1
|
Lei C, Guo X, Zhang M, Zhou X, Ding N, Ren J, Liu M, Jia C, Wang Y, Zhao J, Dong Z, Lu D. Regulating the metabolic flux of pyruvate dehydrogenase bypass to enhance lipid production in Saccharomyces cerevisiae. Commun Biol 2024; 7:1399. [PMID: 39462103 PMCID: PMC11513081 DOI: 10.1038/s42003-024-07103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
To achieve high efficiency in microbial cell factories, it is crucial to redesign central carbon fluxes to ensure an adequate supply of precursors for producing high-value compounds. In this study, we employed a multi-omics approach to rearrange the central carbon flux of the pyruvate dehydrogenase (PDH) bypass, thereby enhancing the supply of intermediate precursors, specifically acetyl-CoA. This enhancement aimed to improve the biosynthesis of acetyl-CoA-derived compounds, such as terpenoids and fatty acid-derived molecules, in Saccharomyces cerevisiae. Through transcriptomic and lipidomic analyses, we identified ALD4 as a key regulatory gene influencing lipid metabolism. Genetic validation demonstrated that overexpression of the mitochondrial acetaldehyde dehydrogenase (ALDH) gene ALD4 resulted in a 20.1% increase in lipid production. This study provides theoretical support for optimising the performance of S. cerevisiae as a "cell factory" for the production of commercial compounds.
Collapse
Affiliation(s)
- Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China.
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meihan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajuan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China.
| |
Collapse
|
2
|
Ning X, Li F, Wei X, Zhu Z, You C. A Light-Powered In Vitro Synthetic Enzymatic Biosystem for the Synthesis of 3-Hydroxypropionic Acid via CO 2 Fixation. ACS Synth Biol 2024; 13:2611-2620. [PMID: 39092606 DOI: 10.1021/acssynbio.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
3-Hydroxypropionic acid (3-HP) is a highly sought-after platform chemical serving as a precursor to a variety of high value-added chemical products. In this study, we designed and constructed a novel light-powered in vitro synthetic enzymatic biosystem comprising acetyl-CoA ligase, acetyl-CoA carboxylase, malonyl-CoA reductase, and phosphotransferase to efficiently produce 3-HP through CO2 fixation from acetate, a cost-effective and readily available substrate. The system employed natural thylakoid membranes (TMs) for the regeneration of adenosine triphosphate and nicotinamide adenine dinucleotide phosphate. Comprehensive investigations were conducted on the effects of buffer solutions, substrate concentrations, enzyme loading levels, and TMs loading levels to optimize the yield of 3-HP. Following optimization, a production of 0.46 mM 3-HP was achieved within 6 h from an initial 0.5 mM acetate, with a yield nearing 92%. This work underscores the simplicity of 3-HP production via an in vitro biomanufacturing platform and highlights the potential for incorporating TMs as a sustainable and environmentally friendly approach in biomanufacturing processes.
Collapse
Affiliation(s)
- Xiao Ning
- University of Chinese Academy of Sciences, Beijing 100049, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Fei Li
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xinlei Wei
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhiguang Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Chun You
- University of Chinese Academy of Sciences, Beijing 100049, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
3
|
Das M, Ghosh A. Molecular insights into mutation-induced conformational changes in Acetyl CoA Carboxylase for improved activity. Int J Biol Macromol 2024; 256:128417. [PMID: 38016612 DOI: 10.1016/j.ijbiomac.2023.128417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Acetyl-CoA carboxylase (ACCase) is crucial for fatty acid biosynthesis and has potential applications in lipid accumulation and advanced biofuel production. Mutations like S659A and S1157A in Saccharomyces cerevisiae ACCase remove the Snf1-regulation sites, resulting in increased enzyme activity with positive effects on the fatty acid pathway. However, the molecular-level understanding of these mutations on ACCase activity remains unexplored. Here, molecular dynamics simulation was conducted to investigate the mutations-induced conformational changes in S. cerevisiae ACCase. The wild-type ACCase was observed to have significant deviation in structure compared to mutant. Additionally, fluctuation of residues associated with biotin binding and Snf1-recognition were reduced in mutant compared to wild-type. Furthermore, the wild-type demonstrated opening motions of the domains, whereas the mutant showed closing movement. The mutation-induced conformational changes were analysed using network parameters, i.e., cliques/communities. The mutant showed an increase in sizes of several communities in AC3-AC4-AC5 domains leading to rigidification. Also, a new community was added in AC1-BT in the mutant, which suggested a substantial shift in the protein conformation. Thus, this study provides a theoretical understanding of the increased activity of ACCase due to two mutations, which can pave the path for enzyme engineering towards improved fatty acid-based fuel and chemical production.
Collapse
Affiliation(s)
- Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
4
|
Li X, Gadar-Lopez AE, Chen L, Jayachandran S, Cruz-Morales P, Keasling JD. Mining natural products for advanced biofuels and sustainable bioproducts. Curr Opin Biotechnol 2023; 84:103003. [PMID: 37769513 DOI: 10.1016/j.copbio.2023.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 10/03/2023]
Abstract
Recently, there has been growing interest in the sustainable production of biofuels and bioproducts derived from renewable sources. Natural products, the largest and more structurally diverse group of metabolites, hold significant promise as sources for such bio-based products. However, there are two primary challenges in harnessing natural products' potential: precise mining of biosynthetic gene clusters (BGCs) that can be used as scaffolds or bioparts and their functional expression for biofuel and bioproduct manufacture. In this review, we explore recent advances in the development of bioinformatic tools for BGC mining and the manipulation of various hosts for natural product-based biofuels and bioproducts manufacture. Moreover, we discuss potential strategies for expanding the chemical diversity of biofuels and bioproducts and enhancing their overall yield.
Collapse
Affiliation(s)
- Xiaowei Li
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Adrian E Gadar-Lopez
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Ling Chen
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Sidharth Jayachandran
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark.
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark; Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA 94720, USA; Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
5
|
Dong G, Xu S, Shi S. De Novo Biosynthesis of Free Vaccenic Acid with a Low Content of Oleic Acid in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16204-16211. [PMID: 37856078 DOI: 10.1021/acs.jafc.3c04793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Omega-7 (ω-7) fatty acids have potential application in the fields of nutraceutical, agricultural, and food industry. The natural ω-7 fatty acids are currently from plants or vegetable oils, which are unsustainable and limited by the availability of plant sources. Here, we developed an innovative biosynthetic route to produce vaccenic acid (C18:1 ω-7) while minimizing oleic acid (C18:1 ω-9) content in Saccharomyces cerevisiae. We have engineered S. cerevisiaeto produce C18:1 ω-7 by expressing a fatty acid elongase from Rattus norvegicus. To reduce the content of C18:1 ω-9, the endogenous desaturase Ole1 was replaced by the desaturase, which has specific activity on palmitoyl-coenzyme A (C16:0-CoA). Finally, the production of free C18:1 ω-7 was improved by optimizing the source of cytochrome b5 and overexpressing endoplasmic reticulum chaperones. After combining these strategies, the yield of C18:1 ω-7 was increased from 0 to 9.3 mg/g DCW and C18:1 ω-9 was decreased from 25.2 mg/g DCW to 1.6 mg/g DCW. This work shows a de novo synthetic pathway to produce the highest amount of free C18:1 ω-7 with a low content of C18:1 ω-9 in S. cerevisiae.
