1
|
Blanco-Llamero C, García-García P, Señoráns FJ. Efficient Green Extraction of Nutraceutical Compounds from Nannochloropsis gaditana: A Comparative Electrospray Ionization LC-MS and GC-MS Analysis for Lipid Profiling. Foods 2024; 13:4117. [PMID: 39767059 PMCID: PMC11675803 DOI: 10.3390/foods13244117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Microalgae have been described as a potential alternative source of a wide range of bioactive compounds, including polar lipids and carotenoids. Specifically, Nannochloropsis gaditana is described as producing large amounts of polar lipids, such as glycolipids and phospholipids. These natural active compounds serve as key ingredients for food, cosmetic, or nutraceutical applications. However, microalgae usually possess a rigid cell wall that complicates the extraction of these compounds. Thus, an ultrasound-assisted enzymatic pretreatment is necessary to efficiently extract bioactives from microalgae, and it was studied in this article. Pretreated biomass was extracted using different advanced and green methodologies and compared to traditional extraction. Furthermore, the analysis, characterization, and identification of valuable compounds using GC-MS and LC-MS analytical methods were also investigated. Interestingly, major results demonstrated the efficiency of the pretreatment, enriching polar lipids' distribution in all extracts produced no matter the extraction technique, although they presented differences in their concentration. Pressurized liquid extraction and microwave-assisted extraction were found to be the techniques with the highest yields, whereas ultrasound-assisted extraction achieved the highest percentage of glycolipids. In summary, green extraction techniques showed their effectiveness compared to traditional extraction.
Collapse
Affiliation(s)
| | | | - Francisco Javier Señoráns
- Healthy Lipids Group, Faculty of Sciences, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, 28049 Madrid, Spain (P.G.-G.)
| |
Collapse
|
2
|
Nguyen AQ, Mohammadi M, Alian M, Muralitharan G, Chauhan VS, Balan V. Exploring the versatility of Porphyridium sp.: A comprehensive review of cultivation, bio-product extraction, purification, and characterization techniques. Biotechnol Adv 2024; 77:108471. [PMID: 39437877 DOI: 10.1016/j.biotechadv.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Interest in red microalgae of the Porphyridium genus has surged due to their richness in phycobiliproteins, polyunsaturated fatty acids, and sulfated polysaccharides. These biomasses and their derivatives find applications across food, feed, nutraceutical, pharmaceutical, and cosmetic industries. A deeper understanding of their properties and extraction methods is essential to optimize downstream processing. This paper comprehensively reviews Porphyridium sp., focusing on cultivation techniques, bioproduct extraction, purification, and characterization. It delves into protein, lipid, and polysaccharide extraction, considering the influence of culture conditions on biomass yield. Various methods like chromatography, electrophoresis, and membrane-based techniques for cell lysis and bioproduct recovery are explored, highlighting their pros and cons. By offering diverse insights, this review aims to inspire innovative research and industry progress in red microalgae biotechnology, contributing to sustainable solutions across sectors.
Collapse
Affiliation(s)
- Anh Quynh Nguyen
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Maedeh Mohammadi
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Mahsa Alian
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Gangatharan Muralitharan
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirapalli 620024, Tamilnadu, India; National Repository for Microalgae and Cyanobacteria - Freshwater and Marine (NRMC - F & M), Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Vikas Singh Chauhan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, Karnataka, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA.
| |
Collapse
|
3
|
Kannah Ravi Y, Kavitha S, Al-Qaradawi SY, Rajesh Banu J. Dual disintegration of microalgae biomass for cost-effective biomethane production: Energy and cost assessment. BIORESOURCE TECHNOLOGY 2024; 399:130630. [PMID: 38522678 DOI: 10.1016/j.biortech.2024.130630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The present study aims to enhance the biomethane production potential of microalgae via a dual disintegration process. During this process, the microalgae biomass was firstly subjected to cell wall weakening by thermochemical disintegration (TC) (50 to 80 °C), pH adjustment with alkali, NaOH (6 to 10) and time (0 to 10 min) and, secondly, by bacterial disintegration (BD). TC-BD disintegration was comparatively higher (33 %) than BD (24 %), TC (8.5 %), and control (7 %). A more significant VFA accumulation of 2816 mg/L was recorded for TC-BD. Similarly, a greater substrate anaerobic biodegradability was achieved in TC-BD (0.32 g COD /g COD) than BD (0.21 g COD /g COD), TC alone (0.09 gCOD/g COD) and control (0.08 g COD /g COD), respectively. The TC-BD achieves a positive net profit and an energy ratio of + 0.12 GJ/d and 1.03. The proposed dual disintegration has a promising future for commercialization.
