1
|
Johnson TF, Conti M, Iacoviello F, Shearing PR, Pullen J, Dimartino S, Bracewell DG. Evaluating 3D-printed bioseparation structures using multi-length scale tomography. Anal Bioanal Chem 2023; 415:5961-5971. [PMID: 37522918 PMCID: PMC10556175 DOI: 10.1007/s00216-023-04866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
X-ray computed tomography was applied in imaging 3D-printed gyroids used for bioseparation in order to visualize and characterize structures from the entire geometry down to individual nanopores. Methacrylate prints were fabricated with feature sizes of 500 µm, 300 µm, and 200 µm, with the material phase exhibiting a porous substructure in all cases. Two X-ray scanners achieved pixel sizes from 5 µm to 16 nm to produce digital representations of samples across multiple length scales as the basis for geometric analysis and flow simulation. At the gyroid scale, imaged samples were visually compared to the original computed-aided designs to analyze printing fidelity across all feature sizes. An individual 500 µm feature, part of the overall gyroid structure, was compared and overlaid between design and imaged volumes, identifying individual printed layers. Internal subvolumes of all feature sizes were segmented into material and void phases for permeable flow analysis. Small pieces of 3D-printed material were optimized for nanotomographic imaging at a pixel size of 63 nm, with all three gyroid samples exhibiting similar geometric characteristics when measured. An average porosity of 45% was obtained that was within the expected design range, and a tortuosity factor of 2.52 was measured. Applying a voidage network map enabled the size, location, and connectivity of pores to be identified, obtaining an average pore size of 793 nm. Using Avizo XLAB at a bulk diffusivity of 7.00 × 10-11 m2s-1 resulted in a simulated material diffusivity of 2.17 × 10-11 m2s-1 ± 0.16 × 10-11 m2s-1.
Collapse
Affiliation(s)
- Thomas F. Johnson
- Department of Biochemical Engineering, University College London, Bernard Katz, London, WC1E 6BT UK
| | - Mariachiara Conti
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL UK
| | - Francesco Iacoviello
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Paul R. Shearing
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - James Pullen
- Fujifilm Diosynth Technologies, Belasis Avenue, Billingham, TS23 1LH UK
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL UK
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz, London, WC1E 6BT UK
| |
Collapse
|
2
|
Fares HM, Carnovale M, Tabouguia MON, Jordan S, Katz JS. Novel Surfactant Compatibility with Downstream Protein Bioprocesses. J Pharm Sci 2023; 112:1811-1820. [PMID: 37094665 DOI: 10.1016/j.xphs.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Downstream processing of antibodies consists of a series of steps aimed at purifying the product and ensuring it is delivered to formulators structurally and functionally intact. The process can be complex and time-consuming, involving multiple filtrations, chromatography, and buffer exchange steps that can interfere with product integrity. This study explores the possibility and benefits of adding N-myristoyl phenylalanine polyether amine diamide (FM1000) as a process aid. FM1000 is a nonionic surfactant that is highly effective at stabilizing proteins against aggregation and particle formation and has been extensively explored as a novel excipient for antibody formulations. In this work, FM1000 is shown to stabilize proteins against pumping-induced aggregation which can occur while transporting them between process units and within certain processes. It is also shown to prevent antibody fouling of multiple polymeric surfaces. Furthermore, FM1000 can be removed after some steps and during buffer exchange in ultrafiltration/diafiltration, if needed. Additionally, FM1000 was compared to polysorbates in studies focusing on surfactant retention on filters and columns. While the different molecular entities of polysorbates elute at different rates, FM1000 flows through purification units as a single molecule and at a faster rate. Overall, this work defines new areas of application for FM1000 within downstream processing and presents it as a versatile process aid, where its addition and removal are tunable depending on the needs of each product.
Collapse
Affiliation(s)
- Hadi M Fares
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Miriam Carnovale
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Megane O N Tabouguia
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Susan Jordan
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Joshua S Katz
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803.
