1
|
Ramos JRC, Bissinger T, Genzel Y, Reichl U. Impact of Influenza A Virus Infection on Growth and Metabolism of Suspension MDCK Cells Using a Dynamic Model. Metabolites 2022; 12:metabo12030239. [PMID: 35323683 PMCID: PMC8950586 DOI: 10.3390/metabo12030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Cell cultured-based influenza virus production is a viable option for vaccine manufacturing. In order to achieve a high concentration of viable cells, is requirement to have not only optimal process conditions, but also an active metabolism capable of intracellular synthesis of viral components. Experimental metabolic data collected in such processes are complex and difficult to interpret, for which mathematical models are an appropriate way to simulate and analyze the complex and dynamic interaction between the virus and its host cell. A dynamic model with 35 states was developed in this study to describe growth, metabolism, and influenza A virus production in shake flask cultivations of suspension Madin-Darby Canine Kidney (MDCK) cells. It considers cell growth (concentration of viable cells, mean cell diameters, volume of viable cells), concentrations of key metabolites both at the intracellular and extracellular level and virus titers. Using one set of parameters, the model accurately simulates the dynamics of mock-infected cells and correctly predicts the overall dynamics of virus-infected cells for up to 60 h post infection (hpi). The model clearly suggests that most changes observed after infection are related to cessation of cell growth and the subsequent transition to apoptosis and cell death. However, predictions do not cover late phases of infection, particularly for the extracellular concentrations of glutamate and ammonium after about 12 hpi. Results obtained from additional in silico studies performed indicated that amino acid degradation by extracellular enzymes resulting from cell lysis during late infection stages may contribute to this observed discrepancy.
Collapse
Affiliation(s)
- João Rodrigues Correia Ramos
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; (T.B.); (Y.G.); (U.R.)
- Correspondence:
| | - Thomas Bissinger
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; (T.B.); (Y.G.); (U.R.)
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; (T.B.); (Y.G.); (U.R.)
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; (T.B.); (Y.G.); (U.R.)
- Institute of Process Engineering, Faculty of Process & Systems Engineering, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
2
|
Pech S, Rehberg M, Janke R, Benndorf D, Genzel Y, Muth T, Sickmann A, Rapp E, Reichl U. Tracking changes in adaptation to suspension growth for MDCK cells: cell growth correlates with levels of metabolites, enzymes and proteins. Appl Microbiol Biotechnol 2021; 105:1861-1874. [PMID: 33582836 PMCID: PMC7907048 DOI: 10.1007/s00253-021-11150-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Abstract Adaptations of animal cells to growth in suspension culture concern in particular viral vaccine production, where very specific aspects of virus-host cell interaction need to be taken into account to achieve high cell specific yields and overall process productivity. So far, the complexity of alterations on the metabolism, enzyme, and proteome level required for adaptation is only poorly understood. In this study, for the first time, we combined several complex analytical approaches with the aim to track cellular changes on different levels and to unravel interconnections and correlations. Therefore, a Madin-Darby canine kidney (MDCK) suspension cell line, adapted earlier to growth in suspension, was cultivated in a 1-L bioreactor. Cell concentrations and cell volumes, extracellular metabolite concentrations, and intracellular enzyme activities were determined. The experimental data set was used as the input for a segregated growth model that was already applied to describe the growth dynamics of the parental adherent cell line. In addition, the cellular proteome was analyzed by liquid chromatography coupled to tandem mass spectrometry using a label-free protein quantification method to unravel altered cellular processes for the suspension and the adherent cell line. Four regulatory mechanisms were identified as a response of the adaptation of adherent MDCK cells to growth in suspension. These regulatory mechanisms were linked to the proteins caveolin, cadherin-1, and pirin. Combining cell, metabolite, enzyme, and protein measurements with mathematical modeling generated a more holistic view on cellular processes involved in the adaptation of an adherent cell line to suspension growth. Key points • Less and more efficient glucose utilization for suspension cell growth • Concerted alteration of metabolic enzyme activity and protein expression • Protein candidates to interfere glycolytic activity in MDCK cells Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11150-z.