Collapse
Affiliation(s)
- Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - S Kavitha
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Siham Y Al-Qaradawi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
4
|
Lijassi I, Arahou F, El Habacha G, Wahby A, Benaich S, Rhazi L, Arahou M, Wahby I. Optimization and Characterization of Spirulina and Chlorella Hydrolysates for Industrial Application. Appl Biochem Biotechnol 2024; 196:1255-1271. [PMID: 37382791 DOI: 10.1007/s12010-023-04596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Chlorella and Spirulina are the most used microalgae mainly as powder, tablets, or capsules. However, the recent change in lifestyle of modern society encouraged the emergence of liquid food supplements. The current work evaluated the efficiency of several hydrolysis methods (ultrasound-assisted hydrolysis UAH, acid hydrolysis AH, autoclave-assisted hydrolysis AAH, and enzymatic hydrolysis EH) in order to develop liquid dietary supplements from Chlorella and Spirulina biomasses. Results showed that, EH gave the highest proteins content (78% and 31% for Spirulina and Chlorella, respectively) and also increased pigments content (4.5 mg/mL of phycocyanin and 12 µg/mL of carotenoids). Hydrolysates obtained with EH showed the highest scavenging activity (95-91%), allowing us, with the other above features, to propose this method as convenient for liquid food supplements development. Nevertheless, it has been shown that the choice of hydrolysis method depended on the vocation of the product to be prepared.
Collapse
Affiliation(s)
- Ibtissam Lijassi
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco.
| | - Fadia Arahou
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Ghizlane El Habacha
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Anass Wahby
- Laboratory of Water, Studies and Environmental Analysis, FLP, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Souad Benaich
- Physiology and Physiopathology Research Team, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Laila Rhazi
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Moustapha Arahou
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Imane Wahby
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| |
Collapse
|
5
|
Chen D, Dong Y, Bao Y, Xiu Z. Salting-out extraction of recombinant κ-carrageenase and phage T7 released from Escherichia coli cells. Eng Life Sci 2023; 23:e2200125. [PMID: 37275213 PMCID: PMC10235888 DOI: 10.1002/elsc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/18/2023] [Accepted: 05/07/2023] [Indexed: 06/07/2023] Open
Abstract
Traditional technology of cell disruption has become one of the bottlenecks restricting the industrialization of genetic engineering products due to its high cost and low efficiency. In this study, a novel bioprocess of phage lysis coupled with salting-out extraction (SOE) was evaluated. The lysis effect of T7 phage on genetically engineered Escherichia coli expressing κ-carrageenase was investigated at different multiplicity of infection (MOI), meanwhile the phage and enzyme released into the lysate were separated by SOE. It was found that T7 phage could lyse 99.9% of host cells at MOI = 1 and release more than 90.0% of enzyme within 90 min. After phage lysis, 87.1% of T7 phage and 71.2% of κ-carrageenase could be distributed at the middle phase and the bottom phase, respectively, in the SOE system composed of 16% ammonium sulfate and 20% ethyl acetate (w/w). Furthermore, κ-carrageenase in the bottom phase could be salted out by ammonium sulfate with a yield of 40.1%. Phage lysis exhibits some advantages, such as mild operation conditions and low cost. While SOE can efficiently separate phage and intracellular products. Therefore, phage lysis coupled with SOE is expected to become a viable alternative to the classical cell disruption and intracellular product recovery.
