1
|
Becerril-Castro IB, Negrín-Montecelo Y, Moreno J, Correa-Duarte MA, Giannini V, Alvarez-Puebla RA. Eco-friendly and biocompatible gelatin plasmonic filters for UV-vis-NIR light. Commun Chem 2024; 7:115. [PMID: 38796547 PMCID: PMC11128008 DOI: 10.1038/s42004-024-01202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
The quest for environmentally sustainable materials spans many fields and applications including optical materials. Here, we present the development of light filters using a gelatin-based nanocomposite. Owing to the plasmonic properties of metallic nanoparticles (NPs), strong light-matter interactions, these filters can be customized across the UV-Visible-NIR spectrum. The filters are designed for modular use, allowing for the addition or removal of desired spectral ranges. Moreover, the nanocomposites are composed of biodegradable and biocompatible materials which highlight the intersection of chemistry and ecological awareness for the exploration of new eco-friendly alternatives. These plasmonic gelatin-based filters block light due to the Localized Surface Plasmon Resonance (LSPR) of the NPs and can be tailored to meet various requirements, akin to a diner selecting options from a menu. This approach is inspired by culinary techniques, and we anticipate it will stimulate further exploration of biomaterials for applications in optics, materials science or electronics.
Collapse
Affiliation(s)
- I Brian Becerril-Castro
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo 2-4-6, 43007, Tarragona, Spain
| | - Yoel Negrín-Montecelo
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo 2-4-6, 43007, Tarragona, Spain
| | - Josep Moreno
- Deliranto, Carrer de Llevant, 7, 43840, Salou, Spain
| | | | - Vincenzo Giannini
- Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 121, 28006, Madrid, Spain.
- Technology Innovation Institute, Masdar City, Abu Dhabi, United Arab Emirates.
- Centre of Excellence ENSEMBLE3 sp. z o.o., Wolczynska 133, Warsaw, 01-919, Poland.
| | - Ramón A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo 2-4-6, 43007, Tarragona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Fujiwara E, Rosa LO, Oku H, Cordeiro CMB. Agar-based optical sensors for electric current measurements. Sci Rep 2023; 13:13517. [PMID: 37598288 PMCID: PMC10439927 DOI: 10.1038/s41598-023-40749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Biodegradable optical waveguides are breakthrough technologies to light delivery and sensing in biomedical and environmental applications. Agar emerges as an edible, soft, low-cost, and renewable alternative to traditional biopolymers, presenting remarkable optical and mechanical characteristics. Previous works introduced agar-made optical fibers for chemical measurements based on their inherent response to humidity and surrounding concentration. Therefore, we propose, for the first time, an all-optical, biodegradable electric current sensor. As flowing charges heat the agar matrix and modulate its refractive index, we connect the optical device to a DC voltage source using pin headers and excite the agar sample with coherent light to project spatiotemporally deviating speckle fields. Experiments proceeded with spheres and no-core fibers comprising 2 wt% agar/water. Once the increasing current stimulates the speckles' motion, we acquire such images with a camera and evaluate their correlation coefficients, yielding exponential decay-like functions whose time constants provide the input amperage. Furthermore, the light granules follow the polarization of the applied voltage drop, providing visual information about the current direction. The results indicate a maximum resolution of [Formula: see text]0.4 [Formula: see text]A for electrical stimuli [Formula: see text] 100 [Formula: see text]A, which fulfills the requirements for bioelectrical signal assessment.
Collapse
Affiliation(s)
- Eric Fujiwara
- School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil.