Collapse
Affiliation(s)
- Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| |
Collapse
|
6
|
Wang D, He Z, Xia H, Huang J, Jin Y, Zhou R, Hao L, Wu C. Engineering acetyl-CoA metabolism to enhance stress tolerance of yeast by regulating membrane functionality. Food Microbiol 2023; 115:104322. [PMID: 37567632 DOI: 10.1016/j.fm.2023.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 08/13/2023]
Abstract
Zygosaccharomyces rouxii has excellent fermentation performance and good tolerance to osmotic stress. Acetyl-CoA is a crucial intermediate precursor in the central carbon metabolic pathway of yeast. This study investigated the effect of engineering acetyl-CoA metabolism on the membrane functionality and stress tolerance of yeast. Firstly, exogenous supplementation of acetyl-CoA improved the biomass and the ability of unsaturated fatty acid synthesis of Z. rouxii under salt stress. Q-PCR results suggested that the gene ACSS (coding acetyl-CoA synthetase) was significantly up-expressed. Subsequently, the gene ACSS from Z. rouxii was transformed and heterologously expressed in S. cerevisiae. The recombinant cells exhibited better multiple stress (salt, acid, heat, and cold) tolerance, higher fatty acid contents, membrane integrity, and fluidity. Our findings may provide a suitable means to enhance the stress tolerance and fermentation efficiency of yeast under harsh fermentation environments.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Huan Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Lin P, Fu Z, Liu X, Liu C, Bai Z, Yang Y, Li Y. Direct Utilization of Peroxisomal Acetyl-CoA for the Synthesis of Polyketide Compounds in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:1599-1607. [PMID: 37172280 DOI: 10.1021/acssynbio.2c00678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polyketides are a class of natural products with many applications but are mainly appealing as pharmaceuticals. Heterologous production of polyketides in the yeast Saccharomyces cerevisiae has been widely explored because of the many merits of this model eukaryotic microorganism. Although acetyl-CoA and malonyl-CoA, the precursors for polyketide synthesis, are distributed in several yeast subcellular organelles, only cytosolic synthesis of polyketides has been pursued in previous studies. In this study, we investigate polyketide synthesis by directly using acetyl-CoA in the peroxisomes of yeast strain CEN.PK2-1D. We first demonstrate that the polyketide flaviolin can be synthesized in this organelle upon peroxisomal colocalization of native acetyl-CoA carboxylase and 1,3,6,8-tetrahydroxynaphthalene synthase (a type III polyketide synthase). Next, using the synthesis of the polyketide triacetic acid lactone as an example, we show that (1) a new peroxisome targeting sequence, pPTS1, is more effective than the previously reported ePTS1 for peroxisomal polyketide synthesis; (2) engineering peroxisome proliferation is effective to boost polyketide production; and (3) peroxisomes provide an additional acetyl-CoA reservoir and extra space to accommodate enzymes so that utilizing the peroxisomal pathway plus the cytosolic pathway produces more polyketide than the cytosolic pathway alone. This research lays the groundwork for more efficient heterologous polyketide biosynthesis using acetyl-CoA pools in subcellular organelles.
Collapse
Affiliation(s)
- Pingxin Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Zhenhao Fu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Chunli Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| |
Collapse
|
8
|
Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnol Adv 2022; 61:108045. [DOI: 10.1016/j.biotechadv.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
9
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ, Huang H. Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnol Adv 2022; 59:107984. [DOI: 10.1016/j.biotechadv.2022.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022]
|
10
|
Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8050427. [PMID: 35628683 PMCID: PMC9144191 DOI: 10.3390/jof8050427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial lipids have been a hot topic in the field of metabolic engineering and synthetic biology due to their increased market and important applications in biofuels, oleochemicals, cosmetics, etc. This review first compares the popular hosts for lipid production and explains the four modules for lipid synthesis in yeast, including the fatty acid biosynthesis module, lipid accumulation module, lipid sequestration module, and fatty acid modification module. This is followed by a summary of metabolic engineering strategies that could be used for enhancing each module for lipid production. In addition, the efforts being invested in improving the production of value-added fatty acids in engineered yeast, such as cyclopropane fatty acid, ricinoleic acid, gamma linoleic acid, EPA, and DHA, are included. A discussion is further made on the potential relationships between lipid pathway engineering and consequential changes in cellular physiological properties, such as cell membrane integrity, intracellular reactive oxygen species level, and mitochondrial membrane potential. Finally, with the rapid development of synthetic biology tools, such as CRISPR genome editing tools and machine learning models, this review proposes some future trends that could be employed to engineer yeast with enhanced intracellular lipid production while not compromising much of its cellular health.
Collapse
|
11
|
Su B, Lai P, Yang F, Li A, Deng MR, Zhu H. Engineering a Balanced Acetyl Coenzyme A Metabolism in Saccharomyces cerevisiae for Lycopene Production through Rational and Evolutionary Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4019-4029. [PMID: 35319878 DOI: 10.1021/acs.jafc.2c00531] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Saccharomyces cerevisiae is increasingly being used for the production of chemicals derived from acetyl coenzyme A (acetyl-CoA). However, the inadequate supply of cytosolic acetyl-CoA often leads to low yields. Here, we developed a novel strategy for balancing acetyl-CoA metabolism and increasing the amount of the downstream product. First, the combination of acetaldehyde dehydrogenase (eutE) and acetoacetyl-CoA thiolase (AtoB) was optimized to redirect the acetyl-CoA flux toward the target pathway, with a 21-fold improvement in mevalonic acid production. Second, pathway engineering and evolutionary engineering were conducted to attenuate the growth deficiency, and a 10-fold improvement of the maximum productivity was achieved. Third, acetyl-CoA carboxylase (ACC1) was dynamically downregulated as the complementary acetyl-CoA pathway, and the yield was improved more than twofold. Fourth, the most efficient and complementary acetyl-CoA pathways were combined, and the final strain produced 68 mg/g CDW lycopene, which was among the highest yields reported in S. cerevisiae. This study demonstrates a new method of producing lycopene products by regulating acetyl-CoA metabolism.
Collapse
Affiliation(s)
- Buli Su
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Peixuan Lai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Fan Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Anzhang Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
12
|
Global profiling of regulatory elements in the histone benzoylation pathway. Nat Commun 2022; 13:1369. [PMID: 35296687 PMCID: PMC8927147 DOI: 10.1038/s41467-022-29057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Lysine benzoylation (Kbz) is a recently discovered post-translational modification associated with active transcription. However, the proteins for maintaining and interpreting Kbz and the physiological roles of Kbz remain elusive. Here, we systematically characterize writer, eraser, and reader proteins of histone Kbz in S. cerevisiae using proteomic, biochemical, and structural approaches. Our study identifies 27 Kbz sites on yeast histones that can be regulated by cellular metabolic states. The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex and NAD+-dependent histone deacetylase Hst2 could function as the writer and eraser of histone Kbz, respectively. Crystal structures of Hst2 complexes reveal the molecular basis for Kbz recognition and catalysis by Hst2. In addition, we demonstrate that a subset of YEATS domains and bromodomains serve as Kbz readers, and structural analyses reveal how YEATS and bromodomains recognize Kbz marks. Moreover, the proteome-wide screening of Kbz-modified proteins identifies 207 Kbz sites on 149 non-histone proteins enriched in ribosome biogenesis, glycolysis/gluconeogenesis, and rRNA processing pathways. Our studies identify regulatory elements for the Kbz pathway and provide a framework for dissecting the biological functions of lysine benzoylation. Lysine benzoylation (Kbz) is a recently discovered histone modification. Here, the authors characterize writers, erasers and readers of histone Kbz in S. cerevisiae and identify non-histone proteins bearing Kbz, laying foundations to dissect the roles of Kbz in diverse cellular processes.
Collapse
|
13
|
Pereira H, Azevedo F, Domingues L, Johansson B. Expression of Yarrowia lipolytica acetyl-CoA carboxylase in Saccharomyces cerevisiae and its effect on in-vivo accumulation of Malonyl-CoA. Comput Struct Biotechnol J 2022; 20:779-787. [PMID: 36284710 PMCID: PMC9582701 DOI: 10.1016/j.csbj.2022.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Novel S. cerevisiae strain with tetracycline repressible ACC1 promoter. Functional expression of Y. lipolytica ACC1 in S. cerevisiae. Higher malonyl-CoA concentration achieved with Y. lipolytica ACC1 gene. S. cerevisiae Acc1p seems to interact with the heterologous Y. lipolytica Acc1p.
