1
|
Masucci EM, Hauschild JE, Gisler HM, Lester EM, Balss KM. Raman spectroscopy as an alternative rapid microbial bioburden test method for continuous, automated detection of contamination in biopharmaceutical drug substance manufacturing. J Appl Microbiol 2024; 135:lxae188. [PMID: 39054049 DOI: 10.1093/jambio/lxae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
AIMS To investigate an in-line Raman method capable of detecting accidental microbial contamination in pharmaceutical vessels, such as bioreactors producing monoclonal antibodies via cell culture. METHODS AND RESULTS The Raman method consists of a multivariate model built from Raman spectra collected in-line during reduced-scale bioreactor batches producing a monoclonal antibody, as well as a reduced-scale process with intentional spiking of representative compendial method microorganisms (n = 4). The orthogonal partial least squares regression discriminant analysis model (OPLS-DA) area under the curve (AUC), specificity and sensitivity were 0.96, 0.99, and 0.95, respectively. Furthermore, the model successfully detected contamination in an accidentally contaminated manufacturing-scale batch. In all cases, the time to detection (TTD) for Raman was superior compared to offline, traditional microbiological culturing. CONCLUSIONS The Raman OPLS-DA method met acceptance criteria for equivalent decision making to be considered a viable alternative to the compendial method for in-process bioburden testing. The in-line method is automated, non-destructive, and provides a continuous assessment of bioburden compared to an offline compendial method, which is manual, results in loss of product, and in practice is only collected once daily and requires 3-5 days for enumeration.
Collapse
Affiliation(s)
- Erin M Masucci
- Emerging Technologies, Manufacturing Science and Technology Janssen Pharmaceuticals Inc., Welsh and McKean Roads, Spring House, PA 19477, USA
| | - James E Hauschild
- Microbiological Quality and Sterility Assurance Johnson & Johnson Services, Inc., Raritan, NJ 08869, USA
| | - Helena M Gisler
- Emerging Technologies, Manufacturing Science and Technology Janssen Pharmaceuticals Inc., Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Erin M Lester
- Emerging Technologies, Manufacturing Science and Technology Janssen Pharmaceuticals Inc., Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Karin M Balss
- Emerging Technologies, Manufacturing Science and Technology Janssen Pharmaceuticals Inc., Welsh and McKean Roads, Spring House, PA 19477, USA
| |
Collapse
|
2
|
Marienberg H, Desch N, Mozin V, Sykora‐Mirle L, Müller A, Roth A, Käfer M, Neef R. Automized inline monitoring in perfused mammalian cell culture by MIR spectroscopy without calibration model building. Eng Life Sci 2024; 24:e2300237. [PMID: 38444619 PMCID: PMC10910268 DOI: 10.1002/elsc.202300237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 03/07/2024] Open
Abstract
Process Analytical Technologies (PATs) are taking a key role in the run for automatization in the biopharmaceutical industry. Spectroscopic methods such as Raman spectroscopy or mid-infrared (MIR) spectroscopy are getting more recognition in the recent years for inline monitoring of bioprocesses due to their ability to measure various molecules simultaneously. However, their dependency on laborious model calibration making them a challenge to implement. In this study, a novel one-point calibration that requires a single reference point prior to the inline monitoring of glucose and lactate in bioprocesses with MIR spectroscopy is assessed with 22 mammalian cell perfusion (PER) processes in two different scales and four different products. Concentrations are predicted over all PERs runs with a root mean square error (RMSE) of 0.29 g/L for glucose and 0.24 g/L for lactate, respectively. For comparison conventional partial least square regression (PLSR) models were used and trained with spectroscopic data from six bioreactor runs in two different scales and three products. The general accuracy of those models (RMSE of 0.41 g/L for glucose and 0.16 g/L for lactate) are in the range of the accuracy of the one-point calibration. This shows the potential of the one-point calibration as an approach making spectroscopy more accessible for bioprocess development.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas Roth
- IRUBIS GmbHMunichGermany
- Hochschule MannheimMannheimGermany
| | | | | |
Collapse
|
3
|
