1
|
Choe H, Antee T, Ge X. Substrate derived sequences act as subsite-blocking motifs in protease inhibitory antibodies. Protein Sci 2023; 32:e4691. [PMID: 37278099 PMCID: PMC10285753 DOI: 10.1002/pro.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Proteases are involved in many physiologic processes, and dysregulated proteolysis is basis of a variety of diseases. Specific inhibition of pathogenetic proteases via monoclonal antibodies therefore holds significant therapeutic promise. Inspired by the competitive mechanism utilized by many naturally occurring and man-made protease inhibitors, we hypothesized that substrate-like peptide sequences can act as protease subsite blocking motifs if they occupy only one side of the reaction center. To test this hypothesis, a degenerate codon library representing MMP-14 substrate profiles at P1-P5' positions was constructed in the context of an anti-MMP-14 Fab by replacing its inhibitory motif in CDR-H3 with MMP-14 substrate repertoires. After selection for MMP-14 active-site binders by phage panning, results indicated that diverse substrate-like sequences conferring antibodies inhibitory potencies were enriched in the isolated clones. Optimal residues at each of P1-P5' positions were then identified, and the corresponding mutation combinations showed improved characteristics as effective inhibitors of MMP-14. Insights on efficient library designs for inhibitory peptide motifs were further discussed. Overall, this study proved the concept that substrate-derived sequences were able to behave as the inhibitory motifs in protease-specific antibodies. With accumulating data available on protease substrate profiles, we expect the approach described here can be broadly applied to facilitate the generation of antibody inhibitors targeting biomedically important proteases.
Collapse
Affiliation(s)
- Hyunjun Choe
- Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
- Present address:
Arrowhead PharmaceuticalsMadisonWIUSA
| | - Tara Antee
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| | - Xin Ge
- Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| |
Collapse
|
2
|
Yu W, Lin H, Wang Y, He X, Chen N, Sun K, Lo D, Cheng B, Yeung C, Tan J, Di Carlo D, Emaminejad S. A ferrobotic system for automated microfluidic logistics. Sci Robot 2020; 5:5/39/eaba4411. [DOI: 10.1126/scirobotics.aba4411] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/05/2020] [Indexed: 01/14/2023]
Abstract
Automated technologies that can perform massively parallelized and sequential fluidic operations at small length scales can resolve major bottlenecks encountered in various fields, including medical diagnostics, -omics, drug development, and chemical/material synthesis. Inspired by the transformational impact of automated guided vehicle systems on manufacturing, warehousing, and distribution industries, we devised a ferrobotic system that uses a network of individually addressable robots, each performing designated micro-/nanofluid manipulation-based tasks in cooperation with other robots toward a shared objective. The underlying robotic mechanism facilitating fluidic operations was realized by addressable electromagnetic actuation of miniature mobile magnets that exert localized magnetic body forces on aqueous droplets filled with biocompatible magnetic nanoparticles. The contactless and high-strength nature of the actuation mechanism inherently renders it rapid (~10 centimeters/second), repeatable (>10,000 cycles), and robust (>24 hours). The robustness and individual addressability of ferrobots provide a foundation for the deployment of a network of ferrobots to carry out cross-collaborative logistics efficiently. These traits, together with the reconfigurability of the system, were exploited to devise and integrate passive/active advanced functional components (e.g., droplet dispensing, generation, filtering, and merging), enabling versatile system-level functionalities. By applying this ferrobotic system within the framework of a microfluidic architecture, the ferrobots were tasked to work cross-collaboratively toward the quantification of active matrix metallopeptidases (a biomarker for cancer malignancy and inflammation) in human plasma, where various functionalities converged to achieve a fully automated assay.
Collapse
|
3
|
Genomic evidence for shared common ancestry of East African hunting-gathering populations and insights into local adaptation. Proc Natl Acad Sci U S A 2019; 116:4166-4175. [PMID: 30782801 DOI: 10.1073/pnas.1817678116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Anatomically modern humans arose in Africa ∼300,000 years ago, but the demographic and adaptive histories of African populations are not well-characterized. Here, we have generated a genome-wide dataset from 840 Africans, residing in western, eastern, southern, and northern Africa, belonging to 50 ethnicities, and speaking languages belonging to four language families. In addition to agriculturalists and pastoralists, our study includes 16 populations that practice, or until recently have practiced, a hunting-gathering (HG) lifestyle. We observe that genetic structure in Africa is broadly correlated not only with geography, but to a lesser extent, with linguistic affiliation and subsistence strategy. Four East African HG (EHG) populations that are geographically distant from each other show evidence of common ancestry: the Hadza and Sandawe in Tanzania, who speak languages with clicks classified as Khoisan; the Dahalo in Kenya, whose language has remnant clicks; and the Sabue in Ethiopia, who speak an unclassified language. Additionally, we observed common ancestry between central African rainforest HGs and southern African San, the latter of whom speak languages with clicks classified as Khoisan. With the exception of the EHG, central African rainforest HGs, and San, other HG groups in Africa appear genetically similar to neighboring agriculturalist or pastoralist populations. We additionally demonstrate that infectious disease, immune response, and diet have played important roles in the adaptive landscape of African history. However, while the broad biological processes involved in recent human adaptation in Africa are often consistent across populations, the specific loci affected by selective pressures more often vary across populations.
