | | - Dietmar Weilguny
- Symphogen A/S, Pederstrupvej 93, DK-2750 Ballerup, Denmark; Alligator Bioscience AB, Medicon Village, Scheelevägen 2, 223 63 Lund, Sweden
| | | | - C Mark Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
8
|
Structure and Synthesis of Antifungal Disulfide β-Strand Proteins from Filamentous Fungi. Microorganisms 2018; 7:microorganisms7010005. [PMID: 30591636 PMCID: PMC6352176 DOI: 10.3390/microorganisms7010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 02/03/2023] Open
Abstract
The discovery and understanding of the mode of action of new antimicrobial agents is extremely urgent, since fungal infections cause 1.5 million deaths annually. Antifungal peptides and proteins represent a significant group of compounds that are able to kill pathogenic fungi. Based on phylogenetic analyses the ascomycetous, cysteine-rich antifungal proteins can be divided into three different groups: Penicillium chrysogenum antifungal protein (PAF), Neosartorya fischeri antifungal protein 2 (NFAP2) and “bubble-proteins” (BP) produced, for example, by P. brevicompactum. They all dominantly have β-strand secondary structures that are stabilized by several disulfide bonds. The PAF group (AFP antifungal protein from Aspergillus giganteus, PAF and PAFB from P. chrysogenum,Neosartorya fischeri antifungal protein (NFAP)) is the best characterized with their common β-barrel tertiary structure. These proteins and variants can efficiently be obtained either from fungi production or by recombinant expression. However, chemical synthesis may be a complementary aid for preparing unusual modifications, e.g., the incorporation of non-coded amino acids, fluorophores, or even unnatural disulfide bonds. Synthetic variants up to ca. 6–7 kDa can also be put to good use for corroborating structure determination. A short overview of the structural peculiarities of antifungal β-strand disulfide bridged proteins will be given. Here, we describe the structural propensities of some known antifungal proteins from filamentous fungi which can also be prepared with modern synthetic chemistry methods.
Collapse
|
9
|
Jossé L, Zhang L, Smales CM. Application of microRNA Targeted 3′UTRs to Repress DHFR Selection Marker Expression for Development of Recombinant Antibody Expressing CHO Cell Pools. Biotechnol J 2018; 13:e1800129. [DOI: 10.1002/biot.201800129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Lyne Jossé
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| | - Lin Zhang
- Pfizer Inc; 1 Burtt Road Andover MA 01810 USA
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| |
Collapse
|
10
|
Torres M, Zúñiga R, Gutierrez M, Vergara M, Collazo N, Reyes J, Berrios J, Aguillon JC, Molina MC, Altamirano C. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. PLoS One 2018; 13:e0194510. [PMID: 29566086 PMCID: PMC5864046 DOI: 10.1371/journal.pone.0194510] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the most frequently used host for commercial production of therapeutic proteins. However, their low protein productivity in culture is the main hurdle to overcome. Mild hypothermia has been established as an effective strategy to enhance protein specific productivity, although the causes of such improvement still remain unclear. The self-regulation of global transcriptional regulatory factors, such as Myc and XBP1s, seems to be involved in increased the recombinant protein production at low temperature. This study evaluated the impact of low temperature in CHO cell cultures on myc and xbp1s expression and their effects on culture performance and cell metabolism. Two anti-TNFα producing CHO cell lines were selected considering two distinct phenotypes: i.e. maximum cell growth, (CN1) and maximum specific anti-TNFα production (CN2), and cultured at 37, 33 and 31°C in a batch system. Low temperature led to an increase in the cell viability, the expression of the recombinant anti-TNFα and the production of anti-TNFα both in CN1 and CN2. The higher production of anti-TNFα in CN2 was mainly associated with the large expression of anti-TNFα. Under mild hypothermia myc and xbp1s expression levels were directly correlated to the maximal viable cell density and the specific anti-TNFα productivity, respectively. Moreover, cells showed a simultaneous metabolic shift from production to consumption of lactate and from consumption to production of glutamine, which were exacerbated by reducing culture temperature and coincided with the increased anti-TNFα production. Our current results provide new insights of the regulation of myc and xbp1s in CHO cells at low temperature, and suggest that the presence and magnitude of the metabolic shift might be a relevant metabolic marker of productive cell line.