Collapse
Affiliation(s)
- Da Chen
- School of BioengineeringDalian University of TechnologyDalianLiaoningPR China
| | - Yue‐Sheng Dong
- School of BioengineeringDalian University of TechnologyDalianLiaoningPR China
| | - Yong‐Ming Bao
- School of BioengineeringDalian University of TechnologyDalianLiaoningPR China
| | - Zhi‐Long Xiu
- School of BioengineeringDalian University of TechnologyDalianLiaoningPR China
| |
Collapse
|
6
|
Wijesooriya MM, Masakorala K, Widana Gamage SMK. A novel cyanolytic bacterium, Pseudomonas fluorescens BG-E as a potential biological control agent for freshwater bloom-forming cyanobacteria Pseudanabaena spp. JOURNAL OF PHYCOLOGY 2023; 59:570-589. [PMID: 36971784 DOI: 10.1111/jpy.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 06/15/2023]
Abstract
The majority of bacterial antagonists identified to date are active against Microcystis. Therefore, this study aimed to isolate and characterize novel cyanolytic bacterial strains antagonistic against bloom-forming filamentous cyanobacteria. The bacterial strain BG-E isolated from the Bandagiriya Wewa in Sri Lanka was identified as Pseudomonas fluorescens (MZ007859) based on the 16S rRNA gene sequencing. BG-E showed 82% and 73% cyanolytic activity (CA) against Pseudanabaena sp. LW2 (MW288948) and Pseudanabaena lonchoides LW1 (MW288940), respectively, after 10 days of inoculation. The light microscopic images affirmed the complete disintegration in the filamentous structures of the tested Pseudanabaena species. The bacterial cell density of 15% v/v showed the CA with 95% and 89% cell lysis, respectively, in P. lonchoides and Pseudanabaena sp. LW2. Moreover, the results showed that >50% CA could be achieved by 0.100 and 1.00 (OD730 ) cell densities for these same species. The highest CA of the cell-free supernatant of BG-E against P. lonchoides and bacterial culture against Pseudanabaena sp. LW2 illustrated the species-specific mode of action of BG-E. Although BG-E efficiently lysed the tested cyanobacterial species, the results of the MC-biodegradation assay confirmed its inability to degrade MC-LR cyanotoxin. Further, the BG-E strain lacks the mlrABCD gene cluster which is known to be responsible for the enzymatic degradation of MCs. The overall findings highlighted the applicability of P. fluorescens BG-E as a biological controlling agent to terminate blooms of freshwater filamentous cyanobacteria genus Pseudanabaena. The incorporation of cyanotoxin-degrading heterotrophic bacteria is recommended as a means of controlling toxic Pseudanabaena blooms.
Collapse
Affiliation(s)
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka
| | | |
Collapse
|
7
|
Fu J, Yan B, Gui S, Fu Y, Xia S. Anaerobic co-digestion of thermo-alkaline pretreated microalgae and sewage sludge: Methane potential and microbial community. J Environ Sci (China) 2023; 127:133-142. [PMID: 36522047 DOI: 10.1016/j.jes.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/17/2023]
Abstract
To improve methane production from sewage sludge (SS), co-digestion of SS and microalgae (MA) was studied and the application of thermo-alkaline pretreatment to MA was evaluated. The results showed that thermo-alkaline pretreatment at 90°C for 120 min on MA was the optimum pretreatment condition. Furthermore, when the volatile solids (VS) ratio of SS and MA was 1:2, the methane yield reached maximum (368.94 mL/g VS). Fourier transform infrared (FT-IR) and thermogravimetric analysis confirmed the synergetic effects of thermo-alkaline pretreated MA on its co-digestion with SS. The analyses of microbial community indicated that Methanobacterium and Methanosarcina were the dominant methanogens during the co-digestion process. However, the relative abundance of Methanosarcina in thermo-alkaline pretreated groups was higher compared to unpretreated groups. The microbial community structure might be affected by thermo-alkaline pretreatment rather than by the MA dosage in the co-digestion.
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Bing Yan
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shuanglin Gui
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yinxuan Fu
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Song Xia
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
8
|
Dar RA, Phutela UG. Improvement of Asterarcys quadricellulare biomass solubilization and subsequent biogas production via pretreatment approaches: structural changes and kinetic modeling evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58450-58465. [PMID: 36977882 DOI: 10.1007/s11356-023-26555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
This study investigated the effect of enzymatic and hydrothermal pretreatment approaches on the solubilization of organic matter, structure, and biogas yield from microalgal biomass. The soluble chemical oxygen demand (sCOD) concentration increased by 1.21-3.30- and 5.54-6.60-fold compared to control by enzymatic and hydrothermal pretreatments respectively. The hydrothermal pretreatment affected the structural changes in the microalgal biomass markedly; nonetheless, increased enzymatic concentration also had a definite effect on it as determined by qualitative approaches like scanning electron microscopy and Fourier transform infrared spectroscopy. Also, the hydrothermal pretreatment (100 °C for 30 min) resulted in the highest biogas production potential (P) of 765.37 mLg-1 VS at a maximum biogas production rate (Rm) of 22.66 mLg-1 day-1 with a very short lag phase (λ) of 0.07 days. The biogas production of pretreated microalgal biomass particularly at higher enzyme dose (20%, 24 h) and higher hydrothermal pretreatment temperature (120 °C, 30 min) showed a significant but weak correlation (R = 0.53) with sCOD, thus demonstrating that the less organic matter was used up for the biogas production. The modified Gompertz model explained the anaerobic digestion of microalgal biomass more accurately and had a better fit to the experimental data comparatively because of the low root mean square error (3.259-16.728), residual sum of squares (78.887-177.025), and Akaike's Information Criterion (38.605-62.853).