| |
Collapse
|
3
|
Parau M, Pullen J, Bracewell DG. Depth filter material process interaction in the harvest of mammalian cells. Biotechnol Prog 2023; 39:e3329. [PMID: 36775837 PMCID: PMC10909467 DOI: 10.1002/btpr.3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Upstream advances have led to increased mAb titers above 5 g/L in 14-day fed-batch cultures. This is accompanied by higher cell densities and process-related impurities such as DNA and Host Cell Protein (HCP), which have caused challenges for downstream operations. Depth filtration remains a popular choice for harvesting CHO cell culture, and there is interest in utilizing these to remove process-related impurities at the harvest stage. Operation of the harvest stage has also been shown to affect the performance of the Protein A chromatography step. In addition, manufacturers are looking to move away from natural materials such as cellulose and Diatomaceous Earth (DE) for better filter consistency and security of supply. Therefore, there is an increased need for further understanding and knowledge of depth filtration. This study investigates the effect of depth filter material and loading on the Protein A resin lifetime with an industrially relevant high cell density feed material (40 million cells/ml). It focuses on the retention of process-related impurities such as DNA and HCP through breakthrough studies and a novel confocal microscopy method for imaging foulant in-situ. An increase in loading of the primary-synthetic filter by a third, led to earlier DNA breakthrough in the secondary filter, with DNA concentration at a throughput of 50 L/m2 being more than double. Confocal imaging of the depth filters showed that the foulant was pushed forward into the filter structure with higher loading. The additional two layers in the primary-synthetic filter led to better pressure profiles in both primary and secondary filters but did not help to retain HCP or DNA. Reduced filtrate clarity, as measured by OD600, was 1.6 fold lower in the final filtrate where a synthetic filter train was used. This was also associated with precipitation in the Protein A column feed. Confocal imaging of resin after 100 cycles showed that DNA build-up around the outside of the bead was associated with synthetic filter trains, leading to potential mass transfer problems.
Collapse
Affiliation(s)
- Maria Parau
- Department of Biochemical EngineeringUniversity College LondonLondonUK
| | - James Pullen
- Research and DevelopmentFUJIFILM Diosynth Biotechnologies (FDB)BillinghamUK
| | | |
Collapse
|
4
|
Beattie JW, Istrate A, Lu A, Marshall C, Rowland-Jones RC, Farys M, Kazarian SG, Byrne B. Causes of Industrial Protein A Column Degradation, Explored Using Raman Spectroscopy. Anal Chem 2022; 94:15703-15710. [DOI: 10.1021/acs.analchem.2c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- James W. Beattie
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
- Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Alena Istrate
- Biopharm Process Research, Medicine Development & Supply, GSK R&D, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | - Annabelle Lu
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Cameron Marshall
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Ruth C. Rowland-Jones
- Biopharm Process Research, Medicine Development & Supply, GSK R&D, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | - Monika Farys
- Biopharm Process Research, Medicine Development & Supply, GSK R&D, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | - Sergei G. Kazarian
- Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Parau M, Johnson TF, Pullen J, Bracewell DG. Analysis of fouling and breakthrough of process related impurities during depth filtration using confocal microscopy. Biotechnol Prog 2022; 38:e3233. [PMID: 35037432 PMCID: PMC9286597 DOI: 10.1002/btpr.3233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
Abstract
Titer improvement has driven process intensification in mAb manufacture. However, this has come with the drawback of high cell densities and associated process related impurities such as cell debris, host cell protein (HCP), and DNA. This affects the capacity of depth filters and can lead to carryover of impurities to protein A chromatography leading to early resin fouling. New depth filter materials provide the opportunity to remove more process related impurities at this early stage in the process. Hence, there is a need to understand the mechanism of impurity removal within these filters. In this work, the secondary depth filter Millistak+ X0HC (cellulose and diatomaceous earth) is compared with the X0SP (synthetic), by examining the breakthrough of DNA and HCP. Additionally, a novel method was developed to image the location of key impurities within the depth filter structure under a confocal microscope. Flux, tested at 75, 100, and 250 LMH was found to affect the maximal throughput based on the max pressure of 30 psi, but no significant changes were seen in the HCP and DNA breakthrough. However, a drop in cell culture viability, from 87% to 37%, lead to the DNA breakthrough at 10% decreasing from 81 to 55 L/m2 for X0HC and from 105 to 47 L/m2 for X0SP. The HCP breakthrough was not affected by cell culture viability or filter type. The X0SP filter has a 30%-50% higher max throughput depending on viability, which can be explained by the confocal imaging where the debris and DNA are distributed differently in the layers of the filter pods, with more of the second tighter layer being utilized in the X0SP.
Collapse
Affiliation(s)
- Maria Parau
- Department of Biochemical EngineeringUniversity College LondonLondonUK
| | - Thomas F. Johnson
- Department of Biochemical EngineeringUniversity College LondonLondonUK
| | | | | |
Collapse
|
6
|
Wu S, Cui T, Zhang Z, Li Z, Yang M, Zang Z, Li W. Real-time monitoring of the column chromatographic process of Phellodendri Chinensis Cortex part II: multivariate statistical process control based on near-infrared spectroscopy. NEW J CHEM 2022. [DOI: 10.1039/d2nj01781d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multivariate statistical process control has been successfully used for the real-time monitoring of the column chromatographic process of Phellodendri Chinensis Cortex.