Malonyl-CoA is an energy-rich molecule formed by the ATP-dependent carboxylation of acetyl coenzyme A catalyzed by acetyl-CoA carboxylase. This molecule is an important precursor for many biotechnologically interesting compounds such as flavonoids, polyketides, and fatty acids. The yeast Saccharomyces cerevisiae remains one of the preferred cell factories, but has a limited capacity to produce malonyl-CoA compared to oleaginous organisms. We developed a new S. cerevisiae strain with a conditional allele of ACC1, the essential acetyl-CoA carboxylase (ACC) gene, as a tool to test heterologous genes for complementation. Yarrowia lipolytica is an oleaginous yeast with a higher capacity for lipid production than S. cerevisiae, possibly due to a higher capacity to produce malonyl-CoA. Measuring relative intracellular malonyl-CoA levels with an in-vivo biosensor confirmed that expression of Y. lipolytica ACC in S. cerevisiae leads to a higher accumulation of malonyl-CoA compared with overexpression of the native gene from an otherwise identical vector. The higher accumulation was generally accompanied by a decreased growth rate. Concomitant expression of both the homologous and heterologous ACC1 genes eliminated the growth defect, with a marginal reduction of malonyl-CoA accumulation.
Collapse
Affiliation(s)
- Humberto Pereira
- CBMA - Center of Molecular and Environmental Biology Engineering
| | - Flávio Azevedo
- CBMA - Center of Molecular and Environmental Biology Engineering
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Björn Johansson
- CBMA - Center of Molecular and Environmental Biology Engineering
- Corresponding author.
| |
Collapse
|
14
|
Zhang Q, Zeng W, Xu S, Zhou J. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2021; 342:125978. [PMID: 34598073 DOI: 10.1016/j.biortech.2021.125978] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Acetyl-CoA is a kind of important cofactor that is involved in many metabolic pathways. It serves as the precursor for many interesting commercial products, such as terpenes, flavonoids and anthraquinones. However, the insufficient supply of acetyl-CoA limits biosynthesis of its derived compounds in the intracellular. In this review, we outlined metabolic pathways involved in the catabolism and anabolism of acetyl-CoA, as well as some important derived products. We examined several strategies for the enhanced supply of acetyl-CoA, and provided insight into pathways that generate acetyl-CoA to balance metabolism, which can be harnessed to improve the titer, yield and productivities of interesting products in Saccharomyces cerevisiae and other eukaryotic microorganisms. We believe that peroxisomal fatty acid β-oxidation could be an attractive strategy for enhancing the supply of acetyl-CoA.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
15
|
Zhang X, Miao Q, Xu X, Ji B, Qu L, Wei Y. Developments in Fatty Acid-Derived Insect Pheromone Production Using Engineered Yeasts. Front Microbiol 2021; 12:759975. [PMID: 34858372 PMCID: PMC8632438 DOI: 10.3389/fmicb.2021.759975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
The use of traditional chemical insecticides for pest control often leads to environmental pollution and a decrease in biodiversity. Recently, insect sex pheromones were applied for sustainable biocontrol of pests in fields, due to their limited adverse impacts on biodiversity and food safety compared to that of other conventional insecticides. However, the structures of insect pheromones are complex, and their chemical synthesis is not commercially feasible. As yeasts have been widely used for fatty acid-derived pheromone production in the past few years, using engineered yeasts may be promising and sustainable for the low-cost production of fatty acid-derived pheromones. The primary fatty acids produced by Saccharomyces cerevisiae and other yeasts are C16 and C18, and it is also possible to rewire/reprogram the metabolic flux for other fatty acids or fatty acid derivatives. This review summarizes the fatty acid biosynthetic pathway in S. cerevisiae and recent progress in yeast engineering in terms of metabolic engineering and synthetic biology strategies to produce insect pheromones. In the future, insect pheromones produced by yeasts might provide an eco-friendly pest control method in agricultural fields.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Qin Miao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 2021; 12:5139. [PMID: 34446711 PMCID: PMC8390474 DOI: 10.1038/s41467-021-25233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.
Collapse
|
17
|
Zhang Q, Yu S, Lyu Y, Zeng W, Zhou J. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2 S)-Naringenin in Saccharomyces cerevisiae. ACS Synth Biol 2021; 10:1166-1175. [PMID: 33877810 DOI: 10.1021/acssynbio.1c00002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The (2S)-naringenin is an important natural flavonoid with several bioactive effects on human health. It is also a key precursor in the biosynthesis of other high value compounds. The production of (2S)-naringenin is significantly influenced by the acetyl-CoA available in the cytosol. In this study, we increased the acetyl-CoA supply via the β-oxidation of fatty acids in the peroxisomes of Saccharomyces cerevisiae. Several lipases from different sources and PEX11, FOX1, FOX2, and FOX3, the key genes of the fatty acid β-oxidation pathway, were overexpressed during the production of (2S)-naringenin in yeast. The level of acetyl-CoA was 0.205 nmol higher than that in the original strain and the production of (2S)-naringenin increased to 286.62 mg/g dry cell weight when PEX11 was overexpressed in S. cerevisiae strain L07. Remarkable (2S)-naringenin production (1129.44 mg/L) was achieved with fed-batch fermentation, with the highest titer reported in any microorganism. Our results demonstrated the use of fatty acid β-oxidation to increase the level of cytoplasmic acetyl-CoA and the production of its derivatives.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
Wernig F, Baumann L, Boles E, Oreb M. Production of octanoic acid in Saccharomyces cerevisiae: Investigation of new precursor supply engineering strategies and intrinsic limitations. Biotechnol Bioeng 2021; 118:3046-3057. [PMID: 34003487 DOI: 10.1002/bit.27814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 11/12/2022]
Abstract
The eight-carbon fatty acid octanoic acid (OA) is an important platform chemical and precursor of many industrially relevant products. Its microbial biosynthesis is regarded as a promising alternative to current unsustainable production methods. In Saccharomyces cerevisiae, the production of OA had been previously achieved by rational engineering of the fatty acid synthase. For the supply of the precursor molecule acetyl-CoA and of the redox cofactor NADPH, the native pyruvate dehydrogenase bypass had been harnessed, or the cells had been additionally provided with a pathway involving a heterologous ATP-citrate lyase. Here, we redirected the flux of glucose towards the oxidative branch of the pentose phosphate pathway and overexpressed a heterologous phosphoketolase/phosphotransacetylase shunt to improve the supply of NADPH and acetyl-CoA in a strain background with abolished OA degradation. We show that these modifications lead to an increased yield of OA during the consumption of glucose by more than 60% compared to the parental strain. Furthermore, we investigated different genetic engineering targets to identify potential factors that limit the OA production in yeast. Toxicity assays performed with the engineered strains suggest that the inhibitory effects of OA on cell growth likely impose an upper limit to attainable OA yields.