| | - Lidia O Rosa
- School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil
| | - Hiromasa Oku
- Faculty of Informatics, Gunma University, Kiryu, 376-8518, Japan
| | | |
Collapse
|
3
|
Seung Lee J, Kim J, Ye YS, Kim TI. Materials and device design for advanced phototherapy systems. Adv Drug Deliv Rev 2022; 186:114339. [PMID: 35568104 DOI: 10.1016/j.addr.2022.114339] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
Abstract
Phototherapy has recently emerged as a promising solution for cancer treatment due to its multifunctionality and minimal invasiveness. Notwithstanding the limited penetration depth of light through skin, the ability of photopharmaceutical device systems to deliver light to desired lesions is important. The device system deploys advanced biocompatible materials and fabrication technologies for electronics, and eventually enables more efficient phototherapy. In this review, we focus on diverse optical electronics to illuminate the lesion site with light. Then, moving on to the phototherapy, we highlight photo-thermal therapy with light absorbing materials, photo-activated chemotherapy with light sensitive materials, and photo-dynamic therapy using photosensitizers. Furthermore, we introduce a drug delivery system that can deliver these photopharmaceutical agents spatiotemporally to the tumor site. To this end, we provide a general overview of materials and devices for phototherapy and discuss critical issues and pending limitations of such phototherapy.
Collapse
|
4
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Hynninen V, Chandra S, Das S, Amini M, Dai Y, Lepikko S, Mohammadi P, Hietala S, Ras RHA, Sun Z, Ikkala O. Luminescent Gold Nanocluster-Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005205. [PMID: 33491913 DOI: 10.1002/smll.202005205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Because of their lightweight structure, flexibility, and immunity to electromagnetic interference, polymer optical fibers (POFs) are used in numerous short-distance applications. Notably, the incorporation of luminescent nanomaterials in POFs offers optical amplification and sensing for advanced nanophotonics. However, conventional POFs suffer from nonsustainable components and processes. Furthermore, the traditionally used luminescent nanomaterials undergo photobleaching, oxidation, and they can be cytotoxic. Therefore, biopolymer-based optical fibers containing nontoxic luminescent nanomaterials are needed, with efficient and environmentally acceptable extrusion methods. Here, such an approach for fibers wet-spun from aqueous methylcellulose (MC) dispersions under ambient conditions is demonstrated. Further, the addition of either luminescent gold nanoclusters, rod-like cellulose nanocrystals or gold nanocluster-cellulose nanocrystal hybrids into the MC matrix furnishes strong and ductile composite fibers. Using cutback attenuation measurement, it is shown that the resulting fibers can act as short-distance optical fibers with a propagation loss as low as 1.47 dB cm-1 . The optical performance is on par with or even better than some of the previously reported biopolymeric optical fibers. The combination of excellent mechanical properties (Young's modulus and maximum strain values up to 8.4 GPa and 52%, respectively), low attenuation coefficient, and high photostability makes the MC-based composite fibers excellent candidates for multifunctional optical fibers and sensors.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P. O. Box 541, Tampere, FI-33101, Finland
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Sourov Chandra
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Mohammad Amini
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Sakari Lepikko
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre, P. O. Box 1000, Espoo, FI-02044, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P. O. Box 55, Helsinki, FI-00014, Finland
| | - Robin H A Ras
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Olli Ikkala
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| |
Collapse
|
6
|
Guimarães CF, Ahmed R, Marques AP, Reis RL, Demirci U. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006582. [PMID: 33929771 PMCID: PMC8647870 DOI: 10.1002/adma.202006582] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Indexed: 05/18/2023]
Abstract
Light guiding and manipulation in photonics have become ubiquitous in events ranging from everyday communications to complex robotics and nanomedicine. The speed and sensitivity of light-matter interactions offer unprecedented advantages in biomedical optics, data transmission, photomedicine, and detection of multi-scale phenomena. Recently, hydrogels have emerged as a promising candidate for interfacing photonics and bioengineering by combining their light-guiding properties with live tissue compatibility in optical, chemical, physiological, and mechanical dimensions. Herein, the latest progress over hydrogel photonics and its applications in guidance and manipulation of light is reviewed. Physics of guiding light through hydrogels and living tissues, and existing technical challenges in translating these tools into biomedical settings are discussed. A comprehensive and thorough overview of materials, fabrication protocols, and design architectures used in hydrogel photonics is provided. Finally, recent examples of applying structures such as hydrogel optical fibers, living photonic constructs, and their use as light-driven hydrogel robots, photomedicine tools, and organ-on-a-chip models are described. By providing a critical and selective evaluation of the field's status, this work sets a foundation for the next generation of hydrogel photonic research.