Collapse
Affiliation(s)
- Mauro Torres
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Roberto Zúñiga
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Doctorado en Química, Universidad República Oriental del Uruguay, Montevideo, Uruguay
| | - Matias Gutierrez
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Doctorado en Química, Universidad República Oriental del Uruguay, Montevideo, Uruguay
| | - Norberto Collazo
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Julio Berrios
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Carlos Aguillon
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Carmen Molina
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS CONICYT Regional GORE, Valparaiso, Chile
- * E-mail:
| |
Collapse
|
11
|
Polysome profiling of mAb producing CHO cell lines links translational control of cell proliferation and recombinant mRNA loading onto ribosomes with global and recombinant protein synthesis. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/07/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022]
|
12
|
Alves CS, Dobrowsky TM. Strategies and Considerations for Improving Expression of "Difficult to Express" Proteins in CHO Cells. Methods Mol Biol 2017; 1603:1-23. [PMID: 28493120 DOI: 10.1007/978-1-4939-6972-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite substantial advances in the field of mammalian expression, there are still proteins that are characterized as difficult to express. Determining the expression bottleneck requires troubleshooting techniques specific for the given molecule and host. The complex array of intracellular processes involved in protein expression includes transcription, protein folding, post-translation processing, and secretion. Challenges in any of these steps could result in low protein expression, while the inherent properties of the molecule itself may limit its production via mechanisms such as cytotoxicity or inherent instability. Strategies to identify the rate-limiting step and subsequently improve expression and production are discussed here.
Collapse
|
13
|
mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells. Biochem J 2016; 473:4651-4664. [PMID: 27760840 PMCID: PMC5147049 DOI: 10.1042/bcj20160845] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022]
Abstract
Many protein-based biotherapeutics are produced in cultured Chinese hamster ovary (CHO) cell lines. Recent reports have demonstrated that translation of recombinant mRNAs and global control of the translation machinery via mammalian target of rapamycin (mTOR) signalling are important determinants of the amount and quality of recombinant protein such cells can produce. mTOR complex 1 (mTORC1) is a master regulator of cell growth/division, ribosome biogenesis and protein synthesis, but the relationship between mTORC1 signalling, cell growth and proliferation and recombinant protein yields from mammalian cells, and whether this master regulating signalling pathway can be manipulated to enhance cell biomass and recombinant protein production (rPP) are not well explored. We have investigated mTORC1 signalling and activity throughout batch culture of a panel of sister recombinant glutamine synthetase-CHO cell lines expressing different amounts of a model monoclonal IgG4, to evaluate the links between mTORC1 signalling and cell proliferation, autophagy, recombinant protein expression, global protein synthesis and mRNA translation initiation. We find that the expression of the mTORC1 substrate 4E-binding protein 1 (4E-BP1) fluctuates throughout the course of cell culture and, as expected, that the 4E-BP1 phosphorylation profiles change across the culture. Importantly, we find that the eIF4E/4E-BP1 stoichiometry positively correlates with cell productivity. Furthermore, eIF4E amounts appear to be co-regulated with 4E-BP1 amounts. This may reflect a sensing of either change at the mRNA level as opposed to the protein level or the fact that the phosphorylation status, as well as the amount of 4E-BP1 present, is important in the co-regulation of eIF4E and 4E-BP1.
Collapse
|
14
|
Chiverton LM, Evans C, Pandhal J, Landels AR, Rees BJ, Levison PR, Wright PC, Smales CM. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line. Biotechnol J 2016; 11:1014-24. [PMID: 27214759 PMCID: PMC5031201 DOI: 10.1002/biot.201500550] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/28/2016] [Accepted: 05/12/2016] [Indexed: 11/14/2022]
Abstract
There are few studies defining CHO host cell proteins (HCPs) and the flux of these throughout a downstream purification process. Here we have applied quantitative iTRAQ proteomics to follow the HCP profile of an antibody (mAb) producing CHO-S cell line throughout a standard downstream purification procedure consisting of a Protein A, cation and anion exchange process. We used both 6 sample iTRAQ experiment to analyze technical replicates of three samples, which were culture harvest (HCCF), Protein A flow through and Protein A eluate and an 8 sample format to analyze technical replicates of four sample types; HCCF compared to Protein A eluate and subsequent cation and anion exchange purification. In the 6 sample iTRAQ experiment, 8781 spectra were confidently matched to peptides from 819 proteins (including the mAb chains). Across both the 6 and 8 sample experiments 936 proteins were identified. In the 8 sample comparison, 4187 spectra were confidently matched to peptides from 219 proteins. We then used the iTRAQ data to enable estimation of the relative change of individual proteins across the purification steps. These data provide the basis for application of iTRAQ for process development based upon knowledge of critical HCPs.
