1
|
Gill JK, Shaw GS. Using Förster Resonance Energy Transfer (FRET) to Understand the Ubiquitination Landscape. Chembiochem 2024; 25:e202400193. [PMID: 38632088 DOI: 10.1002/cbic.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Förster resonance energy transfer (FRET) is a fluorescence technique that allows quantitative measurement of protein interactions, kinetics and dynamics. This review covers the use of FRET to study the structures and mechanisms of ubiquitination and related proteins. We survey FRET assays that have been developed where donor and acceptor fluorophores are placed on E1, E2 or E3 enzymes and ubiquitin (Ub) to monitor steady-state and real-time transfer of Ub through the ubiquitination cascade. Specialized FRET probes placed on Ub and Ub-like proteins have been developed to monitor Ub removal by deubiquitinating enzymes (DUBs) that result in a loss of a FRET signal upon cleavage of the FRET probes. FRET has also been used to understand conformational changes in large complexes such as multimeric E3 ligases and the proteasome, frequently using sophisticated single molecule methods. Overall, FRET is a powerful tool to help unravel the intricacies of the complex ubiquitination system.
Collapse
Affiliation(s)
- Jashanjot Kaur Gill
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| |
Collapse
|
2
|
Vela-Rodríguez C, Scarpulla I, Ashok Y, Lehtiö L. Discovery of DTX3L inhibitors through a homogeneous FRET-based assay that monitors formation and removal of poly-ubiquitin chains. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:365-375. [PMID: 37579950 DOI: 10.1016/j.slasd.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Ubiquitination is a reversible protein post-translational modification in which consequent enzymatic activity results in the covalent linking of ubiquitin to a target protein. Once ubiquitinated, a protein can undergo multiple rounds of ubiquitination on multiple sites or form poly-ubiquitin chains. Ubiquitination regulates various cellular processes, and dysregulation of ubiquitination has been associated with more than one type of cancer. Therefore, efforts have been carried out to identify modulators of the ubiquitination cascade. Herein, we present the development of a FRET-based assay that allows us to monitor ubiquitination activity of DTX3L, a RING-type E3 ubiquitin ligase. Our method shows a good signal window with a robust average Z' factor of 0.76 on 384-well microplates, indicating a good assay for screening inhibitors in a high-throughput setting. From a validatory screening experiment, we have identified the first molecules that inhibit DTX3L with potencies in the low micromolar range. We also demonstrate that the method can be expanded to study deubiquitinases, such as USP28, that reduce FRET due to hydrolysis of fluorescent poly-ubiquitin chains.
Collapse
Affiliation(s)
- Carlos Vela-Rodríguez
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Ilaria Scarpulla
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Yashwanth Ashok
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.
| |
Collapse
|
3
|
Lacoursiere RE, Shaw GS. Acetylated Ubiquitin Modulates the Catalytic Activity of the E1 Enzyme Uba1. Biochemistry 2021; 60:1276-1285. [PMID: 33848125 DOI: 10.1021/acs.biochem.1c00145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitin (Ub) signaling requires the covalent passage of Ub among E1, E2, and E3 enzymes. The choice of E2 and E3 enzymes combined with multiple rounds of the cascade leads to the formation of polyubiquitin chains linked through any one of the seven lysines on Ub. The linkage type and length act as a signal to trigger important cellular processes such as protein degradation or the DNA damage response. Recently, proteomics studies have identified that Ub can be acetylated at six of its seven lysine residues under various cell stress conditions. To understand the potential differences in Ub signaling caused by acetylation, we synthesized all possible acetylated ubiquitin (acUb) variants and examined the E1-mediated formation of the corresponding E2∼acUb conjugates in vitro using kinetic methods. A Förster resonance energy transfer assay was optimized in which the Ub constructs were labeled with a CyPet fluorophore and the E2 UBE2D1 was labeled with a YPet fluorophore to monitor the formation of E2∼Ub conjugates. Our methods enable the detection of small differences that may otherwise be concealed in steady-state ubiquitination experiments. We determined that Ub, acetylated at K11, K27, K33, K48, or K63, has altered turnover numbers for E2∼Ub conjugate formation by the E1 enzyme Uba1. This work provides evidence that acetylation of Ub can alter the catalysis of ubiquitination early on in the pathway.