Collapse
Affiliation(s)
- Sabine Pech
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Rehberg
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert Janke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Thilo Muth
- Section S.3 eScience, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Erdmann Rapp
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,glyxera GmbH, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
3
|
Yilmaz D, Parulekar SJ, Cinar A. A dynamic EFM-based model for antibody producing cell lines and model based evaluation of fed-batch processes. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Lussier F, Brulé T, Vishwakarma M, Das T, Spatz JP, Masson JF. Dynamic-SERS Optophysiology: A Nanosensor for Monitoring Cell Secretion Events. NANO LETTERS 2016; 16:3866-71. [PMID: 27172291 DOI: 10.1021/acs.nanolett.6b01371] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We monitored metabolite secretion near living cells using a plasmonic nanosensor. The nanosensor created from borosilicate nanopipettes analogous to the patch clamp was decorated with Au nanoparticles and served as a surface-enhanced Raman scattering (SERS) substrate with addressable location. With this nanosensor, we acquired SERS locally near Madin-Darby canine kidney (MDCKII) epithelial cells, and we detected multiple metabolites, such as pyruvate, lactate, ATP, and urea simultaneously. These plasmonic nanosensors were capable of monitoring metabolites in the extracellular medium with enough sensitivity to detect an increase in metabolite concentration following the lyses of MDCKII cells with a nonionic surfactant. The plasmonic nanosensors also allowed a relative quantification of a chemical gradient for a metabolite near cells, as demonstrated with a decrease in relative lactate to pyruvate concentration further away from the MDCKII cells. This SERS optophysiology technique for the sensitive and nondestructive monitoring of extracellular metabolites near living cells is broadly applicable to different cellular and tissue models and should therefore provide a powerful tool for cellular studies.
Collapse
Affiliation(s)
- Félix Lussier
- Department of Chemistry, Université de Montréal , C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7 Canada
| | - Thibault Brulé
- Department of Chemistry, Université de Montréal , C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7 Canada
| | - Medhavi Vishwakarma
- Max Planck Institute for Medical Research , Department of Biointerface Science & Technology, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Tamal Das
- Max Planck Institute for Medical Research , Department of Biointerface Science & Technology, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research , Department of Biointerface Science & Technology, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg , INF 253, D-69120 Heidelberg, Germany
| | - Jean-François Masson
- Department of Chemistry, Université de Montréal , C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7 Canada
- Centre for Self-Assembled Chemical Structures (CSACS) , 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6 Canada
| |
Collapse
|
5
|
Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy. J Biotechnol 2016; 231:16-23. [PMID: 27215342 DOI: 10.1016/j.jbiotec.2016.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Abstract
Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization.