Collapse
Affiliation(s)
- Lesley M Chiverton
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Caroline Evans
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Jagroop Pandhal
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Andrew R Landels
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | | | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK.
| | - C Mark Smales
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, UK.
| |
Collapse
|
15
|
Enhanced translation initiation factor 4G levels correlate with production levels of monoclonal antibodies in recombinant CHO cell lines. Biochem J 2016; 473:e11-3. [PMID: 26965386 DOI: 10.1042/bj20151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using cells to manufacture protein-based therapeutics or biopharmaceuticals is a rapidly expanding industrial activity. Chinese hamster ovary (CHO) cells are the most frequently used mammalian host-expression system for the manufacture of biopharmaceuticals. Over the past ∼30 years academic and industrial researchers have studied cell expression characteristics with aims to improve product yield, quality, scalability and reproducibility. Although many steps in the gene expression and secretion pathways have been optimized, little attention has been paid to optimizing protein synthesis factors and regulators during this process. A new study in Biochemical Journal by Mead et al., provides a first systematic study of several protein synthesis factors and finds that the expression level of eIF4G1 correlates with the level of recombinant protein expressed in cultures. Optimizing levels and activities of protein synthesis factors may help to enhance recombinant protein expression of biopharmaceuticals.
Collapse
|
16
|
Vergara M, Berrios J, Martínez I, Díaz-Barrera A, Acevedo C, Reyes JG, Gonzalez R, Altamirano C. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures. PLoS One 2015; 10:e0144224. [PMID: 26659083 PMCID: PMC4676689 DOI: 10.1371/journal.pone.0144224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Chinese hamster ovary (CHO) cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in the endoplasmic reticulum. Methods In order to evaluate the effect of the mild hypothermia on processing/endoplasmatic reticulum-associated degradation (ERAD) processes, batch cultures of CHO cells producing recombinant human tissue plasminogen activator (rht-PA) were carried out at two temperatures (37°C and 33°C) and treated with specific inhibitors of glycosylation and ERAD I (Ubiquitin/Proteasome system) or ERAD II (Autophagosoma/Lisosomal system) pathways. The effect of mild hypothermia was analysed separately from its indirect effect on specific cell growth rate. To do this, chemostat cultures were carried out at the same incubation conditions as the batch cultures, controlling cell growth at high (0.017 h-1) and low (0.012 h-1) dilution rates. For a better understanding of the investigated phenomenon, cell behaviour was also analysed using principal component analysis (PCA). Results and Conclusion Results suggest that rht-PA is susceptible to degradation by both ERAD pathways studied, revealing that processing and/or ERAD processes are sensitive to temperature cultivation in batch culture. Moreover, by isolating the effect of culture temperature from the effect of cell growth rate verifyed by using chemostat cultures, we have found that processing and/or ERAD processes are more sensitive to reduction in specific growth rate than low temperature, and that temperature reduction may have a positive effect on protein processing. Interestingly, PCA indicated that the integrated performance displayed by CHO cells is modulated predominantly by specific growth rate, indicating that the culture temperature has a lower weighted effect within the range of conditions evaluated in this work.
Collapse
Affiliation(s)
- Mauricio Vergara
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Chile
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, 4059, Chile
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, 4059, Chile
| | - Irene Martínez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, 4059, Chile
| | - Alvaro Díaz-Barrera
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, 4059, Chile
| | - Cristian Acevedo
- Biotechnology Center “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - Juan G. Reyes
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Chile
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, 4059, Chile
- CREAS CONICYT Regional GORE Valparaíso R0GI1004. Av. Universidad, Curauma, Chile
- * E-mail:
| |
Collapse
|
17
|
Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity. Biochem J 2015; 472:261-73. [DOI: 10.1042/bj20150928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022]
Abstract
We show for translation initiation factors involved in formation of the closed loop mRNA, their expression is associated with recombinant antibody productivity in Chinese hamster ovary cells and maintaining these is important in determining the cells capacity for antibody productivity.