Collapse
Affiliation(s)
- Rouf Ahmad Dar
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| | - Urmila Gupta Phutela
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
9
|
Glucose Conversion for Biobutanol Production from Fresh Chlorella sorokiniana via Direct Enzymatic Hydrolysis. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Microalgae, which accumulate considerable carbohydrates, are a potential source of glucose for biofuel fermentation. In this study, we investigated the enzymatic hydrolysis efficiency of wet microalgal biomass compared with freeze-dried and oven-dried biomasses, both with and without an acidic pretreatment. With the dilute sulfuric acid pretreatment followed by amy (α-amylase and amyloglucosidase) and cellulase hydrolysis, approximately 95.4% of the glucose was recovered; however, 88.5% was released by the pretreatment with 2% (w/v) sulfuric acid, which indicates the potential of the acids for direct saccharification process. There were no considerable differences in the glucose yields among the three kinds of materials. In the direct amy hydrolysis without any pretreatment, a 78.7% glucose yield was obtained, and the addition of cellulase had no significant effect on the hydrolysis to glucose. Compared with the oven-dried biomass, the wet biomass produced a substantially higher glucose yield, which is possibly because the cross-linked cells of the oven-dried biomass prevented the accessibility of the enzymes. According to the results, the fresh microalgal biomass without cell disruption can be directly used for enzymatic hydrolysis to produce glucose. The enzymatic hydrolysate of the wet microalgal biomass was successfully used for acetone–butanol–ethanol (ABE) fermentation, which produced 7.2 g/L of ABE, indicating the application potential of wet microalgae in the bioalcohol fuel fermentation process.
Collapse
|
10
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
11
|
Pradhan N, Kumar S, Selvasembian R, Rawat S, Gangwar A, Senthamizh R, Yuen YK, Luo L, Ayothiraman S, Saratale GD, Mal J. Emerging trends in the pretreatment of microalgal biomass and recovery of value-added products: A review. BIORESOURCE TECHNOLOGY 2023; 369:128395. [PMID: 36442602 DOI: 10.1016/j.biortech.2022.128395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Microalgae are a promising source of raw material (i.e., proteins, carbohydrates, lipids, pigments, and micronutrients) for various value-added products and act as a carbon sink for atmospheric CO2. The rigidity of the microalgal cell wall makes it difficult to extract different cellular components for its applications, including biofuel production, food and feed supplements, and pharmaceuticals. To improve the recovery of products from microalgae, pretreatment strategies such as biological, physical, chemical, and combined methods have been explored to improve whole-cell disruption and product recovery efficiency. However, the diversity and uniqueness of the microalgal cell wall make the pretreatment process more species-specific and limit its large-scale application. Therefore, advancing the currently available technologies is required from an economic, technological, and environmental perspective. Thus, this paper provides a state-of-art review of the current trends, challenges, and prospects of sustainable microalgal pretreatment technologies from a microalgae-based biorefinery concept.
Collapse
Affiliation(s)
- Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sanjay Kumar
- Biofuel Research Laboratory, School of Biochemical Engineering, IIT(BHU) Varanasi, Varanasi, U.P. 221005 India
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Shweta Rawat
- Biofuel Research Laboratory, School of Biochemical Engineering, IIT(BHU) Varanasi, Varanasi, U.P. 221005 India
| | - Agendra Gangwar
- Biofuel Research Laboratory, School of Biochemical Engineering, IIT(BHU) Varanasi, Varanasi, U.P. 221005 India
| | - R Senthamizh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Yuk Kit Yuen
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lijun Luo
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem - 534101, West Godavari Dist, Andhra Prdesh, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang-si, Gyeonggido, Seoul 10326, Korea
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
12
|
Biodiesel production from wet microalgae: Progress and challenges. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Plant Extraction in Water: Towards Highly Efficient Industrial Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the beginning of this century, the world has experienced a growing need for enabling techniques and more environmentally friendly protocols that can facilitate more rational industrial production. Scientists are faced with the major challenges of global warming and safeguarding water and food quality. Organic solvents are still widely used and seem to be hard to replace, despite their enormous environmental and toxicological impact. The development of water-based strategies for the extraction of primary and secondary metabolites from plants on a laboratory scale is well documented, with several intensified processes being able to maximize the extraction power of water. Technologies, such as ultrasound, hydrodynamic cavitation, microwaves and pressurized reactors that achieve subcritical water conditions can dramatically increase extraction rates and yields. In addition, significant synergistic effects have been observed when using combined techniques. Due to the limited penetration depth of microwaves and ultrasonic waves, scaling up entails changes to reactor design. Nevertheless, the rich academic literature from laboratory-scale investigations may contribute to the engineering work involved in maximizing mass/energy transfer. In this article, we provide an overview of current and innovative techniques for solid-liquid extraction in water for industrial applications, where continuous and semi-continuous processes can meet the high demands for productivity, profitability and quality.