Mirveis Z, Howe O, Cahill P, Patil N, Byrne HJ. Monitoring and modelling the glutamine metabolic pathway: a review and future perspectives. Metabolomics 2023; 19:67. [PMID: 37482587 PMCID: PMC10363518 DOI: 10.1007/s11306-023-02031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Analysis of the glutamine metabolic pathway has taken a special place in metabolomics research in recent years, given its important role in cell biosynthesis and bioenergetics across several disorders, especially in cancer cell survival. The science of metabolomics addresses the intricate intracellular metabolic network by exploring and understanding how cells function and respond to external or internal perturbations to identify potential therapeutic targets. However, despite recent advances in metabolomics, monitoring the kinetics of a metabolic pathway in a living cell in situ, real-time and holistically remains a significant challenge. AIM This review paper explores the range of analytical approaches for monitoring metabolic pathways, as well as physicochemical modeling techniques, with a focus on glutamine metabolism. We discuss the advantages and disadvantages of each method and explore the potential of label-free Raman microspectroscopy, in conjunction with kinetic modeling, to enable real-time and in situ monitoring of the cellular kinetics of the glutamine metabolic pathway. KEY SCIENTIFIC CONCEPTS Given its important role in cell metabolism, the ability to monitor and model the glutamine metabolic pathways are highlighted. Novel, label free approaches have the potential to revolutionise metabolic biosensing, laying the foundation for a new paradigm in metabolomics research and addressing the challenges in monitoring metabolic pathways in living cells.
Collapse
Affiliation(s)
- Zohreh Mirveis
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland.
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological, Health and Sport Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
4
|
Urniezius R, Kemesis B, Simutis R. Bridging Offline Functional Model Carrying Aging-Specific Growth Rate Information and Recombinant Protein Expression: Entropic Extension of Akaike Information Criterion. ENTROPY 2021; 23:e23081057. [PMID: 34441197 PMCID: PMC8393800 DOI: 10.3390/e23081057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/03/2022]
Abstract
This study presents a mathematical model of recombinant protein expression, including its development, selection, and fitting results based on seventy fed-batch cultivation experiments from two independent biopharmaceutical sites. To resolve the overfitting feature of the Akaike information criterion, we proposed an entropic extension, which behaves asymptotically like the classical criteria. Estimation of recombinant protein concentration was performed with pseudo-global optimization processes while processing offline recombinant protein concentration samples. We show that functional models including the average age of the cells and the specific growth at induction or the start of product biosynthesis are the best descriptors for datasets. We also proposed introducing a tuning coefficient that would force the modified Akaike information criterion to avoid overfitting when the designer requires fewer model parameters. We expect that a lower number of coefficients would allow the efficient maximization of target microbial products in the upstream section of contract development and manufacturing organization services in the future. Experimental model fitting was accomplished simultaneously for 46 experiments at the first site and 24 fed-batch experiments at the second site. Both locations contained 196 and 131 protein samples, thus giving a total of 327 target product concentration samples derived from the bioreactor medium.
Collapse
|
5
|
Towards Autonomous Operation by Advanced Process Control—Process Analytical Technology for Continuous Biologics Antibody Manufacturing. Processes (Basel) 2021. [DOI: 10.3390/pr9010172] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Continuous manufacturing opens up new operation windows with improved product quality in contrast to documented lot deviations in batch or fed-batch operations. A more sophisticated process control strategy is needed to adjust operation parameters and keep product quality constant during long-term operations. In the present study, the applicability of a combination of spectroscopic methods was evaluated to enable Advanced Process Control (APC) in continuous manufacturing by Process Analytical Technology (PAT). In upstream processing (USP) and aqueous two-phase extraction (ATPE), Raman-, Fourier-transformed infrared (FTIR), fluorescence- and ultraviolet/visible- (UV/Vis) spectroscopy have been successfully applied for titer and purity prediction. Raman spectroscopy was the most versatile and robust method in USP, ATPE, and precipitation and is therefore recommended as primary PAT. In later process stages, the combination of UV/Vis and fluorescence spectroscopy was able to overcome difficulties in titer and purity prediction induced by overlapping side component spectra. Based on the developed spectroscopic predictions, dynamic control of unit operations was demonstrated in sophisticated simulation studies. A PAT development workflow for holistic process development was proposed.