Collapse
Affiliation(s)
- Sijun Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Tongcan Cui
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Zhiyong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Zhenzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| |
Collapse
|
7
|
Almeida A, Chau D, Coolidge T, El-Sabbahy H, Hager S, Jose K, Nakamura M, Voloshin A. Chromatographic capture of cells to achieve single stage clarification in recombinant protein purification. Biotechnol Prog 2021; 38:e3227. [PMID: 34854259 PMCID: PMC9286051 DOI: 10.1002/btpr.3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022]
Abstract
Recent advancements in cell culture engineering have allowed drug manufacturers to achieve higher productivity by driving higher product titers through cell line engineering and high‐cell densities. However, these advancements have shifted the burden to clarification and downstream processing where the difficulties now revolve around removing higher levels of process‐ and product‐related impurities. As a result, a lot of research efforts have turned to developing new approaches and technologies or process optimization to still deliver high quality biological products while controlling cost of goods. Here, we explored the impact of a novel single use technology employing chromatographic principle‐based clarification for a process‐intensified cell line technology. In this study, a 16% economic benefit ($/g) was observed using a single‐use chromatographic clarification compared to traditional single‐use clarification technology by improving the overall product cost through decreased operational complexity, higher loading capacity, increased product recovery, and higher impurity clearance. In the end, the described novel chromatographic approach significantly simplified and enhanced the cell culture fluid harvest unit operation by combining the reduction of insoluble and key soluble contaminants of the harvest fluid into a single stage.
Collapse
Affiliation(s)
- Aaron Almeida
- Manufacturing Process Optimization, Catalent Biologics, Madison, Wisconsin, USA
| | - David Chau
- Separation and Purification Sciences Division, 3M Company, Saint Paul, Minnesota, USA
| | - Thomas Coolidge
- Manufacturing Process Optimization, Catalent Biologics, Madison, Wisconsin, USA
| | - Hani El-Sabbahy
- Separation and Purification Sciences Division, 3M Company, Saint Paul, Minnesota, USA
| | - Steven Hager
- Manufacturing Process Optimization, Catalent Biologics, Madison, Wisconsin, USA
| | - Kevin Jose
- Manufacturing Process Optimization, Catalent Biologics, Madison, Wisconsin, USA
| | - Masa Nakamura
- Separation and Purification Sciences Division, 3M Company, Saint Paul, Minnesota, USA
| | - Alexei Voloshin
- Separation and Purification Sciences Division, 3M Company, Saint Paul, Minnesota, USA
| |
Collapse
|
8
|
Johnson TF, Jones K, Iacoviello F, Turner S, Jackson NB, Zourna K, Welsh JH, Shearing PR, Hoare M, Bracewell DG. Liposome Sterile Filtration Characterization via X-ray Computed Tomography and Confocal Microscopy. MEMBRANES 2021; 11:membranes11110905. [PMID: 34832134 PMCID: PMC8620169 DOI: 10.3390/membranes11110905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Two high resolution, 3D imaging techniques were applied to visualize and characterize sterilizing grade dual-layer filtration of liposomes, enabling membrane structure to be related with function and performance. Two polyethersulfone membranes with nominal retention ratings of 650 nm and 200 nm were used to filter liposomes of an average diameter of 143 nm and a polydispersity index of 0.1. Operating conditions including differential pressure were evaluated. X-ray computed tomography at a pixel size of 63 nm was capable of resolving the internal geometry of each membrane. The respective asymmetry and symmetry of the upstream and downstream membranes could be measured, with pore network modeling used to identify pore sizes as a function of distance through the imaged volume. Reconstructed 3D digital datasets were the basis of tortuous flow simulation through each porous structure. Confocal microscopy visualized liposome retention within each membrane using fluorescent dyes, with bacterial challenges also performed. It was found that increasing pressure drop from 0.07 MPa to 0.21 MPa resulted in differing fluorescent retention profiles in the upstream membrane. These results highlighted the capability for complementary imaging approaches to deepen understanding of liposome sterilizing grade filtration.
Collapse
Affiliation(s)
- Thomas F. Johnson
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK; (T.F.J.); (M.H.)
| | - Kyle Jones
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - Francesco Iacoviello
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (F.I.); (P.R.S.)
| | - Stephen Turner
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - Nigel B. Jackson
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - Kalliopi Zourna
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - John H. Welsh
- Pall Corporation 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK; (K.J.); (S.T.); (N.B.J.); (K.Z.); (J.H.W.)
| | - Paul R. Shearing
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (F.I.); (P.R.S.)
| | - Mike Hoare
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK; (T.F.J.); (M.H.)