Collapse
|
18
|
Ley D, Seresht AK, Engmark M, Magdenoska O, Nielsen KF, Kildegaard HF, Andersen MR. Multi-omic profiling -of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production. Biotechnol Bioeng 2015; 112:2373-87. [PMID: 25995028 PMCID: PMC5034845 DOI: 10.1002/bit.25652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022]
Abstract
Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi‐omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO‐K1 cells under growth‐limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO‐producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)+, adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT‐PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)+ and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post‐translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time‐course analysis of high‐ and low‐producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity. Biotechnol. Bioeng. 2015;112: 2373–2387. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Ley
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark.,Cell Culture Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Ali Kazemi Seresht
- Cell Culture Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Mikael Engmark
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark.,Cell Culture Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Olivera Magdenoska
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
19
|
Hogwood CEM, Bracewell DG, Smales CM. Measurement and control of host cell proteins (HCPs) in CHO cell bioprocesses. Curr Opin Biotechnol 2014; 30:153-60. [DOI: 10.1016/j.copbio.2014.06.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/16/2014] [Accepted: 06/22/2014] [Indexed: 11/26/2022]
|
20
|
Povey JF, O'Malley CJ, Root T, Martin EB, Montague GA, Feary M, Trim C, Lang DA, Alldread R, Racher AJ, Smales CM. Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling. J Biotechnol 2014; 184:84-93. [PMID: 24858576 DOI: 10.1016/j.jbiotec.2014.04.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/21/2014] [Accepted: 04/28/2014] [Indexed: 01/25/2023]
Abstract
Despite many advances in the generation of high producing recombinant mammalian cell lines over the last few decades, cell line selection and development is often slowed by the inability to predict a cell line's phenotypic characteristics (e.g. growth or recombinant protein productivity) at larger scale (large volume bioreactors) using data from early cell line construction at small culture scale. Here we describe the development of an intact cell MALDI-ToF mass spectrometry fingerprinting method for mammalian cells early in the cell line construction process whereby the resulting mass spectrometry data are used to predict the phenotype of mammalian cell lines at larger culture scale using a Partial Least Squares Discriminant Analysis (PLS-DA) model. Using MALDI-ToF mass spectrometry, a library of mass spectrometry fingerprints was generated for individual cell lines at the 96 deep well plate stage of cell line development. The growth and productivity of these cell lines were evaluated in a 10L bioreactor model of Lonza's large-scale (up to 20,000L) fed-batch cell culture processes. Using the mass spectrometry information at the 96 deep well plate stage and phenotype information at the 10L bioreactor scale a PLS-DA model was developed to predict the productivity of unknown cell lines at the 10L scale based upon their MALDI-ToF fingerprint at the 96 deep well plate scale. This approach provides the basis for the very early prediction of cell lines' performance in cGMP manufacturing-scale bioreactors and the foundation for methods and models for predicting other mammalian cell phenotypes from rapid, intact-cell mass spectrometry based measurements.
Collapse
Affiliation(s)
- Jane F Povey
- Centre for Molecular Processing and School of Bioscience, University of Kent, Canterbury CT2 7NJ, UK
| | - Christopher J O'Malley
- School of Chemical Engineering & Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tracy Root
- Lonza Biologics plc, 228 Bath Road, Slough SL1 4DX, UK
| | - Elaine B Martin
- School of Chemical Engineering & Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Gary A Montague
- School of Chemical Engineering & Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Marc Feary
- Lonza Biologics plc, 228 Bath Road, Slough SL1 4DX, UK
| | - Carol Trim
- Centre for Molecular Processing and School of Bioscience, University of Kent, Canterbury CT2 7NJ, UK
| | | | | | | | - C Mark Smales
- Centre for Molecular Processing and School of Bioscience, University of Kent, Canterbury CT2 7NJ, UK.
| |
Collapse
|
21
|
The chaperonin CCT interacts with and mediates the correct folding and activity of three subunits of translation initiation factor eIF3: b, i and h. Biochem J 2014; 458:213-24. [PMID: 24320561 DOI: 10.1042/bj20130979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
eIF3 (eukaryotic initiation factor 3) is the largest and most complex eukaryotic mRNA translation factor in terms of the number of protein components or subunits. In mammals, eIF3 is composed of 13 different polypeptide subunits, of which five, i.e. a, b, c, g and i, are conserved and essential in vivo from yeasts to mammals. In the present study, we show that the eukaryotic cytosolic chaperonin CCT [chaperonin containing TCP-1 (tailless complex polypeptide 1)] binds to newly synthesized eIF3b and promotes the correct folding of eIF3h and eIF3i. Interestingly, overexpression of these last two subunits is associated with enhanced translation of specific mRNAs over and above the general enhancement of global translation. In agreement with this, our data show that, as CCT is required for the correct folding of eIF3h and eIF3i subunits, it indirectly influences gene expression with eIF3i overexpression enhancing both cap- and IRES (internal ribosome entry segment)-dependent translation initiation, whereas eIF3h overexpression selectively increases IRES-dependent translation initiation. Importantly, these studies demonstrate the requirement of the chaperonin machinery for the correct folding of essential components of the translational machinery and provide further evidence of the close interplay between the cell environment, cell signalling, cell proliferation, the chaperone machinery and translational apparatus.