Collapse
|
6
|
Direct optical detection of cell density and viability of mammalian cells by means of UV/VIS spectroscopy. Anal Bioanal Chem 2020; 412:3359-3371. [PMID: 31897554 DOI: 10.1007/s00216-019-02322-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
The critical process parameters cell density and viability during mammalian cell cultivation are assessed by UV/VIS spectroscopy in combination with multivariate data analytical methods. This direct optical detection technique uses a commercial optical probe to acquire spectra in a label-free way without signal enhancement. For the cultivation, an inverse cultivation protocol is applied, which simulates the exponential growth phase by exponentially replacing cells and metabolites of a growing Chinese hamster ovary cell batch with fresh medium. For the simulation of the death phase, a batch of growing cells is progressively replaced by a batch with completely starved cells. Thus, the most important parts of an industrial batch cultivation are easily imitated. The cell viability was determined by the well-established method partial least squares regression (PLS). To further improve process knowledge, the viability has been determined from the spectra based on a multivariate curve resolution (MCR) model. With this approach, the progress of the cultivations can be continuously monitored solely based on an UV/VIS sensor. Thus, the monitoring of critical process parameters is possible inline within a mammalian cell cultivation process, especially the viable cell density. In addition, the beginning of cell death can be detected by this method which allows us to determine the cell viability with acceptable error. The combination of inline UV/VIS spectroscopy with multivariate curve resolution generates additional process knowledge complementary to PLS and is considered a suitable process analytical tool for monitoring industrial cultivation processes.
Collapse
|
7
|
Kosa G, Shapaval V, Kohler A, Zimmermann B. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb Cell Fact 2017; 16:195. [PMID: 29132358 PMCID: PMC5683213 DOI: 10.1186/s12934-017-0817-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Analyses of substrate and metabolites are often bottleneck activities in high-throughput screening of microbial bioprocesses. We have assessed Fourier transform infrared spectroscopy (FTIR), in combination with high throughput micro-bioreactors and multivariate statistical analyses, for analysis of metabolites in high-throughput screening of microbial bioprocesses. In our previous study, we have demonstrated that high-throughput (HTS) FTIR can be used for estimating content and composition of intracellular metabolites, namely triglyceride accumulation in oleaginous filamentous fungi. As a continuation of that research, in the present study HTS FTIR was evaluated as a unified method for simultaneous quantification of intra- and extracellular metabolites and substrate consumption. As a proof of concept, a high-throughput microcultivation of oleaginous filamentous fungi was conducted in order to monitor production of citric acid (extracellular metabolite) and triglyceride lipids (intracellular metabolites), as well as consumption of glucose in the cultivation medium. RESULTS HTS FTIR analyses of supernatant samples was compared with an attenuated total reflection (ATR) FTIR, which is an established method for bioprocess monitoring. Glucose and citric acid content of growth media was quantified by high performance liquid chromatography (HPLC). Partial least square regression (PLSR) between HPLC glucose and citric acid data and the corresponding FTIR spectral data was used to set up calibration models. PLSR results for HTS measurements were very similar to the results obtained with ATR methodology, with high coefficients of determination (0.91-0.98) and low error values (4.9-8.6%) for both glucose and citric acid estimates. CONCLUSIONS The study has demonstrated that intra- and extracellular metabolites, as well as nutrients in the cultivation medium, can be monitored by a unified approach by HTS FTIR. The proof-of-concept study has validated that HTS FTIR, in combination with Duetz microtiter plate system and chemometrics, can be used for high throughput screening of microbial bioprocesses. It can be anticipated that the approach, demonstrated here on single-cell oil production by filamentous fungi, can find general application in screening studies of microbial bioprocesses, such as production of single-cell proteins, biopolymers, polysaccharides, carboxylic acids, and other type of metabolites.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
- Nofima AS, Osloveien 1, 1430 Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| |
Collapse
|
8
|
Busse C, Biechele P, de Vries I, Reardon KF, Solle D, Scheper T. Sensors for disposable bioreactors. Eng Life Sci 2017; 17:940-952. [PMID: 32624843 DOI: 10.1002/elsc.201700049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
Modern bioprocess monitoring demands sensors that provide on-line information about the process state. In particular, sensors for monitoring bioprocesses carried out in single-use bioreactors are needed because disposable systems are becoming increasingly important for biotechnological applications. Requirements for the sensors used in these single-use bioreactors are different than those used in classical reusable bioreactors. For example, long lifetime or resistance to steam and cleaning procedures are less crucial factors, while a requirement of sensors for disposable bioreactors is a cost that is reasonable on a per-use basis. Here, we present an overview of current and emerging sensors for single-use bioreactors, organized by the type of interface of the sensor systems to the bioreactor. A major focus is on non-invasive, in-situ sensors that are based on electromagnetic, semiconducting, optical, or ultrasonic measurements. In addition, new technologies like radio-frequency identification sensors or free-floating sensor spheres are presented. Notably, at this time there is no standard interface between single-use bioreactors and the sensors discussed here. In the future, manufacturers should address this shortcoming to promote single-use bioprocess monitoring and control.