Collapse
Affiliation(s)
- Carlos F. Guimarães
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Alexandra P. Marques
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
7
|
Wu C, Liu X, Ying Y. Soft and Stretchable Optical Waveguide: Light Delivery and Manipulation at Complex Biointerfaces Creating Unique Windows for On-Body Sensing. ACS Sens 2021; 6:1446-1460. [PMID: 33611914 DOI: 10.1021/acssensors.0c02566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past few decades, optical waveguides have been increasingly used in wearable/implantable devices for on-body sensing. However, conventional optical waveguides are stiff, rigid, and brittle. A mismatch between conventional optical waveguides and complex biointerfaces makes wearable/implantable devices uncomfortable to wear and potentially unsafe. Soft and stretchable polymer optical waveguides not only inherit many advantages of conventional optical waveguides (e.g., immunity to electromagnetic interference and without electrical hazards) but also provide a new perspective for solving the mismatch between conventional optical waveguides and complex biointerfaces, which is essential for the development of light-based wearable/implantable sensors. In this review, polymer optical waveguides' unique properties, including flexibility, biocompatibility and biodegradability, porosity, and stimulus responsiveness, and their applications in the wearable/implantable field in recent years are summarized. Then, we briefly discuss the current challenges of high optical loss, unstable signal transmission, low manufacturing efficiency, and difficulty in deployment during implantation of flexible polymer optical waveguides, and propose some possible solutions to these problems.
Collapse
Affiliation(s)
- Chenjian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Feng J, Jiang Q, Rogin P, de Oliveira PW, Del Campo A. Printed Soft Optical Waveguides of PLA Copolymers for Guiding Light into Tissue. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20287-20294. [PMID: 32285657 DOI: 10.1021/acsami.0c03903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The application of optical technologies in treating pathologies and monitoring disease states requires the development of soft, minimal invasive and implantable devices to deliver light to tissues inside the body. Here, we present soft and degradable optical waveguides from poly(d,l-lactide) and derived copolymers fabricated by extrusion printing in the desired dimensions and shapes. The obtained optical waveguides propagate VIS to NIR light in air and in tissue at penetration depths of tens of centimeters. Besides, the printed waveguides have elastomeric properties at body temperature and show softness and flexibility in the range relevant for implantable devices in soft organs. Printed waveguides were able to guide light across 8 cm tissue and activate photocleavage chemical reactions in a photoresponsive hydrogel (in vitro). The simplicity and flexibility of the fiber processing method and the optical and mechanical performance of the obtained waveguides exemplify how rational study of medically approved biomaterials can lead to useful inks for printing cost-effective and flexible optical components for potential use in medical contexts.
Collapse
Affiliation(s)
- Jun Feng
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Qiyang Jiang
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Peter Rogin
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Peter W de Oliveira
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Fujiwara E, Cabral TD, Sato M, Oku H, Cordeiro CMB. Agarose-based structured optical fibre. Sci Rep 2020; 10:7035. [PMID: 32341497 PMCID: PMC7184597 DOI: 10.1038/s41598-020-64103-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 01/04/2023] Open
Abstract
Biocompatible and resorbable optical fibres emerge as promising technologies for in vivo applications like imaging, light delivery for phototherapy and optogenetics, and localised drug-delivery, as well as for biochemical sensing, wherein the probe can be implanted and then completely absorbed by the organism. Biodegradable waveguides based on glasses, hydrogels, and silk have been reported, but most of these devices rely on complex fabrication procedures. In this sense, this paper proposes a novel structured optical fibre made of agarose, a transparent, edible material used in culture media and tissue engineering. The fibre is obtained by pouring food-grade agar into a mould with stacked rods, forming a solid core surrounded by air holes in which the refractive index and fibre geometry can be tailored by choosing the agarose solution composition and mould design, respectively. Besides exhibiting practical transmittance at 633 nm in relation to other hydrogel waveguides, the fibre is also validated for chemical sensing either by detecting volume changes due to agar swelling/dehydration or modulating the transmitted light by inserting fluids into the air holes. Therefore, the proposed agarose-based structured optical fibre is an easy-to-fabricate, versatile technology with possible applications for medical imaging and in vivo biochemical sensing.