Collapse
|
22
|
Moore SJ, Mayer MJ, Biedendieck R, Deery E, Warren MJ. Towards a cell factory for vitamin B12 production in Bacillus megaterium: bypassing of the cobalamin riboswitch control elements. N Biotechnol 2014; 31:553-61. [PMID: 24657453 DOI: 10.1016/j.nbt.2014.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 12/27/2022]
Abstract
Bacillus megaterium is a bacterium that has been used in the past for the industrial production of vitamin B12 (cobalamin), the anti-pernicious anaemia factor. Cobalamin is a modified tetrapyrrole with a cobalt ion coordinated within its macrocycle. More recently, B. megaterium has been developed as a host for the high-yield production of recombinant proteins using a xylose inducible promoter system. Herein, we revisit cobalamin production in B. megaterium DSM319. We have investigated the importance of cobalt for optimum growth and cobalamin production. The cobaltochelatase (CbiX(L)) is encoded within a 14-gene cobalamin biosynthetic (cbi) operon, whose gene-products oversee the transformation of uroporphyrinogen III into adenosylcobyrinic acid a,c-diamide, a key precursor of cobalamin synthesis. The production of CbiX(L) in response to exogenous cobalt was monitored. The metal was found to stimulate cobalamin biosynthesis and decrease the levels of CbiX(L). From this we were able to show that the entire cbi operon is transcriptionally regulated by a B12-riboswitch, with a switch-off point at approximately 5 nM cobalamin. To bypass the effects of the B12-riboswitch the cbi operon was cloned without these regulatory elements. Growth of these strains on minimal media supplemented with glycerol as a carbon source resulted in significant increases in cobalamin production (up to 200 μg L(-1)). In addition, a range of partially amidated intermediates up to adenosylcobyric acid was detected. These findings outline a potential way to develop B. megaterium as a cell factory for cobalamin production using cheap raw materials.
Collapse
Affiliation(s)
- Simon J Moore
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Matthias J Mayer
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Rebekka Biedendieck
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Evelyne Deery
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
23
|
Mead EJ, Chiverton LM, Spurgeon SK, Martin EB, Montague GA, Smales CM, von der Haar T. Experimental and in silico modelling analyses of the gene expression pathway for recombinant antibody and by-product production in NS0 cell lines. PLoS One 2012; 7:e47422. [PMID: 23071804 PMCID: PMC3468484 DOI: 10.1371/journal.pone.0047422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway.