Collapse
Affiliation(s)
- Florian Wernig
- Department of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Leonie Baumann
- Department of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eckhard Boles
- Department of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mislav Oreb
- Department of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Awad G, Garnier A. Maximization of saturated fatty acids through the production of P450BM3 monooxygenase in the engineered Escherichia coli. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Zhang Y, Su M, Qin N, Nielsen J, Liu Z. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:226. [PMID: 33302960 PMCID: PMC7730738 DOI: 10.1186/s12934-020-01493-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. RESULTS Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake flask, which was 83.2% higher than the control strain YJZ08. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). CONCLUSIONS We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Mo Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
21
|
Li S, Zhang Q, Wang J, Liu Y, Zhao Y, Deng Y. Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 2020; 325:83-90. [PMID: 33278463 DOI: 10.1016/j.jbiotec.2020.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
To reduce dependence on petroleum, the biosynthesis of important chemicals from simple substrates using industrial microorganisms has attracted increased attention. Metabolic engineering of Saccharomyces cerevisiae offers a sustainable and flexible alternative for the production of various chemicals. As a key metabolic intermediate, malonyl-CoA is a precursor for many useful compounds. However, the productivity of malonyl-CoA derivatives is restricted by the low cellular level of malonyl-CoA and enzymatic performance. In this review, we focused on how to increase the intracellular malonyl-CoA level and summarize the recent advances in different metabolic engineering strategies for directing intracellular malonyl-CoA to the desired malonyl-CoA derivatives, including strengthening the malonyl-CoA supply, reducing malonyl-CoA consumption, and precisely controlling the intracellular malonyl-CoA level. These strategies provided new insights for further improving the synthesis of malonyl-CoA derivatives in microorganisms.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiyue Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
22
|
Wang M, Wei Y, Ji B, Nielsen J. Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production. Front Bioeng Biotechnol 2020; 8:594081. [PMID: 33178680 PMCID: PMC7594527 DOI: 10.3389/fbioe.2020.594081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/21/2020] [Indexed: 11/30/2022] Open
Abstract
Cocoa butter is extracted from cocoa beans, and it is mainly used as the raw material for the production of chocolate and cosmetics. Increased demands and insufficient cocoa plants led to a shortage of cocoa butter supply, and there is therefore much interesting in finding an alternative cocoa butter supply. However, the most valuable component of cocoa butter is rarely available in other vegetable oils. Saccharomyces cerevisiae is an important industrial host for production of chemicals, enzyme and pharmaceuticals. Advances in synthetical biology and metabolic engineering had enabled high-level of triacylglycerols (TAG) production in yeast, which provided possible solutions for cocoa butter equivalents (CBEs) production. Diverse engineering strategies focused on the fatty acid-producing pathway had been applied in S. cerevisiae, and the key enzymes determining the TAG structure were considered as the main engineering targets. Recent development in phytomics and multi-omics technologies provided clues to identify potential targeted enzymes, which are responsible for CBE production. In this review, we have summarized recent progress in identification of the key plant enzymes for CBE production, and discussed recent and future metabolic engineering and synthetic biology strategies for increased CBE production in S. cerevisiae.
Collapse
Affiliation(s)
- Mengge Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- BioInnovation Institute, Copenhagen, Denmark
| |
Collapse
|
23
|
Milke L, Marienhagen J. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Appl Microbiol Biotechnol 2020; 104:6057-6065. [PMID: 32385515 PMCID: PMC7316851 DOI: 10.1007/s00253-020-10643-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Malonyl-CoA is an important central metabolite serving as the basic building block for the microbial synthesis of many pharmaceutically interesting polyketides, but also fatty acid-derived compounds including biofuels. Especially Saccharomyces cerevisiae, Escherichia coli, and Corynebacterium glutamicum have been engineered towards microbial synthesis of such compounds in recent years. However, developed strains and processes often suffer from insufficient productivity. Usually, tightly regulated intracellular malonyl-CoA availability is regarded as the decisive bottleneck limiting overall product formation. Therefore, metabolic engineering towards improved malonyl-CoA availability is essential to design efficient microbial cell factories for the production of polyketides and fatty acid derivatives. This review article summarizes metabolic engineering strategies to improve intracellular malonyl-CoA formation in industrially relevant microorganisms and its impact on productivity and product range, with a focus on polyketides and other malonyl-CoA-dependent products.Key Points• Malonyl-CoA is the central building block of polyketide synthesis.• Increasing acetyl-CoA supply is pivotal to improve malonyl-CoA availability.• Improved acetyl-CoA carboxylase activity increases availability of malonyl-CoA.• Fatty acid synthesis as an ambivalent target to improve malonyl-CoA supply.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
24
|
Gao S, Lyu Y, Zeng W, Du G, Zhou J, Chen J. Efficient Biosynthesis of (2 S)-Naringenin from p-Coumaric Acid in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1015-1021. [PMID: 31690080 DOI: 10.1021/acs.jafc.9b05218] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
(2S)-Naringenin, a (2S)-flavanone, is widely used in the food, chemical, and pharmaceutical industries because of its diverse physiological activities. The production of (2S)-naringenin in microorganisms provides an ideal source that reduces the cost of the flavonoid. To achieve efficient production of (2S)-naringenin in Saccharomyces cerevisiae (S. cerevisiae), we constructed a biosynthetic pathway from p-coumaric acid, a cost-effective and more efficient precursor. The (2S)-naringenin synthesis pathway genes were integrated into the yeast genome to obtain a (2S)-naringenin production strain. After gene dosage experiments, the genes negatively regulating the shikimate pathway and inefficient chalcone synthase activity were verified as factors limiting (2S)-naringenin biosynthesis. With fed-batch process optimization of the engineered strain, the titer of (2S)-naringenin reached 648.63 mg/L from 2.5 g/L p-coumaric acid. Our results indicate that the constitutive production of (2S)-naringenin from p-coumaric acid in S. cerevisiae is highly promising.
Collapse
|
25
|
Jezierska S, Claus S, Ledesma-Amaro R, Van Bogaert I. Redirecting the lipid metabolism of the yeast Starmerella bombicola from glycolipid to fatty acid production. ACTA ACUST UNITED AC 2019; 46:1697-1706. [DOI: 10.1007/s10295-019-02234-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 01/06/2023]
Abstract
Abstract
Free fatty acids are basic oleochemicals implemented in a range of applications including surfactants, lubricants, paints, plastics, and cosmetics. Microbial fatty acid biosynthesis has gained much attention as it provides a sustainable alternative for petrol- and plant oil-derived chemicals. The yeast Starmerella bombicola is a microbial cell factory that naturally employs its powerful lipid metabolism for the production of the biodetergents sophorolipids (> 300 g/L). However, in this study we exploit the lipidic potential of S. bombicola and convert it from the glycolipid production platform into a free fatty acid cell factory. We used several metabolic engineering strategies to promote extracellular fatty acid accumulation which include blocking competing pathways (sophorolipid biosynthesis and β-oxidation) and preventing free fatty acid activation. The best producing mutant (Δcyp52m1Δfaa1Δmfe2) secreted 0.933 g/L (± 0.04) free fatty acids with a majority of C18:1 (43.8%) followed by C18:0 and C16:0 (40.0 and 13.2%, respectively). Interestingly, deletion of SbFaa1 in a strain still producing sophorolipids also resulted in 25% increased de novo sophorolipid synthesis (P = 0.0089) and when oil was supplemented to the same strain, a 50% increase in sophorolipid production was observed compared to the wild type (P = 0.03). We believe that our work is pivotal for the further development and exploration of S. bombicola as a platform for synthesis of environmentally friendly oleochemicals.