Collapse
Affiliation(s)
- Eric Fujiwara
- Laboratory of Photonic Materials and Devices, School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil.
| | - Thiago D Cabral
- Laboratory of Photonic Materials and Devices, School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil.,"Gleb Wataghin" Institute of Physics, University of Campinas, Campinas, 13083-859, Brazil
| | - Miko Sato
- Graduate School of Science and Technology, Gunma University, Kiryu, 376-8515, Japan
| | - Hiromasa Oku
- Graduate School of Science and Technology, Gunma University, Kiryu, 376-8515, Japan
| | - Cristiano M B Cordeiro
- "Gleb Wataghin" Institute of Physics, University of Campinas, Campinas, 13083-859, Brazil
| |
Collapse
|
10
|
Lee GH, Moon H, Kim H, Lee GH, Kwon W, Yoo S, Myung D, Yun SH, Bao Z, Hahn SK. Multifunctional materials for implantable and wearable photonic healthcare devices. NATURE REVIEWS. MATERIALS 2020; 5:149-165. [PMID: 32728478 PMCID: PMC7388681 DOI: 10.1038/s41578-019-0167-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 05/20/2023]
Abstract
Numerous light-based diagnostic and therapeutic devices are routinely used in the clinic. These devices have a familiar look as items plugged in the wall or placed at patients' bedsides, but recently, many new ideas have been proposed for the realization of implantable or wearable functional devices. Many advances are being fuelled by the development of multifunctional materials for photonic healthcare devices. However, the finite depth of light penetration in the body is still a serious constraint for their clinical applications. In this Review, we discuss the basic concepts and some examples of state-of-the-art implantable and wearable photonic healthcare devices for diagnostic and therapeutic applications. First, we describe emerging multifunctional materials critical to the advent of next-generation implantable and wearable photonic healthcare devices and discuss the path for their clinical translation. Then, we examine implantable photonic healthcare devices in terms of their properties and diagnostic and therapeutic functions. We next describe exemplary cases of noninvasive, wearable photonic healthcare devices across different anatomical applications. Finally, we discuss the future research directions for the field, in particular regarding mobile healthcare and personalized medicine.
Collapse
Affiliation(s)
- Geon-Hui Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- These authors contributed equally: Geon-Hui Lee, Hanul Moon, Hyemin Kim
| | - Hanul Moon
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- These authors contributed equally: Geon-Hui Lee, Hanul Moon, Hyemin Kim
| | - Hyemin Kim
- PHI Biomed Co., Seoul, South Korea
- These authors contributed equally: Geon-Hui Lee, Hanul Moon, Hyemin Kim
| | - Gae Hwang Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul, South Korea
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- PHI Biomed Co., Seoul, South Korea
| |
Collapse
|
11
|
Guo J, Yang C, Dai Q, Kong L. Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3771. [PMID: 31480393 PMCID: PMC6749420 DOI: 10.3390/s19173771] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
The past decades have witnessed the rapid development in soft, stretchable, and biocompatible devices for applications in biomedical monitoring, personal healthcare, and human-machine interfaces. In particular, the design of soft devices in optics has attracted tremendous interests attributed to their distinct advantages such as inherent electrical safety, high stability in long-term operation, potential to be miniaturized, and free of electromagnetic interferences. As the alternatives to conventional rigid optical waveguides, considerable efforts have been made to develop light-guiding devices by using various transparent and elastic polymers, which offer desired physiomechanical properties and enable wearable/implantable applications in optical sensing, diagnostics, and therapy. Here, we review recent progress in soft and stretchable optical waveguides and sensors, including advanced structural design, fabrication strategies, and functionalities. Furthermore, the potential applications of those optical devices for various wearable and biomedical applications are discussed. It is expected that the newly emerged soft and stretchable optical technologies will provide a safe and reliable alternative to next-generation, smart wearables and healthcare devices.