Collapse
Affiliation(s)
- Emma J. Mead
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
- * E-mail: (EJM); (CMS); (TvdH)
| | - Lesley M. Chiverton
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
| | - Sarah K. Spurgeon
- School of Engineering and Digital Arts, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
| | - Elaine B. Martin
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle, United Kingdom
| | - Gary A. Montague
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle, United Kingdom
| | - C. Mark Smales
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
- * E-mail: (EJM); (CMS); (TvdH)
| | - Tobias von der Haar
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
- * E-mail: (EJM); (CMS); (TvdH)
| |
Collapse
|
24
|
Hogwood CE, Tait AS, Koloteva-Levine N, Bracewell DG, Smales CM. The dynamics of the CHO host cell protein profile during clarification and protein A capture in a platform antibody purification process. Biotechnol Bioeng 2012; 110:240-51. [DOI: 10.1002/bit.24607] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/29/2012] [Accepted: 07/05/2012] [Indexed: 11/12/2022]
|
25
|
Mason M, Sweeney B, Cain K, Stephens P, Sharfstein ST. Identifying bottlenecks in transient and stable production of recombinant monoclonal-antibody sequence variants in Chinese hamster ovary cells. Biotechnol Prog 2012; 28:846-55. [PMID: 22467228 DOI: 10.1002/btpr.1542] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/12/2012] [Indexed: 11/06/2022]
Abstract
The increasing demand for antibody-based therapeutics has emphasized the need for technologies to improve recombinant antibody titers from mammalian cell lines. Moreover, as antibody therapeutics address an increasing spectrum of indications, interest has increased in antibody engineering to improve affinity and biological activity. However, the cellular mechanisms that dictate expression and the relationships between antibody sequence and expression level remain poorly understood. Fundamental understanding of how mammalian cells handle high levels of transgene expression and of the relationship between sequence and expression are vital to the development of new antibodies and for increasing recombinant antibody titers. In this work, we analyzed a pair of mutants that vary by a single amino acid at Kabat position 49 (heavy-chain framework), resulting in differential transient and stable titers with no apparent loss of antigen affinity. Through analysis of mRNA, gene copy number, intracellular antibody content, and secreted antibody, we found that while translational/post-translational mechanisms are limiting in transient systems, it appears that the amount of available transgenic mRNA becomes the limiting event on stable integration of the recombinant genes. We also show that amino acid substitution at residue 49 results in production of a non-secreted HC variant and postulate that stable antibody expression is maintained at a level which prevents toxic accumulation of this HC-related protein. This study highlights the need for proper sequence engineering strategies when developing therapeutic antibodies and alludes to the early analysis of transient expression systems to identify the potential for aberrant stable expression behavior.
Collapse
Affiliation(s)
- Megan Mason
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
26
|
Lanza AM, Dyess TJ, Alper HS. Using the Cre/lox system for targeted integration into the human genome: loxFAS-loxP pairing and delayed introduction of Cre DNA improve gene swapping efficiency. Biotechnol J 2012; 7:898-908. [DOI: 10.1002/biot.201200034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/02/2012] [Accepted: 04/23/2012] [Indexed: 11/11/2022]
|
27
|
Hayes NVL, Jossé L, Smales CM, Carden MJ. Modulation of phosducin-like protein 3 (PhLP3) levels promotes cytoskeletal remodelling in a MAPK and RhoA-dependent manner. PLoS One 2011; 6:e28271. [PMID: 22174782 PMCID: PMC3235111 DOI: 10.1371/journal.pone.0028271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background Phosducin-like protein 3 (PhLP3) forms a ternary complex with the ATP-dependent molecular chaperone CCT and its folding client tubulin. In vitro studies suggest PhLP3 plays an inhibitory role in β-tubulin folding while conversely in vivo genetic studies suggest PhLP3 is required for the correct folding of β-tubulin. We have a particular interest in the cytoskeleton, its chaperones and their role in determining cellular phenotypes associated with high level recombinant protein expression from mammalian cell expression systems. Methodology/Principal Findings As studies into PhLP3 function have been largely carried out in non mammalian systems, we examined the effect of human PhLP3 over-expression and siRNA silencing using a single murine siRNA on both tubulin and actin systems in mammalian Chinese hamster ovary (CHO) cell lines. We show that over-expression of PhLP3 promotes an imbalance of α and β tubulin subunits, microtubule disassembly and cell death. In contrast, β-actin levels are not obviously perturbed. On-the-other-hand, RNA silencing of PhLP3 increases RhoA-dependent actin filament formation and focal adhesion formation and promotes a dramatic elongated fibroblast-like change in morphology. This was accompanied by an increase in phosphorylated MAPK which has been associated with promoting focal adhesion assembly and maturation. Transient overexpression of PhLP3 in knockdown experiments rescues cells from the morphological change observed during PhLP3 silencing but mitosis is perturbed, probably reflecting a tipping back of the balance of PhLP3 levels towards the overexpression state. Conclusions Our results support the hypothesis that PhLP3 is important for the maintenance of β-tubulin levels in mammalian cells but also that its modulation can promote actin-based cytoskeletal remodelling by a mechanism linked with MAPK phosphorylation and RhoA-dependent changes. PhLP3 levels in mammalian cells are thus finely poised and represents a novel target for engineering industrially relevant cell lines to evolve lines more suited to suspension or adherent cell growth.
Collapse
Affiliation(s)
- Nandini V. L. Hayes
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Lyne Jossé
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - C. Mark Smales
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail: (CMS); (MJC)
| | - Martin J. Carden
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail: (CMS); (MJC)
| |
Collapse
|