Collapse
|
14
|
Sari TP, Sirohi R, Krishania M, Bhoj S, Samtiya M, Duggal M, Kumar D, Badgujar PC. Critical overview of biorefinery approaches for valorization of protein rich tree nut oil industry by-product. BIORESOURCE TECHNOLOGY 2022; 362:127775. [PMID: 35964919 DOI: 10.1016/j.biortech.2022.127775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This review explores reutilization opportunities of protein-rich bio-waste derived from the major tree nuts (almonds, walnuts, and cashew nuts) oil processing industries through biorefinery strategies. The mechanically pressed out oil cakes of these nuts have high protein (45-55%), carbohydrate (30-35%), and fiber that could be utilized to produce bioactive peptides, biofuels, and dietary fiber, respectively; all of which can fetch substantially greater value than its current utilization as a cattle feed. Specific attention has been given to the production, characterization, and application of nut-based de-oiled cake hydrolysates for therapeutic benefits including antioxidant, antihypertensive and neuroprotective properties. The often-neglected safety/toxicological evaluation of the hydrolysates/peptide sequences has also been described. Based on the available data, it is concluded that enzymatic hydrolysis is a preferred method than microbial fermentation for the value addition of de-oiled tree nut cakes. Further, critical insights on the existing literature as well as potential research ideas have also been proposed.
Collapse
Affiliation(s)
- T P Sari
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140 306, India
| | - Suvarna Bhoj
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Mrinal Samtiya
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Muskaan Duggal
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140 306, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India; Division of Food Science and Technology, Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad 121 004, Haryana, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India.
| |
Collapse
|
15
|
Huang Z, Guo S, Guo Z, He Y, Chen B. Integrated green one-step strategy for concurrent recovery of phycobiliproteins and polyunsaturated fatty acids from wet Porphyridium biomass. Food Chem 2022; 389:133103. [DOI: 10.1016/j.foodchem.2022.133103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 12/19/2022]
|
16
|
Russell C, Rodriguez C, Yaseen M. Microalgae for lipid production: Cultivation, extraction & detection. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Partial enzymatic cell wall disruption of Oocystis sp. for simultaneous cultivation and extraction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Castejón N, Marko D. Fatty Acid Composition and Cytotoxic Activity of Lipid Extracts from Nannochloropsis gaditana Produced by Green Technologies. Molecules 2022; 27:molecules27123710. [PMID: 35744834 PMCID: PMC9230018 DOI: 10.3390/molecules27123710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Microalgae are alternatives and sustainable sources of omega-3 long chain-polyunsaturated fatty acids (LC-PUFA). However, the eco-friendly extraction of these bioactives remains unexplored. In this work, the use of enzyme-based methods in combination with ultrasounds was evaluated as green approaches to extract the omega-3 lipids from Nannochloropsis gaditana. Three commercial enzymatic solutions (Viscozyme® L, Celluclast® 1.5 L, and Saczyme®) were investigated, and results were compared with the traditional Folch method. A promising extraction approach was developed by using Saczyme®, achieving a lipid yield of 25.7% ± 0.5, comparable to the traditional method (27.3% ± 0.7) (p > 0.05). Similar omega-3 content was found by GC−MS analysis for both lipid extracts (30.2% ± 2.4 and 29.3% ± 0.8 for the green and the traditional method, respectively), showing that the green approaches did not affect the fatty acid profile. Moreover, the cytotoxic activity of produced lipids was assessed by comparing human colon cancer cells (HCT-116) and epithelial nontumorigenic immortalized cells (HCEC-1CT). Results suggest that the lipid extracts have a selective effect, reducing the viability of the colon carcinoma cells but not the nontumorigenic cells. Thus, this study provides new eco-innovative approaches for extracting the omega-3 LC-PUFA from microalgae with promising biological properties.
Collapse
|
19
|
Liu Y, Liu X, Cui Y, Yuan W. Ultrasound for microalgal cell disruption and product extraction: A review. ULTRASONICS SONOCHEMISTRY 2022; 87:106054. [PMID: 35688121 PMCID: PMC9175141 DOI: 10.1016/j.ultsonch.2022.106054] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 05/12/2023]
Abstract
Microalgae are a promising feedstock for the production of biofuels, nutraceuticals, pharmaceuticals and cosmetics, due to their superior capability of converting solar energy and CO2 into lipids, proteins, and other valuable bioactive compounds. To facilitate the release of these important biomolecules from microalgae, effective cell disruption is usually necessary, where the use of ultrasound has gained tremendous interests as an alternative to traditional methods. This review not only summarizes the mechanisms of and operation parameters affecting cell disruption, but also takes an insight into measuring techniques, synergistic integration with other disruption methods, and challenges of ultrasonication for microalgal biorefining. Optimal conditions including ultrasonic frequency, intensity, and duration, and liquid viscosity and sonochemical reactor are the key factors for maximizing the disruption and extraction efficiency. A combination of ultrasound with other disruption methods such as ozonation, microwave, homogenization, enzymatic lysis, and solvents facilitates cell disruption and release of target compounds, thus provides powerful solutions to commercial scale-up of ultrasound extraction for microalgal biorefining. It is concluded that ultrasonication is a sustainable "green" process, but more research and work are needed to upscale this process without sacrificing performance or consuming more energy.