Collapse
|
6
|
Production of canine adenovirus type 2 in serum-free suspension cultures of MDCK cells. Appl Microbiol Biotechnol 2015; 99:7059-68. [DOI: 10.1007/s00253-015-6636-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/19/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
|
7
|
Rehberg M, Ritter JB, Reichl U. Glycolysis is governed by growth regime and simple enzyme regulation in adherent MDCK cells. PLoS Comput Biol 2014; 10:e1003885. [PMID: 25329309 PMCID: PMC4211564 DOI: 10.1371/journal.pcbi.1003885] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/31/2014] [Indexed: 11/18/2022] Open
Abstract
Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney (MDCK) cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis, which is based on relatively simple kinetics for enzymatic reactions of glycolysis, to explain the pathway dynamics under various cultivation conditions. The structured model takes into account in vitro enzyme activities, and links glycolysis with pentose phosphate pathway and glycogenesis. Using a single parameterization, metabolite pool dynamics during cell cultivation, glucose limitation and glucose pulse experiments can be consistently reproduced by considering the cultivation history of the cells. Growth phase-dependent glucose uptake together with cell-specific volume changes generate high intracellular metabolite pools and flux rates to satisfy the cellular demand during growth. Under glucose limitation, the coordinated control of glycolytic enzymes re-adjusts the glycolytic flux to prevent the depletion of glycolytic intermediates. Finally, the model's predictive power supports the design of more efficient bioprocesses. Glycolysis generates biomass precursors and energy from sugars and is therefore a key element in the metabolism of mammalian cells. Changes in its activity greatly affect cellular function which is often recognized as metabolic disease but also as opportunity for the design of efficient bioprocesses. Metabolic research discovered that continuously growing mammalian cells often exhibit a high glycolytic activity but also delivered seemingly endless facets in the pathway operation. The latter call for a systems-level understanding regarding capacity and regulation for a broad range of cultivation conditions. In this work, we couple a cell growth model to a simple kinetic description of glycolysis to consistently explain intracellular metabolite pool dynamics of the Madin-Darby canine kidney cell line over a variety of experiments and time scales while considering the growth status and cultivation history of the cells. We argue that the many different dynamics in glycolysis result from an interplay between a growth-dependent sugar uptake together with simple intrinsic enzyme regulation.
Collapse
Affiliation(s)
- Markus Rehberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * E-mail:
| | - Joachim B. Ritter
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Otto von Guericke University Magdeburg, Chair of Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
8
|
Lohr V, Hädicke O, Genzel Y, Jordan I, Büntemeyer H, Klamt S, Reichl U. The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis. BMC Biotechnol 2014; 14:72. [PMID: 25077436 PMCID: PMC4124504 DOI: 10.1186/1472-6750-14-72] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 07/16/2014] [Indexed: 01/10/2023] Open
Abstract
Background In human vaccine manufacturing some pathogens such as Modified Vaccinia Virus Ankara, measles, mumps virus as well as influenza viruses are still produced on primary material derived from embryonated chicken eggs. Processes depending on primary cell culture, however, are difficult to adapt to modern vaccine production. Therefore, we derived previously a continuous suspension cell line, AGE1.CR.pIX, from muscovy duck and established chemically-defined media for virus propagation. Results To better understand vaccine production processes, we developed a stoichiometric model of the central metabolism of AGE1.CR.pIX cells and applied flux variability and metabolic flux analysis. Results were compared to literature dealing with mammalian and insect cell culture metabolism focusing on the question whether cultured avian cells differ in metabolism. Qualitatively, the observed flux distribution of this avian cell line was similar to distributions found for mammalian cell lines (e.g. CHO, MDCK cells). In particular, glucose was catabolized inefficiently and glycolysis and TCA cycle seem to be only weakly connected. Conclusions A distinguishing feature of the avian cell line is that glutaminolysis plays only a minor role in energy generation and production of precursors, resulting in low extracellular ammonia concentrations. This metabolic flux study is the first for a continuous avian cell line. It provides a basis for further metabolic analyses to exploit the biotechnological potential of avian and vertebrate cell lines and to develop specific optimized cell culture processes, e.g. vaccine production processes.