Collapse
Affiliation(s)
- Christoph Busse
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Philipp Biechele
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Ingo de Vries
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Kenneth F Reardon
- Department of Chemical and Biological Engineering Colorado State University USA
| | - Dörte Solle
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Thomas Scheper
- Institute of Technical Chemistry Leibniz University Hannover Germany
| |
Collapse
|
9
|
Das C, Nadler T, Strug I. Detergent Analysis in Protein Samples Using Mid-Infrared (MIR) Spectroscopy. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2015; 81:29.12.1-29.12.15. [PMID: 26237674 DOI: 10.1002/0471140864.ps2912s81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quantitating relative levels of detergent present in protein preparations or samples derived from biological material, such as tissue or body fluids, is important because the presence of detergent may affect downstream analyses as well as protein structure/function. Especially because sample volumes, analysts' available time, and other resources may be limited, a method that consumes little sample and that is rapid and simple is needed for detergent analysis. It would also be preferable to have a method that is generally applicable across many aliphatic chain-containing molecules with many different physical properties. In this unit, methods are described for analyzing detergents and proteins in detergent-protein mixtures using mid-infrared (MIR) spectroscopy. A protocol is also included for efficient removal of unbound detergents from a protein sample accompanied by MIR-based monitoring of both detergent and protein content. This rapid monitoring of sample preparation during the workflow enables users to make timely decisions about sample preparation strategies that maximize both analyte purity and yield.
Collapse
Affiliation(s)
| | | | - Ivona Strug
- EMD Millipore Corporation, Danvers, Massachusetts
| |
Collapse
|
10
|
Strug I, Utzat C, Cappione A, Gutierrez S, Amara R, Lento J, Capito F, Skudas R, Chernokalskaya E, Nadler T. Development of a univariate membrane-based mid-infrared method for protein quantitation and total lipid content analysis of biological samples. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:657079. [PMID: 25371845 PMCID: PMC4211209 DOI: 10.1155/2014/657079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 05/13/2023]
Abstract
Biological samples present a range of complexities from homogeneous purified protein to multicomponent mixtures. Accurate qualification of such samples is paramount to downstream applications. We describe the development of an MIR spectroscopy-based analytical method offering simultaneous protein quantitation (0.25-5 mg/mL) and analysis of total lipid or detergent species, as well as the identification of other biomolecules present in biological samples. The method utilizes a hydrophilic PTFE membrane engineered for presentation of aqueous samples in a dried format compatible with fast infrared analysis. Unlike classical quantification techniques, the reported method is amino acid sequence independent and thus applicable to complex samples of unknown composition. By comparison to existing platforms, this MIR-based method enables direct quantification using minimal sample volume (2 µL); it is well-suited where repeat access and limited sample size are critical parameters. Further, accurate results can be derived without specialized training or knowledge of IR spectroscopy. Overall, the simplified application and analysis system provides a more cost-effective alternative to high-throughput IR systems for research laboratories with minimal throughput demands. In summary, the MIR-based system provides a viable alternative to current protein quantitation methods; it also uniquely offers simultaneous qualification of other components, notably lipids and detergents.