Collapse
Affiliation(s)
- Sylwia Jezierska
- grid.5342.0 0000 0001 2069 7798 Centre for Synthetic Biology, Department of Biotechnology Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Silke Claus
- grid.5342.0 0000 0001 2069 7798 Centre for Synthetic Biology, Department of Biotechnology Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Rodrigo Ledesma-Amaro
- grid.7445.2 0000 0001 2113 8111 Imperial College Centre for Synthetic Biology and Department of Bioengineering Imperial College London South Kensington Campus SW7 2AZ London UK
| | - Inge Van Bogaert
- grid.5342.0 0000 0001 2069 7798 Centre for Synthetic Biology, Department of Biotechnology Ghent University Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
26
|
Liu J, Zhang C, Lu W. Biosynthesis of Long-Chain ω-Hydroxy Fatty Acids by Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4545-4552. [PMID: 30929440 DOI: 10.1021/acs.jafc.9b00109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Long-chain hydroxy fatty acids (HFAs) are rare in nature but have many promising industrial applications. In this study, we developed a biosynthesis method to produce long-chain ω-hydroxy fatty acids. Through disruption of the acyl-CoA synthetases FAA1 and FAA4 and the fatty acyl-CoA oxidase POX1, a Saccharomyces cerevisiae strain was engineered to accumulate free fatty acids (FFAs). Subsequently, the cytochrome P450 monooxygenase CYP52M1 from Starmerella bombicola was introduced to convert FFAs to HFAs, leading to the production of C16 and C18 HFAs at the ω or ω-1 positions. Next, CYP52M1 was reconstituted with the homologous reductase S. bombicola CPR and the heterologous reductase Arabidopsis thaliana cytochrome P450 reductase. The results showed that the CYP52M1-AtCPR1 system significantly increased the hydroxylation in FFA. Moreover, a self-sufficient P450 enzyme system was constructed to achieve higher transformation efficiency. Finally, fed-batch fermentation yielded as much as 347 ± 9.2 mg/L ω-HFAs.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Wenyu Lu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Key Laboratory of System Bioengineering (Tianjin University) , Ministry of Education , Tianjin , 300072 , P. R. China
- SynBio Research Platform , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300350 , P. R. China
| |
Collapse
|
27
|
Metabolic engineering of Saccharomyces cerevisiae for efficient production of endocrocin and emodin. Metab Eng 2019; 54:212-221. [PMID: 31028901 DOI: 10.1016/j.ymben.2019.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 11/22/2022]
Abstract
The anthraquinones endocrocin and emodin are synthesized by a special class of type I NR-PKSs and a discrete MβL-TE. In this work, we first reconstituted a biosynthetic pathway of endocrocin and emodin in S. cerevisiae by combining enzymes from different sources. We functionally characterized a TE-less NR-PKS (SlACAS) and a MβL-TE (SlTE) from S. lycopersici as well as four orthologous MβL-TEs. SlACAS was coexpressed with different MβL-TEs in S. cerevisiae. SlACAS generated the highest amount of endocrocin when coupled with HyTE, the yield was 115.6% higher than that with the native SlTE. To accumulate more emodin, seven decarboxylases with high homology to HyDC were identified and introduced into the biosynthetic pathway. Among these orthologs, AfDC exhibited the highest catalytic activity and the conversion rate reached 98.6%. A double-point mutant acetyl-CoA carboxylase, ACC1S659A, S1157A, was further introduced to increase the production of malonyl-CoA as a precursor of these anthraquinones. The production of endocrocin (233.6 ± 20.3 mg/L) and emodin (253.2 ± 21.7 mg/L) then dramatically increased. We also optimized the carbon source in the medium and conducted fed-batch fermentation with the engineered strains. The titers of endocrocin and emodin obtained were 661.2 ± 50.5 mg/L and 528.4 ± 62.7 mg/L, respectively, which are higher than previously reported. In this work, by screening a small library of orthologous biosynthetic bricks, an efficient biosynthetic pathway of endocrocin and emodin was first created in S. cerevisiae. This study provides a novel metabolic engineering approach for optimization of the production of desired molecules.
Collapse
|
28
|
Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A. Improved lovastatin production by inhibiting (+)-geodin biosynthesis in Aspergillus terreus. N Biotechnol 2019; 52:19-24. [PMID: 30995533 DOI: 10.1016/j.nbt.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022]
Abstract
Lovastatin is widely prescribed to reduce elevated levels of cholesterol and prevent heart-related diseases. Cultivation of Aspergillus terreus (ATCC 20542) with carbohydrates or low-value feedstocks such as glycerol produces lovastatin as a secondary metabolite and (+)-geodin as a by-product. An A. terreus mutant strain was developed (gedCΔ) with a disrupted (+)-geodin biosynthesis pathway. The gedCΔ mutant was created by inserting the antibiotic marker hygromycin B (hyg) within the gedC gene that encodes emodin anthrone polyketide synthase (PKS), a primary gene responsible for initiating (+)-geodin biosynthesis. The effects of emodin anthrone PKS gene disruption on (+)-geodin and lovastatin biosynthesis and the production of the precursors acetyl-CoA and malonyl-CoA were investigated with cultures based on glycerol alone and in combination with lactose. The gedCΔ strain showed improved lovastatin production, particularly when cultivated on the glycerol-lactose mixture, increasing lovastatin production by 80% (113 mg/L) while simultaneously inhibiting (+)-geodin biosynthesis compared to the wild-type strain. This study thus shows that suppression of the (+)-geodin pathway increases lovastatin yield and demonstrates a practical approach of manipulating carbon flux by modulating enzyme activity.
Collapse
Affiliation(s)
- Hanan Hasan
- The University of Sydney, School of Chemical and Biomolecular Engineering, Australia; Universiti Putra Malaysia, Faculty of Food Science and Technology, Malaysia.
| | - Muhamad Hafiz Abd Rahim
- The University of Sydney, School of Chemical and Biomolecular Engineering, Australia; Universiti Putra Malaysia, Faculty of Food Science and Technology, Malaysia
| | - Leona Campbell
- The University of Sydney, School of Life and Environmental Sciences, Australia
| | - Dee Carter
- The University of Sydney, School of Life and Environmental Sciences, Australia
| | - Ali Abbas
- The University of Sydney, School of Chemical and Biomolecular Engineering, Australia
| | - Alejandro Montoya
- The University of Sydney, School of Chemical and Biomolecular Engineering, Australia
| |
Collapse
|
29
|
Tong X, Oh EK, Lee BH, Lee JK. Production of long-chain free fatty acids from metabolically engineered Rhodobacter sphaeroides heterologously producing periplasmic phospholipase A2 in dodecane-overlaid two-phase culture. Microb Cell Fact 2019; 18:20. [PMID: 30704481 PMCID: PMC6357386 DOI: 10.1186/s12934-019-1070-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/22/2019] [Indexed: 12/03/2022] Open
Abstract
Background Long-chain free fatty acids (FFAs) are a type of backbone molecule that can react with alcohol to produce biodiesels. Various microorganisms have become potent producers of FFAs. Efforts have focused on increasing metabolic flux to the synthesis of either neutral fat or fatty acyl intermediates attached to acyl carrier protein (ACP), which are the source of FFAs. Membrane lipids are also a source of FFAs. As an alternative way of producing FFAs, exogenous phospholipase may be used after heterologous production and localization in the periplasmic space. In this work, we examined whether Rhodobacter sphaeroides, which forms an intracytoplasmic membrane, can be used for long-chain FFA production using phospholipase. Results The recombinant R. sphaeroides strain Rs-A2, which heterologously produces Arabidopsis thaliana phospholipase A2 (PLA2) in the periplasm, excretes FFAs during growth. FFA productivity under photoheterotrophic conditions is higher than that observed under aerobic or semiaerobic conditions. When the biosynthetic enzymes for FA (β-ketoacyl-ACP synthase, FabH) and phosphatidate (1-acyl-sn-glycerol-3-phosphate acyltransferase, PlsC) were overproduced in Rs-A2, the FFA productivity of the resulting strain Rs-HCA2 was elevated, and the FFAs produced mainly consisted of long-chain FAs of cis-vaccenate, stearate, and palmitate in an approximately equimolar ratio. The high-cell-density culture of Rs-HCA2 with DMSO in two-phase culture with dodecane resulted in an increase of overall carbon substrate consumption, which subsequently leads to a large increase in FFA productivity of up to 2.0 g L−1 day−1. Overexpression of the genes encoding phosphate acyltransferase (PlsX) and glycerol-3-phosphate acyltransferase (PlsY), which catalyze the biosynthetic steps immediately upstream from PlsC, in Rs-HCA2 generated Rs-HXYCA2, which grew faster than Rs-HCA2 and showed an FFA productivity of 2.8 g L−1 day−1 with an FFA titer of 8.5 g L−1. Conclusion We showed that long-chain FFAs can be produced from metabolically engineered R. sphaeroides heterologously producing PLA2 in the periplasm. The FFA productivity was greatly increased by high-cell-density culture in two-phase culture with dodecane. This approach provides highly competitive productivity of long-chain FFAs by R. sphaeroides compared with other bacteria. This method may be applied to FFA production by other photosynthetic bacteria with similar differentiated membrane systems. Electronic supplementary material The online version of this article (10.1186/s12934-019-1070-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaomeng Tong
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, South Korea
| | - Eun Kyoung Oh
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, South Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, South Korea
| | - Jeong K Lee
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, South Korea.