Collapse
|
4
|
Wang J, Boddupalli A, Koelbl J, Nam DH, Ge X, Bratlie KM, Schneider IC. Degradation and Remodeling of Epitaxially Grown Collagen Fibrils. Cell Mol Bioeng 2019; 12:69-84. [PMID: 31007771 PMCID: PMC6472930 DOI: 10.1007/s12195-018-0547-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION— The extracellular matrix (ECM) in the tumor microenvironment contains high densities of collagen that are highly aligned, resulting in directional migration called contact guidance that facilitates efficient migration out of the tumor. Cancer cells can remodel the ECM through traction force controlled by myosin contractility or proteolytic activity controlled by matrix metalloproteinase (MMP) activity, leading to either enhanced or diminished contact guidance. METHODS— Recently, we have leveraged the ability of mica to epitaxially grow aligned collagen fibrils in order to assess contact guidance. In this article, we probe the mechanisms of remodeling of aligned collagen fibrils on mica by breast cancer cells. RESULTS— We show that cells that contact guide with high fidelity (MDA-MB-231 cells) exert more force on the underlying collagen fibrils than do cells that contact guide with low fidelity (MTLn3 cells). These high traction cells (MDA-MB-231 cells) remodel collagen fibrils over hours, pulling so hard that the collagen fibrils detach from the surface, effectively delaminating the entire contact guidance cue. Myosin or MMP inhibition decreases this effect. Interestingly, blocking MMP appears to increase the alignment of cells on these substrates, potentially allowing the alignment through myosin contractility to be uninhibited. Finally, amplification or dampening of contact guidance with respect to a particular collagen fibril organization is seen under different conditions. CONCLUSIONS— Both myosin II contractility and MMP activity allow MDA-MB-231 cells to remodel and eventually destroy epitaxially grown aligned collagen fibrils.
Collapse
Affiliation(s)
- Juan Wang
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Anuraag Boddupalli
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Joseph Koelbl
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Dong Hyun Nam
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Xin Ge
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Kaitlin M. Bratlie
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Materials Science and Engineering, Iowa State University, Ames, IA USA
| | - Ian C. Schneider
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA USA
| |
Collapse
|
5
|
Nam DH, Lee KB, Ge X. Functional Production of Catalytic Domains of Human MMPs in Escherichia coli Periplasm. Methods Mol Biol 2018; 1731:65-72. [PMID: 29318544 DOI: 10.1007/978-1-4939-7595-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to their central roles in tumor growth and invasion, milligram-level amounts of active MMPs are frequently required for cancer research and development of chemical or biological MMP inhibitors. Here we describe methods for functional production of catalytic domains of MMPs (cdMMPs) in E. coli periplasm without refolding or activation process. We demonstrate applications of this straightforward approach for cdMMP-9, cdMMP-14, and cdMMP-14 mutants.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Rodriguez C, Nam DH, Kruchowy E, Ge X. Efficient Antibody Assembly in E. coli Periplasm by Disulfide Bond Folding Factor Co-expression and Culture Optimization. Appl Biochem Biotechnol 2017; 183:520-529. [PMID: 28488120 DOI: 10.1007/s12010-017-2502-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/01/2017] [Indexed: 01/20/2023]
Abstract
Molecular chaperones and protein folding factors of bacterial periplasmic space play important roles in assisting disulfide bond formation and proper protein folding. In this study, effects of disulfide bond protein (Dsb) families were investigated on assembly of 3F3 Fab, an antibody inhibitor targeting matrix metalloproteinase-14 (MMP-14). By optimizing DsbA/C co-expression, promoter for 3F3 Fab, host strains, and culture media and conditions, a high yield of 30-mg purified 3F3 Fab per liter culture was achieved. Produced 3F3 Fab exhibited binding affinity of 34 nM and inhibition potency of 970 nM. This established method of DsbA/C co-expression can be applied to produce other important disulfide bond-dependent recombinant proteins in E. coli periplasm.
