1
|
Li J, Yang Y, Sun Z, Peng K, Liu K, Xu P, Li J, Wei X, He X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio 2024; 24:100934. [PMID: 38234458 PMCID: PMC10792490 DOI: 10.1016/j.mtbio.2023.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
A porous structure is essential for bone implants because it increases the bone ingrowth space and improves mechanical and biological properties. The biomimetically designed porous Voronoi scaffold can reconstruct the structure and function of cancellous bone; however, its comprehensive properties need to be investigated further. In this study, algorithms based on scaling factors were used to design the Voronoi scaffolds. Classic approaches, such as computer-aided design and the implicit surface method, have been used to design Diamond, Gyroid, and I-WP scaffolds as controls. All scaffolds were prepared by selective laser melting of titanium alloys and three-dimensional printing. Mechanical tests, finite element analysis, and in vitro and in vivo experiments were performed to investigate the biomechanical, cytologic, and osteogenic performance of the scaffolds, while computational fluid dynamics simulations were used to explore the underlying mechanisms. Diamond scaffolds have a better loading capacity, and the mechanical behaviors and fluid flow of Voronoi scaffolds are similar to those of the human trabecular bone. Cells showed more proliferation and distribution on the Diamond and Voronoi scaffolds and exhibited evident differentiation on Gyroid and Voronoi scaffolds. Bone formation was apparent on the inner part of the Gyroid, the outer part of the I-WP, and the entire Diamond and Voronoi scaffolds. The hydrodynamic properties and stimulus response of cells influenced by the porous structure account for the varied biological performance of the scaffolds. The Voronoi scaffolds with bionic mechanical behavior and an appropriate hydrodynamic response exhibit evident cell growth and osteogenesis, making them preferable for porous structural bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kan Peng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Kaixin Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Jun Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
2
|
Paz C, Suárez E, Gil C, Parga O. Numerical modelling of osteocyte growth on different bone tissue scaffolds. Comput Methods Biomech Biomed Engin 2021; 25:641-655. [PMID: 34459293 DOI: 10.1080/10255842.2021.1972290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common solution for the regeneration or replacement of damaged bones is the implantation of prostheses comprising ceramic or metallic materials. However, these implants are known to cause problems such as post-operative infections, collapse of the prosthesis, and lack of osseointegration. Consequently, bone tissue engineering was established because of the limitations of such implants. Osteogenic implants offer promising solutions for bone regeneration; however, three-dimensional scaffolds should be used as supportive structures. It is challenging to correctly design these structures and their compositions or properties to provide a microenvironment that promotes tissue regeneration and expedites bone formation. Computational fluid dynamics can be used to model the main phenomena that occur in bioreactors, such as cell metabolism, nutrient transport, and cell culture growth, or to model the influence of several key mechanisms related to the fluid medium, in particular, the wall shear stress. In this work, a new numerical bone cell growth model was developed, which considered the oxygen and nutrient consumption as well as the wall shear stress effect on cell proliferation. The model was implemented using 35 three-dimensional scaffolds of different porosities, and the effect of the main geometrical parameters involved in each scaffold type was analysed. The porosity plays an important role, however, a similar porosity did not guarantee similar shear stress or cell growth among the scaffolds. Randomised trabecular scaffolds, that more closely resembled trabecular bone, showed the highest cell growth values, so these are the best candidates for cell growth in a bioreactor.
Collapse
Affiliation(s)
- Concepción Paz
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España.,Biofluids Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Eduardo Suárez
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España.,Biofluids Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Christian Gil
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España
| | - Oscar Parga
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España
| |
Collapse
|
3
|
Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3610785. [PMID: 31179318 PMCID: PMC6507231 DOI: 10.1155/2019/3610785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Efficient exchange of nutrients and wastes required for cell proliferation and differentiation plays a pivotal role in improving the service life of porous implants. In this study, mass transport properties for porous implant with different unit cells were evaluated and predicted when the porosities are kept the same. To this end, three typical unit cells (diamond (DO), rhombic dodecahedron (RD), and octet truss (OT)) were selected, in which DO displayed diagonal-symmetrical shape, while RD and OT share midline-symmetrical structure. Then, single unit cells were designed quantitatively, and its shape parameters were measured and calculated. Moreover, corresponding porous scaffolds with same outline size were created, respectively. Furthermore, using computational fluid dynamics (CFD) methodology, flow performances with Dulbecco's Modified Eagle's Medium (DMEM) in vitro were simulated for three different porous implants, and flow trajectory, velocity, and wall shear stress which could reflect the properties of mass transfer and tissue regeneration were compared and predicted numerically. Results demonstrated that different unit cell could directly lead to different mass transport properties for porous implant, in spite of same porosity, scaffold size, and service environment. Additionally, by the results, DO displayed greater tortuosity, more appropriate areas, and smoother shear stress distribution than RD and OT, which would provide better surroundings for implant fixation and tissue regeneration. However, RD and OT showed better mass transport properties because of bigger maximum velocity (5.177 mm/s, 4.381 mm/s) than DO (3.941 mm/s). This study would provide great helps for unit cell selection and biological performance optimization for 3D printed bone implants.