| |
Collapse
|
30
|
Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 2018; 50:85-108. [DOI: 10.1016/j.ymben.2018.04.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
31
|
He Q, Yang Y, Yang S, Donohoe BS, Van Wychen S, Zhang M, Himmel ME, Knoshaug EP. Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:258. [PMID: 30258492 PMCID: PMC6151946 DOI: 10.1186/s13068-018-1256-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The model yeast, Saccharomyces cerevisiae, is not known to be oleaginous. However, an industrial wild-type strain, D5A, was shown to accumulate over 20% storage lipids from glucose when growth is nitrogen-limited compared to no more than 7% lipid accumulation without nitrogen stress. METHODS AND RESULTS To elucidate the mechanisms of S. cerevisiae D5A oleaginicity, we compared physiological and metabolic changes; as well as the transcriptional profiles of the oleaginous industrial strain, D5A, and a non-oleaginous laboratory strain, BY4741, under normal and nitrogen-limited conditions using analytic techniques and next-generation sequencing-based RNA-Seq transcriptomics. Transcriptional levels for genes associated with fatty acid biosynthesis, nitrogen metabolism, amino acid catabolism, as well as the pentose phosphate pathway and ethanol oxidation in central carbon (C) metabolism, were up-regulated in D5A during nitrogen deprivation. Despite increased carbon flux to lipids, most gene-encoding enzymes involved in triacylglycerol (TAG) assembly were expressed at similar levels regardless of the varying nitrogen concentrations in the growth media and strain backgrounds. Phospholipid turnover also contributed to TAG accumulation through increased precursor production with the down-regulation of subsequent phospholipid synthesis steps. Our results also demonstrated that nitrogen assimilation via the glutamate-glutamine pathway and amino acid metabolism, as well as the fluxes of carbon and reductants from central C metabolism, are integral to the general oleaginicity of D5A, which resulted in the enhanced lipid storage during nitrogen deprivation. CONCLUSION This work demonstrated the disequilibrium and rebalance of carbon and nitrogen contribution to the accumulation of lipids in the oleaginous yeast S. cerevisiae D5A. Rather than TAG assembly from acyl groups, the major switches for the enhanced lipid accumulation of D5A (i.e., fatty acid biosynthesis) are the increases of cytosolic pools of acetyl-CoA and NADPH, as well as alternative nitrogen assimilation.
Collapse
Affiliation(s)
- Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | | | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Eric P. Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| |
Collapse
|
32
|
Zhang Y, Nielsen J, Liu Z. Metabolic engineering ofSaccharomyces cerevisiaefor production of fatty acid–derived hydrocarbons. Biotechnol Bioeng 2018; 115:2139-2147. [DOI: 10.1002/bit.26738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Yiming Zhang
- Beijing Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing China
| | - Jens Nielsen
- Beijing Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing China
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Hørsholm Denmark
| | - Zihe Liu
- Beijing Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing China
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing China
| |
Collapse
|
33
|
Chen X, Yang X, Shen Y, Hou J, Bao X. Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product. Front Microbiol 2018; 9:47. [PMID: 29422886 PMCID: PMC5788913 DOI: 10.3389/fmicb.2018.00047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/09/2018] [Indexed: 01/08/2023] Open
Abstract
Malonyl-coenzyme A (malonyl-CoA) is a critical precursor for the biosynthesis of a variety of biochemicals. It is synthesized by the catalysis of acetyl-CoA carboxylase (Acc1p), which was demonstrated to be deactivated by the phosphorylation of Snf1 protein kinase in yeast. In this study, we designed a synthetic malonyl-CoA biosensor and used it to screen phosphorylation site mutations of Acc1p in Saccharomyces cerevisiae. Thirteen phosphorylation sites were mutated, and a combination of three site mutations in Acc1p, S686A, S659A, and S1157A, was found to increase malonyl-CoA availability. ACC1S686AS659AS1157A expression also improved the production of 3-hydroxypropionic acid, a malonyl-CoA-derived chemical, compared to both wild type and the previously reported ACC1S659AS1157A mutation. This mutation will also be beneficial for other malonyl-CoA-derived products.
Collapse
Affiliation(s)
- Xiaoxu Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiaoyu Yang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, China
| |
Collapse
|
34
|
You SK, Joo YC, Kang DH, Shin SK, Hyeon JE, Woo HM, Um Y, Park C, Han SO. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11029-11035. [PMID: 29185736 DOI: 10.1021/acs.jafc.7b04485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.
Collapse
Affiliation(s)
- Seung Kyou You
- Department of Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Young-Chul Joo
- Department of Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Dae Hee Kang
- Department of Biotechnology, Korea University , Seoul 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University , Seoul 02841, Republic of Korea
| | - Sang Kyu Shin
- Department of Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Institute of Life Science and Natural Resources, Korea University , Seoul 02841, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU) , 2066 Seobu-ro, Jangan-gu, Suwon 16419, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology , 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University , Seoul 139-701, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University , Seoul 02841, Republic of Korea
| |
Collapse
|
35
|
Han L, Peng Y, Zhang Y, Chen W, Lin Y, Wang Q. Designing and Creating a Synthetic Omega Oxidation Pathway in Saccharomyces cerevisiae Enables Production of Medium-Chain α, ω-Dicarboxylic Acids. Front Microbiol 2017; 8:2184. [PMID: 29163455 PMCID: PMC5673993 DOI: 10.3389/fmicb.2017.02184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022] Open
Abstract
Medium-chain (C8–C14) α, ω-dicarboxylic acids (α, ω-DCAs), which have numerous applications as raw materials for producing various commodities and polymers in chemical industry, are mainly produced from chemical or microbial conversion of petroleum-derived alkanes or plant-derived fatty acids at present. Recently, significant attention has been gained to microbial production of medium-chain α, ω-DCAs from simple renewable sugars. Here, we designed and created a synthetic omega oxidation pathway in Saccharomyces cerevisiae to produce C10 and C12 α, ω-DCAs from renewable sugars and fatty acids by introducing a heterogeneous cytochrome P450 CYP94C1 and cytochrome reductase ATR1. Furthermore, the deletion of fatty acyl-CoA synthetase genes FAA1 and FAA4 increased the production of medium-chain α, ω-DCAs from 4.690 ± 0.088 mg/L to 12.177 ± 0.420 mg/L and enabled the production of C14 and C16 α, ω-DCAs at low percentage. But blocking β-oxidation pathway by deleting fatty-acyl coenzyme A oxidase gene POX1 and overexpressing different thioesterase genes had no significant impact on the production and the composition of α, ω-dicarboxylic acids. Overall, our study indicated the potential of microbial production of medium-chain α, ω-DCAs from renewable feedstocks using engineered yeast.
Collapse
Affiliation(s)
- Li Han
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yanfeng Peng
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuangyuan Zhang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wujiu Chen
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
36
|
Xie D. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review. Front Bioeng Biotechnol 2017; 5:65. [PMID: 29090211 PMCID: PMC5650997 DOI: 10.3389/fbioe.2017.00065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
As one of the major biofuels to replace fossil fuel, biodiesel has now attracted more and more attention due to its advantages in higher energy density and overall less greenhouse gas generation. Biodiesel (fatty acid alkyl esters) is produced by chemically or enzymatically catalyzed transesterification of lipids from microbial cells, microalgae, oil crops, or animal fats. Currently, plant oils or waste cooking oils/fats remain the major source for biodiesel production via enzymatic route, but the production capacity is limited either by the uncertain supplement of plant oils or by the low or inconsistent quality of waste oils/fats. In the past decades, significant progresses have been made on synthesis of microalgae oils directly from CO2via a photosynthesis process, but the production cost from any current technologies is still too high to be commercialized due to microalgae’s slow growth rate on CO2, inefficiency in photo-bioreactors, lack of efficient contamination control methods, and high cost in downstream recovery. At the same time, many oleaginous microorganisms have been studied to produce lipids via the fatty acid synthesis pathway under aerobic fermentation conditions, among them one of the most studied is the non-conventional yeast, Yarrowia lipolytica, which is able to produce fatty acids at very high titer, rate, and yield from various economical substrates. This review summarizes the recent research progresses in both cellular and bioprocess engineering in Y. lipolytica to produce lipids at a low cost that may lead to commercial-scale biodiesel production. Specific technologies include the strain engineering for using various substrates, metabolic engineering in high-yield lipid synthesis, cell morphology study for efficient substrate uptake and product formation, free fatty acid formation and secretion for improved downstream recovery, and fermentation engineering for higher productivities and less operating cost. To further improve the economics of the microbial oil-based biodiesel, production of lipid-related or -derived high-value products are also discussed.
