1
|
Favale N, Costa S, Scapoli C, Carrieri A, Sabbioni S, Tamburini E, Benazzo A, Bernacchia G. Reconstruction of Acinetobacter johnsonii ICE_NC genome using hybrid de novo genome assemblies and identification of the 12α-hydroxysteroid dehydrogenase gene. J Appl Microbiol 2022; 133:1506-1519. [PMID: 35686660 PMCID: PMC9540589 DOI: 10.1111/jam.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
AIMS The role of a Acinetobacter johnsonii strain, isolated from a soil sample, in the biotransformation of bile acids (BAs) was already described but the enzymes responsible for these transformations were only partially purified and molecularly characterized. METHODS AND RESULTS This study describes the use of hybrid de novo assemblies, that combine long-read Oxford Nanopore and short-read Illumina sequencing strategies, to reconstruct the entire genome of A. johnsonii ICE_NC strain and to identify the coding region for a 12α-hydroxysteroid dehydrogenase (12α-HSDH), involved in BAs metabolism. The de novo assembly of the A. johnsonii ICE_NC genome was generated using Canu and Unicycler, both strategies yielded a circular chromosome of about 3.6 Mb and one 117 kb long plasmid. Gene annotation was performed on the final assemblies and the gene for 12α-HSDH was detected on the plasmid. CONCLUSIONS Our findings illustrate the added value of long read sequencing in addressing the challenges of whole genome characterization and plasmid reconstruction in bacteria. These approaches also allowed the identification of the A. johnsonii ICE_NC gene for the 12α-HSDH enzyme, whose activity was confirmed at the biochemical level. SIGNIFICANCE AND IMPACT OR THE STUDY At present, this is the first report on the characterization of a 12α-HSDH gene in an A. johnsonii strain able to biotransform cholic acid into ursodeoxycholic acid, a promising therapeutic agent for several diseases.
Collapse
Affiliation(s)
- Nicoletta Favale
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Jia Q, Zheng YC, Li HP, Qian XL, Zhang ZJ, Xu JH. Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors. Appl Environ Microbiol 2022; 88:e0034122. [PMID: 35442081 PMCID: PMC9088361 DOI: 10.1128/aem.00341-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/18/2022] Open
Abstract
Isopropanol dehydrogenase (IPADH) is one of the most attractive options for nicotinamide cofactor regeneration due to its low cost and simple downstream processing. However, poor thermostability and strict cofactor dependency hinder its practical application for bioconversions. In this study, we simultaneously improved the thermostability (433-fold) and catalytic activity (3.3-fold) of IPADH from Brucella suis via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H) by 1.23 × 106-fold. When these variants were employed in three typical bioredox reactions to drive the synthesis of important chiral pharmaceutical building blocks, they outperformed the commonly used cofactor regeneration systems (glucose dehydrogenase [GDH], formate dehydrogenase [FDH], and lactate dehydrogenase [LDH]) with respect to efficiency of cofactor regeneration. Overall, our study provides two promising IPADH variants with complementary cofactor specificities that have great potential for wide applications. IMPORTANCE Oxidoreductases represent one group of the most important biocatalysts for synthesis of various chiral synthons. However, their practical application was hindered by the expensive nicotinamide cofactors used. Isopropanol dehydrogenase (IPADH) is one of the most attractive biocatalysts for nicotinamide cofactor regeneration. However, poor thermostability and strict cofactor dependency hinder its practical application. In this work, the thermostability and catalytic activity of an IPADH were simultaneously improved via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H). The resultant variants show great potential for regeneration of nicotinamide cofactors, and the engineering strategy might serve as a useful approach for future engineering of other oxidoreductases.