Collapse
|
4
|
Li J, Chen D, Luan H, Zhang Y, Fan Y. Numerical Evaluation and Prediction of Porous Implant Design and Flow Performance. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1215021. [PMID: 30009164 PMCID: PMC6020664 DOI: 10.1155/2018/1215021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 11/18/2022]
Abstract
Porous structure has been widely acknowledged as important factor for mass transfer and tissue regeneration. This study investigates effect of aimed-control design on mass transfer and tissue regeneration of porous implant with regular unit cell. Two shapes of unit cells (Octet truss, and Rhombic dodecahedron) were selected, which have similar symmetrical structure and are commonly used in practice. Through parametric design, porous scaffolds with the strut sizes of φ 0.5, 0.7, 0.9, and 1.1mm were created, respectively. Then using fluid flow simulation method, flow velocity, permeability, and shear stress which could reflect the properties of mass transfer and tissue regeneration were compared and evaluated, and the relationships between porous structure's physical parameters and flow performance were studied. Results demonstrated that unit cell shape and strut size greatly determine and influence other physical parameters and flow performances of porous implant. With the increasing of strut size, pore size and porosity linearly decrease, but the volume, surface area, and specific surface area increased. Importantly, implant with smaller strut size resulted in smaller flow velocity directly but greater permeability and more appropriate shear stress, which should be beneficial to cell attachment and proliferation. This study confirmed that porous implant with different unit cell shows different performances of mass transfer and tissue regeneration, and unit cell shape and strut size play vital roles in the control design. These findings could facilitate the quantitative assessment and optimization of the porous implant.
Collapse
Affiliation(s)
- Jian Li
- Robotic Institute, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Diansheng Chen
- Robotic Institute, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Huiqin Luan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Yubo Fan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Mekala NK, Baadhe RR, Potumarthi R. Mass transfer aspects of 3D cell cultures in tissue engineering. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naveen Kumar Mekala
- Department of Biotechnology; National Institute of Technology; Warangal 506004 India
| | - Rama Raju Baadhe
- Department of Biotechnology; National Institute of Technology; Warangal 506004 India
| | | |
Collapse
|
6
|
Computer-Aided Tissue Engineering: Application to the Case of Anterior Cruciate Ligament Repair. LECTURE NOTES IN COMPUTATIONAL VISION AND BIOMECHANICS 2013. [DOI: 10.1007/978-94-007-5890-2_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Chen Y, Schellekens M, Zhou S, Cadman J, Li W, Appleyard R, Li Q. Design Optimization of Scaffold Microstructures Using Wall Shear Stress Criterion Towards Regulated Flow-Induced Erosion. J Biomech Eng 2011; 133:081008. [DOI: 10.1115/1.4004918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue scaffolds aim to provide a cell-friendly biomechanical environment for facilitating cell growth. Existing studies have shown significant demands for generating a certain level of wall shear stress (WSS) on scaffold microstructural surfaces for promoting cellular response and attachment efficacy. Recently, its role in shear-induced erosion of polymer scaffold has also drawn increasing attention. This paper proposes a bi-directional evolutionary structural optimization (BESO) approach for design of scaffold microstructure in terms of the WSS uniformity criterion, by downgrading highly-stressed solid elements into fluidic elements and/or upgrading lowly-stressed fluidic elements into solid elements. In addition to this, a computational model is presented to simulate shear-induced erosion process. The effective stiffness and permeability of initial and optimized scaffold microstructures are characterized by the finite element based homogenization technique to quantify the variations of mechanical properties of scaffold during erosion. The illustrative examples show that a uniform WSS is achieved within the optimized scaffold microstructures, and their architectural and biomechanical features are maintained for a longer lifetime during shear-induced erosion process. This study provides a mathematical means to the design optimization of cellular biomaterials in terms of the WSS criterion towards controllable shear-induced erosion.
Collapse
Affiliation(s)
- Yuhang Chen
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michiel Schellekens
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Shiwei Zhou
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joseph Cadman
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wei Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Qing Li
- Member of ASME, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Chen Y, Zhou S, Li Q. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater 2011; 7:1140-9. [PMID: 20937415 DOI: 10.1016/j.actbio.2010.09.038] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/07/2010] [Accepted: 09/28/2010] [Indexed: 11/19/2022]
Abstract
The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a fundamental stochastic process and an additional autocatalytic effect induced by the local carboxylic acid concentration in terms of the continuous diffusion equation. Illustrative examples of microparticles and tissue scaffolds demonstrate the applicability of the model. It is found that diffusive transport plays a critical role in determining the degradation pathway, whilst autocatalysis makes the degradation size dependent. The modeling results show good agreement with experimental data in the literature, in which the hydrolysis rate, polymer architecture and matrix size actually work together to determine the characteristics of the degradation and erosion processes of bulk-erosive polymer devices. The proposed degradation model exhibits great potential for the design optimization of drug carriers and tissue scaffolds.
Collapse
Affiliation(s)
- Yuhang Chen
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
9
|
Abstract
Computer-aided design (CAD) has proven effective in enabling novel approaches for tissue engineering applications. This paper demonstrates the applicability of various mathematical methods to design and fabricate bio-mimetic materials via two illustrative examples. Firstly, CAD models of cellular biomaterials that mimic the micro-structure of cuttlefish bone are designed based on the principles of the homogenization method. Secondly, a three-dimensional bi-objective topology optimization approach based upon the inverse homogenization method is used to design scaffold micro-structures with tailored effective stiffness and permeability properties. Consequently, solid free-form fabrication is used to fabricate such cellular bio-mimetic materials, which show a great potential in tissue engineering applications.
Collapse
|