Collapse
Affiliation(s)
- Dongming Xie
- Massachusetts Biomanufacturing Center, Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
37
|
Duan L, Ding W, Liu X, Cheng X, Cai J, Hua E, Jiang H. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microb Cell Fact 2017; 16:165. [PMID: 28950867 PMCID: PMC5615808 DOI: 10.1186/s12934-017-0774-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. METHODS In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. RESULTS Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. CONCLUSIONS The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.
Collapse
Affiliation(s)
- Lijin Duan
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhi Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jing Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Erbing Hua
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
38
|
Fernandez-Moya R, Da Silva NA. Engineering Saccharomyces cerevisiae for high-level synthesis of fatty acids and derived products. FEMS Yeast Res 2017; 17:4111148. [DOI: 10.1093/femsyr/fox071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/10/2017] [Indexed: 01/16/2023] Open
|
39
|
Meadows CW, Kang A, Lee TS. Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201600433] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/13/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Corey W. Meadows
- Joint BioEnergy Institute5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems & Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Aram Kang
- Joint BioEnergy Institute5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems & Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Taek S. Lee
- Joint BioEnergy Institute5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems & Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
40
|
Chen X, Yang X, Shen Y, Hou J, Bao X. Increasing Malonyl-CoA Derived Product through Controlling the Transcription Regulators of Phospholipid Synthesis in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:905-912. [PMID: 28132498 DOI: 10.1021/acssynbio.6b00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malonyl-CoA is a precursor of a variety of compounds such as polyketides and flavonoids. In Saccharomyces cerevisiae, malonyl-CoA concentration is tightly regulated and therefore maintained at a very low level, limiting the production of malonyl-CoA-derived chemicals. Here we manipulated the phospholipid synthesis transcriptional regulators to control the malonyl-CoA levels and increase the downstream product. Through manipulating different regulators including Ino2p, Ino4p, Opi1p, and a series of synthetic Ino2p variants, combining with studying the inositol and choline effect, the engineered strain achieved a 9-fold increase of the titer of malonyl-CoA-derived product 3-hydroxypropionic acid, which is among the highest improvement relative to previously reported strategies. Our study provides a new strategy to regulate malonyl-CoA availability and will contribute to the production of other highly valued malonyl-CoA-derived chemicals.
Collapse
Affiliation(s)
- Xiaoxu Chen
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiaoyu Yang
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Yu Shen
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
41
|
Liu Z, Zhang Y, Jia X, Hu M, Deng Z, Xu Y, Liu T. In Vitro Reconstitution and Optimization of the Entire Pathway to Convert Glucose into Fatty Acid. ACS Synth Biol 2017; 6:701-709. [PMID: 28080041 DOI: 10.1021/acssynbio.6b00348] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glucose and fatty acids play essential physiological roles in nearly all living organisms, and the pathway that converts glucose into fatty acid is pivotal to the central metabolic network. We have successfully reconstituted a pathway that converts glucose to fatty acid in vitro using 30 purified proteins. Through systematic titration and optimization of the glycolytic pathway and pyruvate dehydrogenase, we increased the yield of free fatty acid from nondetectable to a level that exceeded 9% of the theoretical yield. We also reconstituted the entire pentose-phosphate pathway of Escherichia coli and established a pentose phosphate-glycolysis hybrid pathway, replacing GAPDH to enhance NADPH availability. Our efforts provide a useful platform for research involving these core biochemical transformations.
Collapse
Affiliation(s)
- Zheng Liu
- Department
of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuchen Zhang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xiaoge Jia
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mengzhu Hu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zixin Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yancheng Xu
- Department
of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tiangang Liu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
42
|
Nielsen JC, Nielsen J. Development of fungal cell factories for the production of secondary metabolites: Linking genomics and metabolism. Synth Syst Biotechnol 2017; 2:5-12. [PMID: 29062956 PMCID: PMC5625732 DOI: 10.1016/j.synbio.2017.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/01/2022] Open
Abstract
The genomic era has revolutionized research on secondary metabolites and bioinformatics methods have in recent years revived the antibiotic discovery process after decades with only few new active molecules being identified. New computational tools are driven by genomics and metabolomics analysis, and enables rapid identification of novel secondary metabolites. To translate this increased discovery rate into industrial exploitation, it is necessary to integrate secondary metabolite pathways in the metabolic engineering process. In this review, we will describe the novel advances in discovery of secondary metabolites produced by filamentous fungi, highlight the utilization of genome-scale metabolic models (GEMs) in the design of fungal cell factories for the production of secondary metabolites and review strategies for optimizing secondary metabolite production through the construction of high yielding platform cell factories.
Collapse
Affiliation(s)
| | - Jens Nielsen
- Chalmers University of Technology, Kemivägen 10, Sweden
| |
Collapse
|
43
|
Tan GY, Liu T. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metab Eng 2017; 39:228-236. [DOI: 10.1016/j.ymben.2016.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 11/28/2022]
|
44
|
Liu W, Zhang B, Jiang R. Improving acetyl-CoA biosynthesis in Saccharomyces cerevisiae via the overexpression of pantothenate kinase and PDH bypass. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:41. [PMID: 28239413 PMCID: PMC5316175 DOI: 10.1186/s13068-017-0726-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/09/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Acetyl-CoA is an important precursor in Saccharomyces cerevisiae. Various approaches have been adopted to improve its cytosolic level previously with the emphasis on engineering the "acetyl-" part of acetyl-CoA. To the best of our knowledge, there have been no reports on engineering the "-CoA" part so far. RESULTS In this study, we had tried to engineer S. cerevisiae from both the "-CoA" part via pantothenate kinase overexpression (PanK from S. cerevisiae, the rate-limiting enzyme for CoA synthesis) and the "acetyl-"part through PDH bypass introduction (ALD6 from S. cerevisiae and SeAcsL641P from Salmonella enteric). A naringenin-producing reporter strain had been constructed to reflect cytosolic acetyl-CoA level as acetyl-CoA is the precursor of naringenin. It was found that PanK overexpression or PDH bypass introduction alone only led to a twofold or 6.74-fold increase in naringenin titer, but the combination of both (strain CENFPAA01) had resulted in 24.4-fold increase as compared to the control (strain CENF09) in the presence of 0.5 mM substrate p-coumaric acid. The supplement of PanK substrate pantothenate resulted in another 19% increase in naringenin production. CONCLUSIONS To greatly enhance acetyl-CoA level in yeast cytosol, it is feasible to engineer both the "acetyl-" part and the "-CoA" part simultaneously. Insufficient CoA supply might aggravate acetyl-CoA shortage and cause low yield of target product.
Collapse
Affiliation(s)
- Wenshan Liu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Bo Zhang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
45
|
Granucci N, Pinu FR, Han TL, Villas-Boas SG. Can we predict the intracellular metabolic state of a cell based on extracellular metabolite data? MOLECULAR BIOSYSTEMS 2016; 11:3297-304. [PMID: 26400772 DOI: 10.1039/c5mb00292c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The analysis of extracellular metabolites presents many technical advantages over the analysis of intracellular compounds, which made this approach very popular in recent years as a high-throughput tool to assess the metabolic state of microbial cells. However, very little effort has been made to determine the actual relationship between intracellular and extracellular metabolite levels. The secretion of intracellular metabolites has been traditionally interpreted as a consequence of an intracellular metabolic overflow, which is based on the premise that for a metabolite to be secreted, it must be over-produced inside the cell. Therefore, we expect to find a secreted metabolite at increased levels inside the cells. Here we present a time-series metabolomics study of Saccharomyces cerevisiae growing on a glucose-limited chemostat with parallel measurements of intra- and extracellular metabolites. Although most of the extracellular metabolites were also detected in the intracellular samples and showed a typical metabolic overflow behaviour, we demonstrate that the secretion of many metabolites could not be explained by the metabolic overflow theory.