Collapse
Affiliation(s)
- Ying Liu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Academy of Environmental Science, Shenzhen 518001, Guangdong, China
| | - Xin Liu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, Guangxi, China
| | - Yan Cui
- Gansu Innovation Center of Microalgae Technology, Hexi University, Zhangye 734000, Gansu, China
| | - Wenqiao Yuan
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
20
|
Costa MM, Pio LB, Bule P, Cardoso VA, Duarte M, Alfaia CM, Coelho DF, Brás JA, Fontes CM, Prates JA. Recalcitrant cell wall of Ulva lactuca seaweed is degraded by a single ulvan lyase from family 25 of polysaccharide lyases. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:184-192. [PMID: 35600544 PMCID: PMC9092854 DOI: 10.1016/j.aninu.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/04/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
Green macroalgae, e.g., Ulva lactuca, are valuable bioactive sources of nutrients; but algae recalcitrant cell walls, composed of a complex cross-linked matrix of polysaccharides, can compromise their utilization as feedstuffs for monogastric animals. This study aimed to evaluate the ability of pre-selected Carbohydrate-Active enZymes (CAZymes) and sulfatases to degrade U. lactuca cell walls and release nutritive compounds. A databank of 199 recombinant CAZymes and sulfatases was tested in vitro for their action towards U. lactuca cell wall polysaccharides. The enzymes were incubated with the macroalga, either alone or in combination, to release reducing sugars and decrease fluorescence intensity of Calcofluor White stained cell walls. The individual action of a polysaccharide lyase family 25 (PL25), an ulvan lyase, was shown to be the most efficient in cell wall disruption. The ulvan lyase treatment, in triplicate measures, promoted the release of 4.54 g/L (P < 0.001) reducing sugars, a mono- and oligosaccharides release of 11.4 and 11.2 mmol/100 g of dried alga (P < 0.01), respectively, and a decrease of 41.7% (P < 0.001) in cell wall fluorescence, in comparison to control. The ability of ulvan lyase treatment to promote the release of nutritional compounds from alga biomass was also evaluated. A release of some monounsaturated fatty acids was observed, particularly the health beneficial 18:1c9 (P < 0.001). However, no significant release of total fatty acids (P > 0.05), proteins (P = 0.861) or pigments (P > 0.05) was found. These results highlight the capacity of a single recombinant ulvan lyase (PL25 family) to incompletely disrupt U. lactuca cell walls. This enzyme could enhance the bioaccessibility of U. lactuca bioactive products with promising utilization in the feed industry.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Luís B. Pio
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Pedro Bule
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Vânia A. Cardoso
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - Marlene Duarte
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Cristina M. Alfaia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Diogo F. Coelho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Joana A. Brás
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - Carlos M.G.A. Fontes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - José A.M. Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| |
Collapse
|
21
|
Liang D, Alam A, Lu L, Fan R, Xu J, Wu J. Water-plasma-enhanced and phase-separation-assisted extraction of microalgal lipid for biodiesel production. BIORESOURCE TECHNOLOGY 2022; 354:127198. [PMID: 35460839 DOI: 10.1016/j.biortech.2022.127198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Traditional methods for lipid extraction from microalgal biomass usually involve harsh reaction conditions or the use of contaminant reagents, which lead to enormous energy consumption and wastage. Hence, a novel strategy was presented, which combined water-plasma and three-phase partitioning (TPP) techniques. Benefiting from its unique advantages such as rapid and low cost, water-plasma strategy can disrupt microalgal cell wall and can thus greatly affect lipid extraction. As a result, assisted with the TPP method, excellent performance lipid recovery (74.34%) was obtained at 200 W in 10 min. The performance was superior to that achieved through cell disruption via water-plasma pretreatment. Importantly, the whole process of lipid extraction prevented the drying of microalgal biomass, contributing to reduced energy consumption in large-scale biodiesel production. Moreover, the high fatty acids content suggested that the extracted lipids are great potential candidate for biodiesel production.