Collapse
Affiliation(s)
| | - Gary S Shaw
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
4
|
An in vitro Förster resonance energy transfer-based high-throughput screening assay identifies inhibitors of SUMOylation E2 Ubc9. Acta Pharmacol Sin 2020; 41:1497-1506. [PMID: 32341466 DOI: 10.1038/s41401-020-0405-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/20/2020] [Indexed: 11/08/2022] Open
Abstract
SUMOylation is one of the posttranslational modifications that mediate cellular activities such as transcription, DNA repair, and signal transduction and is involved in the cell cycle. However, only a limited number of small molecule inhibitors have been identified to study its role in cellular processes. Here, we report a Förster resonance energy transfer (FRET) high-throughput screening assay based on the interaction between E2 Ubc9 and E3 PIAS1. Of the 3200 compounds screened, 34 (1.1%) showed higher than 50% inhibition and 4 displayed dose-response inhibitory effects. By combining this method with a label-free surface plasmon resonance (SPR) assay, false positives were excluded leading to discovering WNN0605-F008 and WNN1062-D002 that bound to Ubc9 with KD values of 1.93 ± 0.62 and 5.24 ± 3.73 μM, respectively. We examined the effect of the two compounds on SUMO2-mediated SUMOylation of RanGAP1, only WNN0605-F008 significantly inhibited RanGAP1 SUMOylation, whereas WNN1062-D002 did not show any inhibition. These compounds, with novel chemical scaffolds, may serve as the initial material for developing new SUMOylation inhibitors.
Collapse
|
5
|
Aichem A, Sailer C, Ryu S, Catone N, Stankovic-Valentin N, Schmidtke G, Melchior F, Stengel F, Groettrup M. The ubiquitin-like modifier FAT10 interferes with SUMO activation. Nat Commun 2019; 10:4452. [PMID: 31575873 PMCID: PMC6773726 DOI: 10.1038/s41467-019-12430-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
The covalent attachment of the cytokine-inducible ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) to hundreds of substrate proteins leads to their rapid degradation by the 26 S proteasome independently of ubiquitylation. Here, we identify another function of FAT10, showing that it interferes with the activation of SUMO1/2/3 in vitro and down-regulates SUMO conjugation and the SUMO-dependent formation of promyelocytic leukemia protein (PML) bodies in cells. Mechanistically, we show that FAT10 directly binds to and impedes the activity of the heterodimeric SUMO E1 activating enzyme AOS1/UBA2 by competing very efficiently with SUMO for activation and thioester formation. Nevertheless, activation of FAT10 by AOS1/UBA2 does not lead to covalent conjugation of FAT10 with substrate proteins which relies on its cognate E1 enzyme UBA6. Hence, we report that one ubiquitin-like modifier (FAT10) inhibits the conjugation and function of another ubiquitin-like modifier (SUMO) by impairing its activation. FAT10 is an ubiquitin-like modifier that targets proteins to proteasomal degradation. Here, the authors show that FAT10 also regulates SUMO activation in vitro and in cells, providing evidence for functional crosstalk between two ubiquitin-like modifiers.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland. .,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany.
| | - Carolin Sailer
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Stella Ryu
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Gunter Schmidtke
- Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| |
Collapse
|
6
|
Cheng H, Sun X, Li J, He P, Liu W, Meng X. Knockdown of Uba2 inhibits colorectal cancer cell invasion and migration through downregulation of the Wnt/β-catenin signaling pathway. J Cell Biochem 2018; 119:6914-6925. [PMID: 29744931 DOI: 10.1002/jcb.26890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is a serious threat to human health, and has a high mortality rate. There is currently no effective therapy for end-stage colorectal cancer. In recent years, molecular targeted therapy has received increasing attention for cancer treatment. In particular, the role of Uba2, a vital component of SUMO-activating enzyme, has been highlighted, which plays important roles in the progression of certain cancers; however, its role in colorectal cancer remains unclear. Accordingly, the aim of this study was to evaluate the relationship between Uba2 and colorectal cancer. Uba2 expression was knocked down in two colorectal cancer cell lines, and gene microarray analysis was conducted, followed by proliferation, migration, and invasion assays. Uba2 knockdown influenced the expression of several genes, and significantly inhibited the proliferation, migration, and invasion of cancer cells. To determine the underlying mechanism, the expression of related signaling pathways and molecules was evaluated in the knockdown cell lines. Overall, the results suggest that Uba2 participates in the progression, invasion, and metastasis of colorectal cancer, and the possible mechanism is via regulating the Wnt signaling pathway and enhancing epithelial-mesenchymal transition behaviors of colorectal cancer cells. Therefore, Uba2 is expected to be an important oncoprotein and potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Hongjing Cheng
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Xun Sun
- Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Ji Li
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Ping He
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Wanqi Liu
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Xiangwei Meng
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|