Collapse
Affiliation(s)
- Jingjing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| | - Changxi Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine. MATERIALS 2018; 11:ma11081283. [PMID: 30044416 PMCID: PMC6117721 DOI: 10.3390/ma11081283] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 11/17/2022]
Abstract
Optical fibers and waveguides in general effectively control and modulate light propagation, and these tools have been extensively used in communication, lighting and sensing. Recently, they have received increasing attention in biomedical applications. By delivering light into deep tissue via these devices, novel applications including biological sensing, stimulation and therapy can be realized. Therefore, implantable fibers and waveguides in biocompatible formats with versatile functionalities are highly desirable. In this review, we provide an overview of recent progress in the exploration of advanced optical fibers and waveguides for biomedical applications. Specifically, we highlight novel materials design and fabrication strategies to form implantable fibers and waveguides. Furthermore, their applications in various biomedical fields such as light therapy, optogenetics, fluorescence sensing and imaging are discussed. We believe that these newly developed fiber and waveguide based devices play a crucial role in advanced optical biointerfaces.
Collapse
|
13
|
Shabahang S, Kim S, Yun SH. Light-Guiding Biomaterials for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1706635. [PMID: 31435205 PMCID: PMC6703841 DOI: 10.1002/adfm.201706635] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 05/20/2023]
Abstract
Optical techniques used in medical diagnosis, surgery, and therapy require efficient and flexible delivery of light from light sources to target tissues. While this need is currently fulfilled by glass and plastic optical fibers, recent emergence of biointegrated approaches, such as optogenetics and implanted devices, call for novel waveguides with certain biophysical and biocompatible properties and desirable shapes beyond what the conventional optical fibers can offer. To this end, exploratory efforts have begun to harness various transparent biomaterials to develop waveguides that can serve existing applications better and enable new applications in future photomedicine. Here, we review the recent progress in this new area of research for developing biomaterial-based optical waveguides. We begin with a survey of biological light-guiding structures found in plants and animals, a source of inspiration for biomaterial photonics engineering. We describe natural and synthetic polymers and hydrogels that offer appropriate optical properties, biocompatibility, biodegradability, and mechanical flexibility have been exploited for light-guiding applications. Finally, we briefly discuss perspectives on biomedical applications that may benefit from the unique properties and functionalities of light-guiding biomaterials.
Collapse
Affiliation(s)
- Soroush Shabahang
- Wellman Center for Photomedicine, Massachusetts General Hospital,
Department of Dermatology, Harvard Medical School. 65 Landsdowne Street,
Cambridge, MA 02139, USA
| | - Seonghoon Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital,
Department of Dermatology, Harvard Medical School. 65 Landsdowne Street,
Cambridge, MA 02139, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital,
Department of Dermatology, Harvard Medical School. 65 Landsdowne Street,
Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Taitt CR, Anderson GP, Ligler FS. Evanescent wave fluorescence biosensors: Advances of the last decade. Biosens Bioelectron 2016; 76:103-12. [PMID: 26232145 PMCID: PMC5012222 DOI: 10.1016/j.bios.2015.07.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 12/12/2022]
Abstract
Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein.
Collapse
Affiliation(s)
- Chris Rowe Taitt
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - Frances S Ligler
- UNC-Chapel Hill and NC State University Department of Biomedical Engineering, 911 Oval Drive, Raleigh, NC 27695-7115, USA.
| |
Collapse
|
15
|
Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat Commun 2016; 7:10374. [PMID: 26783091 PMCID: PMC4735646 DOI: 10.1038/ncomms10374] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/03/2015] [Indexed: 01/30/2023] Open
Abstract
Advances in photonics have stimulated significant progress in medicine, with many techniques now in routine clinical use. However, the finite depth of light penetration in tissue is a serious constraint to clinical utility. Here we show implantable light-delivery devices made of bio-derived or biocompatible, and biodegradable polymers. In contrast to conventional optical fibres, which must be removed from the body soon after use, the biodegradable and biocompatible waveguides may be used for long-term light delivery and need not be removed as they are gradually resorbed by the tissue. As proof of concept, we demonstrate this paradigm-shifting approach for photochemical tissue bonding (PTB). Using comb-shaped planar waveguides, we achieve a full thickness (>10 mm) wound closure of porcine skin, which represents ∼10-fold extension of the tissue area achieved with conventional PTB. The results point to a new direction in photomedicine for using light in deep tissues. Light-based therapies are of growing importance in medicine, though penetrating tissue and reaching the targeted area can be difficult. Here, the authors report the use of biodegradable waveguides capable of directing light where desired, and demonstrate the potential for wound healing.