Collapse
Affiliation(s)
- Dong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Luying Lu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
| | - Ronglei Fan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi street, Suzhou 215006, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingcheng Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
22
|
Testimony on a successful lab protocol to disrupt Chlorella vulgaris microalga cell wall. PLoS One 2022; 17:e0268565. [PMID: 35587491 PMCID: PMC9119475 DOI: 10.1371/journal.pone.0268565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Over the last decades, microalgae have gained popularity due to demand for novel environmental green solutions and development of innovative mass-production sources for multiple processes, including animal feed and human diet, turning microalgae into an exquisite candidate for several ecofriendly technologies. Notwithstanding, there is a catch. Most species of microalgae, as the case of common Chlorella vulgaris (C. vulgaris) display a recalcitrant cell wall, characterized by a complex matrix of polysaccharides and glycoproteins, which constitutes a major barrier for monogastric species digestibility and extraction of inner valuable nutritional compounds. To overcome this limitation, the development of feed enzymes, in particular Carbohydrate-Active enZymes (CAZymes) with capacity to disrupt C. vulgaris cell wall may contribute to improve the bioavailability of these microalgae compounds in monogastric diets, namely at high levels of incorporation. In order to disclosure novel combination of feed enzymes to disrupt C. vulgaris cell wall, a lab protocol was implemented by our research team containing the following key steps: after microalgae cultivation and having available a repertoire of two hundred pre-selected CAZymes produced by high-throughput technology, the step 1 is the individual screening of the most functional enzymes on disrupting C. vulgaris cell wall (versus a control, defined as the microalgae suspension incubated with PBS) and the determination of reducing sugars released by the 3,5-dinitrosalicylic acid (DNSA) method; step 2 concerns on finding the best CAZymes cocktail, testing the synergistic effect of enzymes, to disrupt C. vulgaris cell wall (in parallel with running the control) along with characterization of each enzyme thermostability and resistance to proteolytic attack, to which feed enzymes are subjected in the animal gastrointestinal tract; step 3 is the assessment of C. vulgaris cell wall degradation degree by measuring the amount of reducing sugars released by the DNSA method, fatty acid analysis by gas chromatography (GC) with flame ionization detector (FID), oligosaccharides quantification by high performance liquid chromatography (HPLC) equipped with an electrochemical detector (ECD), protein content by the Kjeldahl method, and various pigments (chlorophylls a and b, and total carotenoids) in the supernatant. In the correspondent residue, we also assessed cellular counting using a Neubauer chamber by direct observation on a bright-field microscope and fluorescence intensity, after staining with Calcofluor White for both control and CAZymes cocktail treatments, on a fluorescence microscope. Beyond animal feed industry with impact on human nutrition, our lab protocol may increase the yield in obtaining valued constituents from C. vulgaris microalga for other biotechnological industries.
Collapse
|
23
|
Recent Advances in the Valorization of Algae Polysaccharides for Food and Nutraceutical Applications: a Review on the Role of Green Processing Technologies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Kholany M, Coutinho JAP, Ventura SPM. Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules 2022; 27:2540. [PMID: 35458744 PMCID: PMC9030877 DOI: 10.3390/molecules27082540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
Microalgae have an outstanding capacity to efficiently produce value-added compounds. They have been inspiring researchers worldwide to develop a blue biorefinery, supporting the development of the bioeconomy, tackling the environmental crisis, and mitigating the depletion of natural resources. In this review, the characteristics of the carotenoids produced by microalgae are presented and the downstream processes developed to recover and purify them are analyzed, considering their main applications. The ongoing activities and initiatives taking place in Portugal regarding not only research, but also industrialization under the blue biorefinery concept are also discussed. The situation reported here shows that new techniques must be developed to make microalgae production more competitive. Downstream pigment purification technologies must be developed as they may have a considerable impact on the economic viability of the process. Government incentives are needed to encourage a constructive interaction between academics and businesses in order to develop a biorefinery that focuses on high-grade chemicals.
Collapse
Affiliation(s)
| | | | - Sónia P. M. Ventura
- Chemistry Department, CICECO-Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.K.); (J.A.P.C.)