Collapse
Affiliation(s)
- Ninna Granucci
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand.
| | - Farhana R Pinu
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand. and The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Ting-Li Han
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand.
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
46
|
Improved ethyl caproate production of Chinese liquor yeast by overexpressing fatty acid synthesis genes with OPI1 deletion. J Ind Microbiol Biotechnol 2016; 43:1261-70. [PMID: 27344573 DOI: 10.1007/s10295-016-1795-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
During yeast fermentation, ethyl esters play a key role in the development of the flavor profiles of Chinese liquor. Ethyl caproate, an ethyl ester eliciting apple-like flavor, is the characteristic flavor of strong aromatic liquor, which is the best selling liquor in China. In the traditional fermentation process, ethyl caproate is mainly produced at the later fermentation stage by aroma-producing yeast, bacteria, and mold in a mud pit instead of Saccharomyces cerevisiae at the expense of grains and fermentation time. To improve the production of ethyl caproate by Chinese liquor yeast (S. cerevisiae) with less food consumption and shorter fermentation time, we constructed three recombinant strains, namely, α5-ACC1ΔOPI1, α5-FAS1ΔOPI1, and α5-FAS2ΔOPI1 by overexpressing acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1), and fatty acid synthase 2 (FAS2) with OPI1 (an inositol/choline-mediated negative regulatory gene) deletion, respectively. In the liquid fermentation of corn hydrolysate, the contents of ethyl caproate produced by α5-ACC1ΔOPI1, α5-FAS1ΔOPI1, and α5-FAS2ΔOPI1 increased by 0.40-, 1.75-, and 0.31-fold, correspondingly, compared with the initial strain α5. The contents of other fatty acid ethyl esters (FAEEs) (C8:0, C10:0, C12:0) also increased. In comparison, the content of FAEEs produced by α5-FAS1ΔOPI1 significantly improved. Meanwhile, the contents of acetyl-CoA and ethyl acetate were enhanced by α5-FAS1ΔOPI1. Overall, this study offers a promising platform for the development of pure yeast culture fermentation of Chinese strong aromatic liquor without the use of a mud pit.
Collapse
|
47
|
Kamisaka Y, Kimura K, Uemura H, Ledesma-Amaro R. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant. Appl Microbiol Biotechnol 2016; 100:8147-57. [PMID: 27311564 DOI: 10.1007/s00253-016-7662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 11/25/2022]
Abstract
We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis. This assay revealed that the ∆dga1 mutant overexpressing Dga1∆Np had much lower growth in a glycerol-lactate (GL) medium than the wild-type strain overexpressing Dga1∆Np. Moreover, overexpression of Esa1p or Pck1p in mutants improved the growth, indicating that the ∆dga1 mutant overexpressing Dga1∆Np had lower activities of Pck1p and gluconeogenesis due to lower expression of ESA1. In vitro PEPCK assay showed the same trend in the culture of the ∆dga1 mutant overexpressing Dga1∆Np with 10 % glucose medium, indicating that Pck1p-mediated gluconeogenesis decreased in this oleaginous transformant under the lipid-accumulating conditions introduced by the glucose medium. The growth of the ∆dga1 mutant overexpressing Dga1∆Np in the GL medium was also improved by overexpression of acetyl-CoA synthetase, Acs1p or Acs2p, indicating that supply of acetyl-CoA was crucial for Pck1p acetylation by Esa1p. In addition, the ∆dga1 mutant without Dga1∆Np also showed better growth in the GL medium, indicating that decreased lipid accumulation was enhancing Pck1p-mediated gluconeogenesis. Finally, we found that overexpression of Ole1p, a fatty acid ∆9-desaturase, in the ∆dga1 mutant overexpressing Dga1∆Np improved its growth in the GL medium. Although the exact mechanisms leading to the effects of Ole1p were not clearly defined, changes of palmitoleic and oleic acid contents appeared to be critical. This observation was supported by experiments using exogenous palmitoleic and oleic acids or overexpression of elongases. Our findings provide new insights on lipid accumulation mechanisms and metabolic engineering approaches for lipid production.
Collapse
Affiliation(s)
- Yasushi Kamisaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.
| | - Kazuyoshi Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroshi Uemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Rodrigo Ledesma-Amaro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.,Universidad de Salamanca, Campus Miguel de Unamuno, E-3707, Salamanca, Spain.,INRA and AgroParisTech, UMR1319 Micalis, F-78352, Jouy-en-Josas, France
| |
Collapse
|
48
|
Ye Z, Li X, Cheng Y, Liu Z, Tan G, Zhu F, Fu S, Deng Z, Liu T. Evaluation of 3-hydroxypropionate biosynthesis in vitro by partial introduction of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula. J Ind Microbiol Biotechnol 2016; 43:1313-21. [PMID: 27300329 PMCID: PMC4983293 DOI: 10.1007/s10295-016-1793-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023]
Abstract
The chemical 3-hydroxypropionate (3HP) is an important starting reagent for the commercial synthesis of specialty chemicals. In this study, a part of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula was utilized for 3HP production. To study the basic biochemistry of this pathway, an in vitro-reconstituted system was established using acetyl-CoA as the substrate for the kinetic analysis of this system. The results indicated that 3HP formation was sensitive to acetyl-CoA carboxylase and malonyl-CoA reductase, but not malonate semialdehyde reductase. Also, the competition between 3HP formation and fatty acid production was analyzed both in vitro and in vivo. This study has highlighted how metabolic flux is controlled by different catalytic components. We believe that this reconstituted system would be valuable for understanding 3HP biosynthesis pathway and for future engineering studies to enhance 3HP production.
Collapse
Affiliation(s)
- Ziling Ye
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, People's Republic of China
| | - Xiaowei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, People's Republic of China
| | - Yongbo Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, People's Republic of China
| | - Zhijie Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, People's Republic of China
| | - Gaoyi Tan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, People's Republic of China
| | - Fayin Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, People's Republic of China
| | - Shuai Fu
- J1 Biotech, Co., Ltd, Wuhan, 430075, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, People's Republic of China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, People's Republic of China.,The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, People's Republic of China. .,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, People's Republic of China. .,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, 430068, People's Republic of China.
| |
Collapse
|
49
|
Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 2016; 38:38-46. [PMID: 27301328 DOI: 10.1016/j.ymben.2016.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/10/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
Microbial oils are sustainable alternatives to petroleum for the production of chemicals and fuels. Oleaginous yeasts are promising source of oils and Yarrowia lipolytica is the most studied and engineered one. Nonetheless the commercial production of biolipids is so far limited to high value products due to the elevated production and extraction costs. In order to contribute to overcoming these limitations we exploited the possibility of secreting lipids to the culture broth, uncoupling production and biomass formation and facilitating the extraction. We therefore considered two synthetic approaches, Strategy I where fatty acids are produced by enhancing the flux through neutral lipid formation, as typically occurs in eukaryotic systems and Strategy II where the bacterial system to produce free fatty acids is mimicked. The engineered strains, in a coupled fermentation and extraction process using alkanes, secreted the highest titer of lipids described so far, with a content of 120% of DCW.
Collapse
Affiliation(s)
- Rodrigo Ledesma-Amaro
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Remi Dulermo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Xochitl Niehus
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C. 44270 Guadalajara, Jalisco, Mexico
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
50
|
Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 2016; 7:11709. [PMID: 27222209 PMCID: PMC4894961 DOI: 10.1038/ncomms11709] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/21/2016] [Indexed: 12/18/2022] Open
Abstract
Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value.
Collapse
Affiliation(s)
- Yongjin J Zhou
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE41296, Sweden
| | - Nicolaas A Buijs
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden
| | - Zhiwei Zhu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE41296, Sweden
| | - Jiufu Qin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE41296, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm DK2970, Denmark.,Science for Life Laboratory, Royal Institute of Technology, Stockholm SE-17121, Sweden
| |
Collapse
|