Collapse
Affiliation(s)
- Qiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Long Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Suzhou Bioforany EnzyTech Co., Ltd., Changshu, Jiangsu, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Česnik Katulić M, Sudar M, Hernández K, Qi Y, Charnock SJ, Vasić-Rački Đ, Clapés P, Findrik Blažević Z. Cascade Synthesis of l-Homoserine Catalyzed by Lyophilized Whole Cells Containing Transaminase and Aldolase Activities: The Mathematical Modeling Approach. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Morana Česnik Katulić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Martina Sudar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Karel Hernández
- Biotransformation and Bioactive Molecules Group, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yuyin Qi
- Prozomix Ltd., West End Industrial Estate, Station Court, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Simon J. Charnock
- Prozomix Ltd., West End Industrial Estate, Station Court, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Đurdica Vasić-Rački
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Pere Clapés
- Biotransformation and Bioactive Molecules Group, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Zvjezdana Findrik Blažević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Mordhorst S, Andexer JN. Round, round we go - strategies for enzymatic cofactor regeneration. Nat Prod Rep 2020; 37:1316-1333. [PMID: 32582886 DOI: 10.1039/d0np00004c] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to the beginning of 2020Enzymes depending on cofactors are essential in many biosynthetic pathways of natural products. They are often involved in key steps: catalytic conversions that are difficult to achieve purely with synthetic organic chemistry. Hence, cofactor-dependent enzymes have great potential for biocatalysis, on the condition that a corresponding cofactor regeneration system is available. For some cofactors, these regeneration systems require multiple steps; such complex enzyme cascades/multi-enzyme systems are (still) challenging for in vitro biocatalysis. Further, artificial cofactor analogues have been synthesised that are more stable, show an altered reaction range, or act as inhibitors. The development of bio-orthogonal systems that can be used for the production of modified natural products in vivo is an ongoing challenge. In light of the recent progress in this field, this review aims to provide an overview of general strategies involving enzyme cofactors, cofactor analogues, and regeneration systems; highlighting the current possibilities for application of enzymes using some of the most common cofactors.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | | |
Collapse
|
5
|
Rigorous Model-Based Design and Experimental Verification of Enzyme-Catalyzed Carboligation under Enzyme Inactivation. Catalysts 2020. [DOI: 10.3390/catal10010096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enzyme catalyzed reactions are complex reactions due to the interplay of the enzyme, the reactants, and the operating conditions. To handle this complexity systematically and make use of a design space without technical restrictions, we apply the model based approach of elementary process functions (EPF) for selecting the best process design for enzyme catalysis problems. As a representative case study, we consider the carboligation of propanal and benzaldehyde catalyzed by benzaldehyde lyase from Pseudomonas fluorescens (PfBAL) to produce (R)-2-hydroxy-1-phenylbutan-1-one, because of the substrate dependent reaction rates and the challenging substrate dependent PfBAL inactivation. The apparatus independent EPF concept optimizes the material fluxes influencing the enzyme catalyzed reaction for the given process intensification scenarios. The final product concentration is improved by 13% with the optimized feeding rates, and the optimization results are verified experimentally. In general, the rigorous model driven approach could lead to selecting the best existing reactor, designing novel reactors for enzyme catalysis, and combining protein engineering and process systems engineering concepts.
Collapse
|
6
|
Shi S, You Z, Zhou K, Chen Q, Pan J, Qian X, Xu J, Li C. Efficient Synthesis of 12‐Oxochenodeoxycholic Acid Using a 12α‐Hydroxysteroid Dehydrogenase fromRhodococcus ruber. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shou‐Cheng Shi
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Zhi‐Neng You
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Ke Zhou
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Xiao‐Long Qian
- Suzhou Bioforany EnzyTech Co. Ltd. No. 8 Yanjiuyuan Road, Economic Development Zone, Changshu Jiangsu 215512 People's Republic of China
| | - Jian‐He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Chun‐Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
7
|
Marpani F, Sárossy Z, Pinelo M, Meyer AS. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration. Biotechnol Bioeng 2017; 114:2762-2770. [PMID: 28832942 DOI: 10.1002/bit.26405] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/09/2017] [Accepted: 08/14/2017] [Indexed: 01/17/2023]
Abstract
Enzymatic reduction of carbon dioxide (CO2 ) to methanol (CH3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO2 to CH3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH3 OH, a TTN of 160 and BPR of 24 μmol CH3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency.
Collapse
Affiliation(s)
- Fauziah Marpani
- Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.,Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Zsuzsa Sárossy
- Department of Chemical and Biochemical Engineering, Center for Combustion and Harmful Emission Control, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Manuel Pinelo
- Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Affiliation(s)
- Yifei Zhang
- Department of Biomedical
Engineering, Columbia University, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical
Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
9
|
Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease. Mol Aspects Med 2017; 56:54-65. [PMID: 28602676 DOI: 10.1016/j.mam.2017.06.002] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 01/18/2023]
Abstract
Bile acids are synthesized from cholesterol in the liver and released into the intestine to aid the digestion of dietary lipids. The host enzymes that contribute to bile acid synthesis in the liver and the regulatory pathways that influence the composition of the total bile acid pool in the host have been well established. In addition, the gut microbiota provides unique contributions to the diversity of bile acids in the bile acid pool. Gut microbial enzymes contribute significantly to bile acid metabolism through deconjugation and dehydroxylation reactions to generate unconjugated bile acids and secondary bile acids. These microbial enzymes (which include bile salt hydrolase (BSH) and bile acid-inducible (BAI) enzymes) are essential for bile acid homeostasis in the host and represent a vital contribution of the gut microbiome to host health. Perturbation of the gut microbiota in disease states may therefore significantly influence bile acid signatures in the host, especially in the context of gastrointestinal or systemic disease. Given that bile acids are ligands for host cell receptors (including the FXR, TGR5 and Vitamin D Receptor) alterations to microbial enzymes and associated changes to bile acid signatures have significant consequences for the host. In this review we examine the contribution of microbial enzymes to the process of bile acid metabolism in the host and discuss the implications for microbe-host signalling in the context of C. difficile infection, inflammatory bowel disease and other disease states.