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK; (T.F.J.); (M.H.)
- Correspondence: ; Tel.: +44-20-7679-2374
| |
Collapse
|
9
|
Johnson T, Iacoviello F, Hayden D, Welsh J, Levison P, Shearing P, Bracewell D. Packed bed compression visualisation and flow simulation using an erosion-dilation approach. J Chromatogr A 2020; 1611:460601. [DOI: 10.1016/j.chroma.2019.460601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 02/08/2023]
|
10
|
Pathak M, Lintern K, Johnson TF, Nair AM, Mukherji S, Bracewell DG, Rathore AS. Analytical tools for monitoring changes in physical and chemical properties of chromatography resin upon reuse. Electrophoresis 2019; 40:3074-3083. [DOI: 10.1002/elps.201900089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Mili Pathak
- Department of Chemical EngineeringIndian Institute of Technology New Delhi India
| | - Katherine Lintern
- Department of Biochemical EngineeringUniversity College London London United Kingdom
| | - Thomas F. Johnson
- Department of Biochemical EngineeringUniversity College London London United Kingdom
| | - Aswathy M. Nair
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay India
| | - Soumyo Mukherji
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay India
| | - Daniel G. Bracewell
- Department of Biochemical EngineeringUniversity College London London United Kingdom
| | - Anurag S. Rathore
- Department of Chemical EngineeringIndian Institute of Technology New Delhi India
| |
Collapse
|
11
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
12
|
Nweke MC, Rathore AS, Bracewell DG. Lifetime and Aging of Chromatography Resins during Biopharmaceutical Manufacture. Trends Biotechnol 2018; 36:992-995. [DOI: 10.1016/j.tibtech.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
|
13
|
Three dimensional characterisation of chromatography bead internal structure using X-ray computed tomography and focused ion beam microscopy. J Chromatogr A 2018; 1566:79-88. [DOI: 10.1016/j.chroma.2018.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
|
14
|
Nweke MC, Turmaine M, McCartney RG, Bracewell DG. Drying techniques for the visualisation of agarose-based chromatography media by scanning electron microscopy. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Mauryn C. Nweke
- Department of Biochemical Engineering; University College London; London United Kingdom
| | - Mark Turmaine
- Division of Biosciences; University College London; London United Kingdom
| | | | - Daniel G. Bracewell
- Department of Biochemical Engineering; University College London; London United Kingdom
| |
Collapse
|
15
|
Pathak M, Rathore AS. Mechanistic understanding of fouling of protein A chromatography resin. J Chromatogr A 2016; 1459:78-88. [DOI: 10.1016/j.chroma.2016.06.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
|
16
|
Lintern K, Pathak M, Smales CM, Howland K, Rathore A, Bracewell DG. Residual on column host cell protein analysis during lifetime studies of protein A chromatography. J Chromatogr A 2016; 1461:70-7. [DOI: 10.1016/j.chroma.2016.07.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
|
17
|
Boulet-Audet M, Kazarian SG, Byrne B. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies. Sci Rep 2016; 6:30526. [PMID: 27470880 PMCID: PMC4965771 DOI: 10.1038/srep30526] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022] Open
Abstract
In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.
Collapse
Affiliation(s)
- Maxime Boulet-Audet
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
18
|
Elich T, Iskra T, Daniels W, Morrison CJ. High throughput determination of cleaning solutions to prevent the fouling of an anion exchange resin. Biotechnol Bioeng 2015; 113:1251-9. [DOI: 10.1002/bit.25881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/23/2015] [Accepted: 11/05/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Elich
- EMD Millipore Corporation; 900 Middlesex Turnpike Billerica Massachusetts 01821
| | | | | | | |
Collapse
|
19
|
Zhang S, Xu K, Daniels W, Salm J, Glynn J, Martin J, Gallo C, Godavarti R, Carta G. Structural and functional characteristics of virgin and fouled Protein A MabSelect resin cycled in a monoclonal antibody purification process. Biotechnol Bioeng 2015; 113:367-75. [DOI: 10.1002/bit.25708] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/26/2015] [Accepted: 07/10/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Shaojie Zhang
- Department of Chemical Engineering; University of Virginia; Charlottesville Virginia 22904
| | - Kerui Xu
- Department of Chemistry; University of Virginia; Charlottesville Virginia
| | | | | | | | | | | | | | - Giorgio Carta
- Department of Chemical Engineering; University of Virginia; Charlottesville Virginia 22904
| |
Collapse
|