Collapse
Affiliation(s)
- Ivona Strug
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Christopher Utzat
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Amedeo Cappione
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Sara Gutierrez
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Ryan Amara
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Joseph Lento
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Florian Capito
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Romas Skudas
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | | | - Timothy Nadler
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| |
Collapse
|
11
|
Boulet-Audet M, Byrne B, Kazarian SG. High-throughput thermal stability analysis of a monoclonal antibody by attenuated total reflection FT-IR spectroscopic imaging. Anal Chem 2014; 86:9786-93. [PMID: 25221926 PMCID: PMC4218712 DOI: 10.1021/ac502529q] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/15/2014] [Indexed: 01/03/2023]
Abstract
The use of biotherapeutics, such as monoclonal antibodies, has markedly increased in recent years. It is thus essential that biotherapeutic production pipelines are as efficient as possible. For the production process, one of the major concerns is the propensity of a biotherapeutic antibody to aggregate. In addition to reducing bioactive material recovery, protein aggregation can have major effects on drug potency and cause highly undesirable immunological effects. It is thus essential to identify processing conditions which maximize recovery while avoiding aggregation. Heat resistance is a proxy for long-term aggregation propensity. Thermal stability assays are routinely performed using various spectroscopic and scattering detection methods. Here, we evaluated the potential of macro attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopic imaging as a novel method for the high-throughput thermal stability assay of a monoclonal antibody. This chemically specific visualization method has the distinct advantage of being able to discriminate between monomeric and aggregated protein. Attenuated total reflection is particularly suitable for selectively probing the bottom of vessels, where precipitated aggregates accumulate. With focal plane array detection, we tested 12 different buffer conditions simultaneously to assess the effect of pH and ionic strength on protein thermal stability. Applying the Finke model to our imaging kinetics allowed us to determine the rate constants of nucleation and autocatalytic growth. This analysis demonstrated the greater stability of our immunoglobulin at higher pH and moderate ionic strength, revealing the key role of electrostatic interactions. The high-throughput approach presented here has significant potential for analyzing the stability of biotherapeutics as well as any other biological molecules prone to aggregation.
Collapse
Affiliation(s)
- Maxime Boulet-Audet
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London, SW7 2AZ, United
Kingdom
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Bernadette Byrne
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Sergei G. Kazarian
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London, SW7 2AZ, United
Kingdom
| |
Collapse
|
12
|
Suehara KI, Kameoka T, Hashimoto A. Evaluation of salt influence on sugar consumption by suspension cells based on spectroscopic analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:401718. [PMID: 24490105 PMCID: PMC3892941 DOI: 10.1155/2013/401718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
The influence of metal salt on sugar consumption by suspension cells in food models constructed by a sugar and salt aqueous solution was investigated based on mid-infrared spectroscopic analysis. The contaminated suspension cells in the food model could be detected using the spectral feature change that measured the present spectrum subtracted in the initial spectrum. The cells were prepared for growth and although the cell did not grow under the induction period, the cell activation (start of sugar metabolism) was detected on the subtracted spectral behavior before the cell growth. The rough grasp of the spectral change behavior is useful for the high-throughput spectroscopic method to detect the contaminated cell activation. Furthermore, the detailed sugar consumption kinetics of the cells was also investigated based on the spectroscopic method. The kind of added salt in the food model influenced the cell activation and the potassium ions play an important role in the plant cells. The living cells activity in fresh food may act to prevent microbial contamination and to suppress the growth of the contaminated microorganism. Both the simple and detailed analyses based on the spectroscopic method presented in this study might be useful for risk management of food.
Collapse
Affiliation(s)
- Ken-ichiro Suehara
- Division of Sustainable Resource Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Takaharu Kameoka
- Division of Sustainable Resource Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Atsushi Hashimoto
- Division of Sustainable Resource Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
13
|
Optimization of Insect Cell Based Protein Production Processes - Online Monitoring, Expression Systems, Scale Up. YELLOW BIOTECHNOLOGY II 2013; 136:65-100. [DOI: 10.1007/10_2013_205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|