Collapse
Affiliation(s)
- Sarah L Long
- APC Microbiome Institute, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- APC Microbiome Institute, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland.
| | - Susan A Joyce
- APC Microbiome Institute, University College Cork, Cork, Ireland; School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Angelastro A, Dawson WM, Luk LYP, Allemann RK. A Versatile Disulfide-Driven Recycling System for NADP+ with High Cofactor Turnover Number. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Antonio Angelastro
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - William M. Dawson
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis Y. P. Luk
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
11
|
Klermund L, Riederer A, Hunger A, Castiglione K. Protein engineering of a bacterial N-acyl-d-glucosamine 2-epimerase for improved stability under process conditions. Enzyme Microb Technol 2016; 87-88:70-8. [PMID: 27178797 DOI: 10.1016/j.enzmictec.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 01/29/2023]
Abstract
Enzymatic cascade reactions, i.e. the combination of several enzyme reactions in one pot without isolation of intermediates, have great potential for the establishment of sustainable chemical processes. However, many cascade reactions suffer from cross-inhibitions and enzyme inactivation by components of the reaction system. This study focuses on the two-step enzymatic synthesis of N-acetylneuraminic acid (Neu5Ac) using an N-acyl-d-glucosamine 2-epimerase from Anabaena variabilis ATCC 29413 (AvaAGE) in combination with an N-acetylneuraminate lyase (NAL) from Escherichia coli. AvaAGE epimerizes N-acetyl-d-glucosamine (GlcNAc) to N-acetyl-d-mannosamine (ManNAc), which then reacts with pyruvate in a NAL-catalyzed aldol condensation to form Neu5Ac. However, AvaAGE is inactivated by high pyruvate concentrations, which are used to push the NAL reaction toward the product side. A biphasic inactivation was observed in the presence of 50-800mM pyruvate resulting in activity losses of the AvaAGE of up to 60% within the first hour. Site-directed mutagenesis revealed that pyruvate modifies one of the four lysine residues in the ATP-binding site of AvaAGE. Because ATP is an allosteric activator of the epimerase and the binding of the nucleotide is crucial for its catalytic properties, saturation mutagenesis at position K160 was performed to identify the most compatible amino acid exchanges. The best variants, K160I, K160N and K160L, showed no inactivation by pyruvate, but significantly impaired kinetic parameters. For example, depending on the mutant, the turnover number kcat was reduced by 51-68% compared with the wild-type enzyme. A mechanistic model of the Neu5Ac synthesis was established, which can be used to select the AvaAGE variant that is most favorable for a given process condition. The results show that mechanistic models can greatly facilitate the choice of the right enzyme for an enzymatic cascade reaction with multiple cross-inhibitions and inactivation phenomena.
Collapse
Affiliation(s)
- Ludwig Klermund
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany
| | - Amelie Riederer
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany
| | - Annique Hunger
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany
| | - Kathrin Castiglione
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany.