Collapse
|
16
|
Li L, Zhang P, Wang WM, Lin H, Zerdoum AB, Geiger SJ, Liu Y, Xiao N, Zou Y, Ogbuu O, Du Q, Jia X, Li J, Hu J. Foldable and Cytocompatible Sol-gel TiO2 Photonics. Sci Rep 2015; 5:13832. [PMID: 26344823 PMCID: PMC4561379 DOI: 10.1038/srep13832] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022] Open
Abstract
Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.
Collapse
Affiliation(s)
- Lan Li
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA
| | - Ping Zhang
- Tianjin University, School of Electronic and Information Engineering, Tianjin 300072, China
| | - Wei-Ming Wang
- University of Hawaii at Manoa, Department of Mechanical Engineering, Honolulu, Hawaii 96822, USA
| | - Hongtao Lin
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA
| | - Aidan B Zerdoum
- University of Delaware, Biomedical Engineering Program, Newark, Delaware 19716, USA
| | - Sarah J Geiger
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA
| | - Yangchen Liu
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA
| | - Nicholas Xiao
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA
| | - Yi Zou
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA
| | - Okechukwu Ogbuu
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA
| | - Qingyang Du
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA
| | - Xinqiao Jia
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA.,University of Delaware, Biomedical Engineering Program, Newark, Delaware 19716, USA
| | - Jingjing Li
- University of Hawaii at Manoa, Department of Mechanical Engineering, Honolulu, Hawaii 96822, USA
| | - Juejun Hu
- University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA.,Massachusetts Institute of Technology, Department of Materials Science &Engineering, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
Hou Z, Sun S, Zheng B, Yang R, Li A. Stimuli-responsive protein-based micro/nano-waveguides. RSC Adv 2015. [DOI: 10.1039/c5ra15538j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein-based single nano-wire waveguides constructed by FsLDW using BSA aqueous ink which might be applicable for uses as sensing probes.
Collapse
Affiliation(s)
- Zhishan Hou
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- China
| | - Siming Sun
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- China
| | - Boyuan Zheng
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- China
| | - Ruizhu Yang
- Science and Technology on Surface Physics and Chemistry Laboratory
- Mianyang 621907
- China
| | - Aiwu Li
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
18
|
Mehrabani S, Maker AJ, Armani AM. Hybrid integrated label-free chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:5890-928. [PMID: 24675757 PMCID: PMC4029679 DOI: 10.3390/s140405890] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.
Collapse
Affiliation(s)
- Simin Mehrabani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ashley J Maker
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrea M Armani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
19
|
Abstract
The rapid progresses in biological and biomedical applications with optical interfaces have motivated an ever-increasing demand for biocompatible and disposable photonic components. Generally, these biophotonic components are first integrated with biocompatible materials and then interfaced with biological samples, such as living cells, for biological use. Therefore, direct formation of biophotonic components using living cells is greatly desired because the cells would serve simultaneously as samples and optical elements for signal sensing and detection. Here, we report an optical strategy for direct formation of biophotonic waveguides (bio-WGs) with Escherichia coli. The experiments demonstrate that this facile optical strategy enables forming bio-WGs with different lengths and good light propagation performances while the propagating signal can be detected in real-time. This strategy offers a seamless interface between optical and biological worlds with natural materials and provides a new opportunity for direct sensing and detection of biological signal and information in biocompatible microenvironments.
Collapse
Affiliation(s)
- Hongbao Xin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University , Guangzhou 510275, China
| | | | | | | |
Collapse
|
20
|
Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF. Biofabrication to build the biology–device interface. Biofabrication 2010; 2:022002. [DOI: 10.1088/1758-5082/2/2/022002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|