Collapse
Affiliation(s)
- Verena Lohr
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr, 1, 39106 Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells. J Biotechnol 2014; 178:43-53. [PMID: 24657347 DOI: 10.1016/j.jbiotec.2014.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 01/24/2023]
Abstract
Optimization of bioprocesses with mammalian cells mainly concentrates on cell engineering, cell screening and medium optimization to achieve enhanced cell growth and productivity. For improving cell lines by cell engineering techniques, in-depth understandings of the regulation of metabolism and product formation as well as the resulting demand for the different medium components are needed. In this work, the relationship of cell specific growth and uptake rates and of changes in maximum in vitro enzyme activities with intracellular metabolite pools of glycolysis, pentose phosphate pathway, citric acid cycle and energy metabolism were determined for batch cultivations with AGE1.HN.AAT cells. Results obtained by modeling cell growth and consumption of main substrates showed that the dynamics of intracellular metabolite pools is primarily linked to the dynamics of specific glucose and glutamine uptake rates. By analyzing maximum in vitro enzyme activities we found low activities of pyruvate dehydrogenase and pyruvate carboxylase which suggest a reduced metabolite transfer into the citric acid cycle resulting in lactate release (Warburg effect). Moreover, an increase in the volumetric lactate production rate during the transition from exponential to stationary growth together with a transient accumulation of fructose 1,6-bisphosphate, fructose 1-phosphate and ribose 5-phosphate point toward an upregulation of PK via FBP. Glutaminase activity was about 44-fold lower than activity of glutamine synthetase. This seemed to be sufficient for the supply of intermediates for biosynthesis but might lead to unnecessary dissipation of ATP. Taken together, our results elucidate regulation of metabolic networks of immortalized mammalian cells by changes of metabolite pools over the time course of batch cultivations. Eventually, it enables the use of cell engineering strategies to improve the availability of building blocks for biomass synthesis by increasing glucose as well as glutamine fluxes. An additional knockdown of the glutamine synthetase might help to prevent unnecessary dissipation of ATP, to yield a cell line with optimized growth characteristics and increased overall productivity.
Collapse
|
10
|
Changes in intracellular metabolite pools during growth of adherent MDCK cells in two different media. Appl Microbiol Biotechnol 2013; 98:385-97. [PMID: 24169951 DOI: 10.1007/s00253-013-5329-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/27/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
In bioprocess engineering, the growth of continuous cell lines is mainly studied with respect to the changes in cell concentration, the resulting demand for substrates, and the accumulation of extracellular metabolites. The underlying metabolic process rests upon intracellular metabolite pools and their interaction with enzymes in the form of substrates, products, or allosteric effectors. Here, we quantitatively analyze time courses of 29 intracellular metabolites of adherent Madin-Darby canine kidney cells during cultivation in a serum-containing medium and a serum-free medium. The cells, which originated from the same pre-culture, showed similar overall growth behavior and only slight differences in their demand for the substrates glucose (GLC), glutamine (GLN), and glutamate (GLU). Analysis of intracellular metabolites, which mainly cover the glycolytic pathway, the citric acid cycle, and the nucleotide pools, revealed surprisingly similar dynamics for both cultivation conditions. Instead of a strong influence of the medium, we rather observed a growth phase-specific behavior in glycolysis and in the lower citric acid cycle. Furthermore, analysis of the lower part of glycolysis suggests the well-known regulation of pyruvate kinase by fructose 1,6-bisphosphate. The upper citric acid cycle (citrate, cis-aconitate, and isocitrate) is apparently uncoupled from the lower part (α-ketoglutarate, succinate, fumarate, and malate), which is in line with the characteristics of a truncated cycle. Decreased adenosine triphosphate and guanosine triphosphate pools, as well as a relatively low energy charge soon after inoculation of cells, indicate a high demand for cellular energy and the consumption of nucleotides for biosynthesis. We finally conclude that, with sufficient availability of substrates, the dynamics of GLC and GLN/GLU metabolism is influenced mainly by the cellular growth regime and regulatory function of key enzymes.
Collapse
|
11
|
Rehberg M, Ritter J, Genzel Y, Flockerzi D, Reichl U. The relation between growth phases, cell volume changes and metabolism of adherent cells during cultivation. J Biotechnol 2013; 164:489-99. [DOI: 10.1016/j.jbiotec.2013.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/18/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
12
|
Kim DY, Chaudhry MA, Kennard ML, Jardon MA, Braasch K, Dionne B, Butler M, Piret JM. Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production. Biotechnol Prog 2012; 29:165-75. [DOI: 10.1002/btpr.1658] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/15/2012] [Indexed: 12/17/2022]
|