| |
Collapse
|
12
|
Sun B, Hartl F, Castiglione K, Weuster-Botz D. Dynamic mechanistic modeling of the multienzymatic one-pot reduction of dehydrocholic acid to 12-keto ursodeoxycholic acid with competing substrates and cofactors. Biotechnol Prog 2015; 31:375-86. [DOI: 10.1002/btpr.2036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/09/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Boqiao Sun
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| | - Florian Hartl
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| | - Kathrin Castiglione
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| | - Dirk Weuster-Botz
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| |
Collapse
|
13
|
Eggert T, Bakonyi D, Hummel W. Enzymatic routes for the synthesis of ursodeoxycholic acid. J Biotechnol 2014; 191:11-21. [PMID: 25131646 DOI: 10.1016/j.jbiotec.2014.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/26/2014] [Accepted: 08/06/2014] [Indexed: 02/02/2023]
Abstract
Ursodeoxycholic acid, a secondary bile acid, is used as a drug for the treatment of various liver diseases, the optimal dose comprises the range of 8-10mg/kg/day. For industrial syntheses, the structural complexity of this bile acid requires the use of an appropriate starting material as well as the application of regio- and enantio-selective enzymes for its derivatization. Most strategies for the synthesis start from cholic acid or chenodeoxycholic acid. The latter requires the conversion of the hydroxyl group at C-7 from α- into β-position in order to obtain ursodeoxycholic acid. Cholic acid on the other hand does not only require the same epimerization reaction at C-7 but the removal of the hydroxyl group at C-12 as well. There are several bacterial regio- and enantio-selective hydroxysteroid dehydrogenases (HSDHs) to carry out the desired reactions, for example 7α-HSDHs from strains of Clostridium, Bacteroides or Xanthomonas, 7β-HSDHs from Clostridium, Collinsella, or Ruminococcus, or 12α-HSDH from Clostridium or from Eggerthella. However, all these bioconversion reactions need additional steps for the regeneration of the coenzymes. Selected multi-step reaction systems for the synthesis of ursodeoxycholic acid are presented in this review.
Collapse
Affiliation(s)
- Thorsten Eggert
- evocatal GmbH, Alfred-Nobel-Str. 10, 40789 Monheim am Rhein, Germany.
| | - Daniel Bakonyi
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Werner Hummel
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426 Jülich, Germany.
| |
Collapse
|
14
|
Tufvesson P, Lima-Ramos J, Haque NA, Gernaey KV, Woodley JM. Advances in the Process Development of Biocatalytic Processes. Org Process Res Dev 2013. [DOI: 10.1021/op4001675] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pär Tufvesson
- Center for Process Engineering
and Technology, Department of Chemical and
Biochemical Engineering, Technical University of Denmark, Anker Engelunds
Vej 1, Building 101A, DK-2800 Kongens Lyngby, Denmark
| | - Joana Lima-Ramos
- Center for Process Engineering
and Technology, Department of Chemical and
Biochemical Engineering, Technical University of Denmark, Anker Engelunds
Vej 1, Building 101A, DK-2800 Kongens Lyngby, Denmark
| | - Naweed Al Haque
- Center for Process Engineering
and Technology, Department of Chemical and
Biochemical Engineering, Technical University of Denmark, Anker Engelunds
Vej 1, Building 101A, DK-2800 Kongens Lyngby, Denmark
| | - Krist V. Gernaey
- Center for Process Engineering
and Technology, Department of Chemical and
Biochemical Engineering, Technical University of Denmark, Anker Engelunds
Vej 1, Building 101A, DK-2800 Kongens Lyngby, Denmark
| | - John M. Woodley
- Center for Process Engineering
and Technology, Department of Chemical and
Biochemical Engineering, Technical University of Denmark, Anker Engelunds
Vej 1, Building 101A, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Mechanistic model for the synthesis of N-acetylneuraminic acid using N-acetylneuraminate lyase from Escherichia coli K12. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Bechtold M, Panke S. Model-based characterization of operational stability of multimeric enzymes with complex deactivation behavior: An in-silico investigation. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Sun B, Kantzow C, Bresch S, Castiglione K, Weuster-Botz D. Multi-enzymatic one-pot reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid with whole-cell biocatalysts. Biotechnol Bioeng 2012; 110:68-77. [PMID: 22806613 DOI: 10.1002/bit.24606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 11/06/2022]
Abstract
Ursodeoxycholic acid (UDCA) is a bile acid of industrial interest as it is used as an agent for the treatment of primary sclerosing cholangitis and the medicamentous, non-surgical dissolution of gallstones. Currently, it is prepared industrially from cholic acid following a seven-step chemical procedure with an overall yield of <30%. In this study, we investigated the key enzymatic steps in the chemo-enzymatic preparation of UDCA-the two-step reduction of dehydrocholic acid (DHCA) to 12-keto-ursodeoxycholic acid using a mutant of 7β-hydroxysteroid dehydrogenase (7β-HSDH) from Collinsella aerofaciens and 3α-hydroxysteroid dehydrogenase (3α-HSDH) from Comamonas testosteroni. Three different one-pot reaction approaches were investigated using whole-cell biocatalysts in simple batch processes. We applied one-biocatalyst systems, where 3α-HSDH, 7β-HSDH, and either a mutant of formate dehydrogenase (FDH) from Mycobacterium vaccae N10 or a glucose dehydrogenase (GDH) from Bacillus subtilis were expressed in a Escherichia coli BL21(DE3) based host strain. We also investigated two-biocatalyst systems, where 3α-HSDH and 7β-HSDH were expressed separately together with FDH enzymes for cofactor regeneration in two distinct E. coli hosts that were simultaneously applied in the one-pot reaction. The best result was achieved by the one-biocatalyst system with GDH for cofactor regeneration, which was able to completely convert 100 mM DHCA to >99.5 mM 12-keto-UDCA within 4.5 h in a simple batch process on a liter scale.