Collapse
Affiliation(s)
- Carlos Rodriguez
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Xencor Inc., 111 W Lemon Ave., Monrovia, CA, 91016, USA
| | - Evan Kruchowy
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
7
|
Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc Natl Acad Sci U S A 2016; 113:14970-14975. [PMID: 27965386 DOI: 10.1073/pnas.1609375114] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteases are frequent pharmacological targets, and their inhibitors are valuable drugs in multiple pathologies. The catalytic mechanism and the active-site fold, however, are largely conserved among the protease classes, making the development of the selective inhibitors exceedingly challenging. In our departure from the conventional strategies, we reviewed the structure of known camelid inhibitory antibodies, which block enzyme activities via their unusually long, convex-shaped paratopes. We synthesized the human Fab antibody library (over 1.25 × 109 individual variants) that carried the extended, 23- to 27-residue, complementarity-determining region (CDR)-H3 segments. As a proof of principle, we used the catalytic domain of matrix metalloproteinase-14 (MMP-14), a promalignant protease and a drug target in cancer, as bait. In our screens, we identified 20 binders, of which 14 performed as potent and selective inhibitors of MMP-14 rather than as broad-specificity antagonists. Specifically, Fab 3A2 bound to MMP-14 in the vicinity of the active pocket with a high 4.8 nM affinity and was similarly efficient (9.7 nM) in inhibiting the protease cleavage activity. We suggest that the convex paratope antibody libraries described here could be readily generalized to facilitate the design of the antibody inhibitors to many additional enzymes.
Collapse
|
8
|
Nam DH, Ge X. Direct production of functional matrix metalloproteinase--14 without refolding or activation and its application for in vitro inhibition assays. Biotechnol Bioeng 2015; 113:717-23. [PMID: 26416249 DOI: 10.1002/bit.25840] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/05/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
Human matrix metalloproteinase (MMP)-14, a membrane-bound zinc endopeptidase, is one of the most important cancer targets because it plays central roles in tumor growth and invasion. Large amounts of active MMP-14 are required for cancer research and the development of chemical or biological MMP-14 inhibitors. Current methods of MMP-14 production through refolding and activation are labor-intensive, time-consuming, and often associated with low recovery rates, lot-to-lot variation and heterogeneous products. Here, we report direct production of the catalytic domain of MMP-14 in the periplasmic space of Escherichia coli. 0.5 mg/L of functional MMP-14 was produced without tedious refolding or problematic activation process. MMP-14 prepared by simple periplasmic treatment can be readily utilized to evaluate the potencies of chemical and antibody-based inhibitors. Furthermore, co-expression of both MMP-14 and antibody Fab fragments in the periplasm facilitated inhibitory antibody screening by avoiding purification of MMP-14 or Fabs. We expect this MMP-14 expression strategy can expedite the development of therapeutic drugs targeting MMPs with biological significance.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, 900 University Ave Riverside, Riverside, 92521, California
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, 900 University Ave Riverside, Riverside, 92521, California.
| |
Collapse
|
9
|
Haage A, Nam DH, Ge X, Schneider IC. Matrix metalloproteinase-14 is a mechanically regulated activator of secreted MMPs and invasion. Biochem Biophys Res Commun 2014; 450:213-8. [PMID: 24878529 DOI: 10.1016/j.bbrc.2014.05.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are extracellular matrix (ECM) degrading enzymes and have complex and specific regulation networks. This includes activation interactions, where one MMP family member activates another. ECM degradation and MMP activation can be initiated by several different stimuli including changes in ECM mechanical properties or intracellular contractility. These mechanical stimuli are known enhancers of metastatic potential. MMP-14 facilitates local ECM degradation and is well known as a major mediator of cell migration, angiogenesis and invasion. Recently, function blocking antibodies have been developed to specifically block MMP-14, providing a useful tool for research as well as therapeutic applications. Here we utilize a selective MMP-14 function blocking antibody to delineate the role of MMP-14 as an activator of other MMPs in response to changes in cellular contractility and ECM stiffness. Inhibition using function blocking antibodies reveals that MMP-14 activates soluble MMPs like MMP-2 and -9 under various mechanical stimuli in the pancreatic cancer cell line, Panc-1. In addition, inhibition of MMP-14 abates Panc-1 cell extension into 3D gels to levels seen with non-specific pan-MMP inhibitors at higher concentrations. This strengthens the case for MMP function blocking antibodies as more potent and specific MMP inhibition therapeutics.
Collapse
Affiliation(s)
- Amanda Haage
- Department of Genetics, Development and Cell Biology, Iowa State University, 1210 Molecular Biology Building, Ames, IA 50011-3260, United States; Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, 2018 Molecular Biology Building, Ames, IA 50011-3260, United States
| | - Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, United States
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, United States
| | - Ian C Schneider
- Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230, United States; Department of Genetics, Development and Cell Biology, Iowa State University, 1210 Molecular Biology Building, Ames, IA 50011-3260, United States.
| |
Collapse
|