Collapse
Affiliation(s)
- Boqiao Sun
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr 15, 85748 Garching, Germany
| | | | | | | | | |
Collapse
|
18
|
One-step synthesis of 12-ketoursodeoxycholic acid from dehydrocholic acid using a multienzymatic system. Appl Microbiol Biotechnol 2012; 97:633-9. [PMID: 22899496 DOI: 10.1007/s00253-012-4340-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
12-ketoursodeoxycholic acid (12-keto-UDCA) is a key intermediate for the synthesis of ursodeoxycholic acid (UDCA), an important therapeutic agent for non-surgical treatment of human cholesterol gallstones and various liver diseases. The goal of this study is to develop a new enzymatic route for the synthesis 12-keto-UDCA based on a combination of NADPH-dependent 7β-hydroxysteroid dehydrogenase (7β-HSDH, EC 1.1.1.201) and NADH-dependent 3α-hydroxysteroid dehydrogenase (3α-HSDH, EC 1.1.1.50). In the presence of NADPH and NADH, the combination of these enzymes has the capacity to reduce the 3-carbonyl- and 7-carbonyl-groups of dehydrocholic acid (DHCA), forming 12-keto-UDCA in a single step. For cofactor regeneration, an engineered formate dehydrogenase, which is able to regenerate NADPH and NADH simultaneously, was used. All three enzymes were overexpressed in an engineered expression host Escherichia coli BL21(DE3)Δ7α-HSDH devoid of 7α-hydroxysteroid dehydrogenase, an enzyme indigenous to E. coli, in order to avoid formation of the undesired by-product 12-chenodeoxycholic acid in the reaction mixture. The stability of enzymes and reaction conditions such as pH value and substrate concentration were evaluated. No significant loss of activity was observed after 5 days under reaction condition. Under the optimal condition (10 mM of DHCA and pH 6), 99 % formation of 12-keto-UDCA with 91 % yield was observed.
Collapse
|
19
|
Novel whole-cell biocatalysts with recombinant hydroxysteroid dehydrogenases for the asymmetric reduction of dehydrocholic acid. Appl Microbiol Biotechnol 2012; 95:1457-68. [PMID: 22581067 DOI: 10.1007/s00253-012-4072-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
Ursodeoxycholic acid is an important pharmaceutical so far chemically synthesized from cholic acid. Various biocatalytic alternatives have already been discussed with hydroxysteroid dehydrogenases (HSDH) playing a crucial role. Several whole-cell biocatalysts based on a 7α-HSDH-knockout strain of Escherichia coli overexpressing a recently identified 7β-HSDH from Collinsella aerofaciens and a NAD(P)-bispecific formate dehydrogenase mutant from Mycobacterium vaccae for internal cofactor regeneration were designed and characterized. A strong pH dependence of the whole-cell bioreduction of dehydrocholic acid to 3,12-diketo-ursodeoxycholic acid was observed with the selected recombinant E. coli strain. In the optimal, slightly acidic pH range dehydrocholic acid is partly undissolved and forms a suspension in the aqueous solution. The batch process was optimized making use of a second-order polynomial to estimate conversion as function of initial pH, initial dehydrocholic acid concentration, and initial formate concentration. Complete conversion of 72 mM dehydrocholic acid was thus made possible at pH 6.4 in a whole-cell batch process within a process time of 1 h without cofactor addition. Finally, a NADH-dependent 3α-HSDH from Comamonas testosteroni was expressed additionally in the E. coli production strain overexpressing the 7β-HSDH and the NAD(P)-bispecific formate dehydrogenase mutant. It was shown that this novel whole-cell biocatalyst was able to convert 50 mM dehydrocholic acid directly to 12-keto-ursodeoxycholic acid with the formation of only small amounts of intermediate products. This approach may be an efficient process alternative which avoids the costly chemical epimerization at C-7 in the production of ursodeoxycholic acid.
Collapse
|