| |
Collapse
|
25
|
Prabha S, Vijay AK, Paul RR, George B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152795. [PMID: 34979226 DOI: 10.1016/j.scitotenv.2021.152795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are well known for their plethora of applications in the fields of food industry, pharmaceuticals and bioenergy. Their simple growth requirements, remarkable growth rate and the ability to produce a wide range of bio-active compounds enable them to act as an efficient biorefinery for the production of valuable metabolites. Most of the cyanobacteria based biorefineries are targeting single products and thus fails to meet the efficient valorization of biomass. On the other hand, multiple products recovering cyanobacterial biorefineries can efficiently valorize the biomass with minimum to zero waste generation. But there are plenty of bottlenecks and challenges allied with cyanobacterial biorefineries. Most of them are being associated with the production processes and downstream strategies, which are difficult to manage economically. There is a need to propose new solutions to eliminate these tailbacks so on to elevate the cyanobacterial biorefinery to be an economically feasible, minimum waste generating multiproduct biorefinery. Cost-effective approaches implemented from production to downstream processing without affecting the quality of products will be beneficial for attaining economic viability. The integrated approaches in cultivation systems as well as downstream processing, by simplifying individual processes to unit operation systems can obviously increase the economic feasibility to a certain extent. Low cost approaches for biomass production, multiparameter optimization and successive sequential retrieval of multiple value-added products according to their high to low market value from a biorefinery is possible. The nanotechnological approaches in cyanobacterial biorefineries make it one step closer to the goal. The current review gives an overview of strategies used for constructing self-sustainable- economically feasible- minimum waste generating; multiple products based cyanobacterial biorefineries by the efficient valorization of biomass. Also the possibility of uplifting new cyanobacterial strains for biorefineries is discussed.
Collapse
Affiliation(s)
- Syama Prabha
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Aravind K Vijay
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Basil George
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India.
| |
Collapse
|
26
|
Canelli G, Kuster I, Jaquenod L, Buchmann L, Murciano Martínez P, Rohfritsch Z, Dionisi F, Bolten CJ, Nanni P, Mathys A. Pulsed electric field treatment enhances lipid bioaccessibility while preserving oxidative stability in Chlorella vulgaris. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Bhushan S, Rana MS, Bhandari M, Sharma AK, Simsek H, Prajapati SK. Enzymatic pretreatment of algal biomass has different optimal conditions for biogas and bioethanol routes. CHEMOSPHERE 2021; 284:131264. [PMID: 34216928 DOI: 10.1016/j.chemosphere.2021.131264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Enzymatic pretreatment is emerging as an efficient tool for the extraction of biofuel precursors from algal biomass. However, yardsticks for end-use directed selection of optimal pretreatment conditions are not yet identified. The present study, for the first time, reveals different optimal conditions for algal biomass solubilization and sugar release. Algal biomass pretreatment optimization was carried out using the Taguchi method. Crude enzyme from Aspergillus fischeri was found effective for pretreatment of Chlorella pyrenoidosa. Maximum sugar yield (190 mg g-1 biomass) from algal biomass was observed at a substrate concentration of 4 g L-1, with a 5% enzyme load at temperature 60°C, pH 5.5, and shaking speed of 80 rpm. In contrast, maximum sCOD (1350 mg g-1 biomass) was obtained at 2 g L-1 substrate concentration with enzyme load of 20% v/v, at 60°C, pH 4, and shaking speed of 100 rpm. Hence, the first set of conditions would be more beneficial for bioethanol production. Whereas another set of conditions would improve the biofuel production that requires maximum solubilization of algal biomass, such as fermentative methane production. Overall, the present observations established that process conditions required for enzymatic pretreatment of algal biomass should be selected according to the desired biofuel type.
Collapse
Affiliation(s)
- Shashi Bhushan
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India; Department of Agricultural and Biosystem Engineering, North Dakota State University (NDSU), North Dakota, 58102, USA
| | - Mohit Singh Rana
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India
| | - Mamta Bhandari
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India
| | - Ashwini Kumar Sharma
- Department of Chemical Engineering, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India
| | - Halis Simsek
- Department of Agricultural and Biosystem Engineering, North Dakota State University (NDSU), North Dakota, 58102, USA
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India.
| |
Collapse
|
28
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
29
|
Valorization of the Red Algae Gelidium sesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches. Mar Drugs 2021; 19:md19100574. [PMID: 34677473 PMCID: PMC8539579 DOI: 10.3390/md19100574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Until now, the red algae Gelidium sesquipedale has been primarily exploited for agar production, leaving an undervalued biomass. In this work, the use of eco-friendly approaches employing ultrasound-assisted extraction (UAE) and green solvents was investigated to valorize the algal minor compounds. The green methods used herein showed an attractive alternative to efficiently extract a broad spectrum of bioactive compounds in short extraction times (15 to 30 min vs. 8 h of the conventional method). Using the best UAE conditions, red seaweed extracts were characterized in terms of total phenolics (189.3 ± 11.7 mg GAE/100 g dw), flavonoids (310.7 ± 9.7 mg QE/100 g dw), mycosporine-like amino acids (MAAs) (Σ MAAs = 1271 mg/100 g dw), and phycobiliproteins (72.4 ± 0.5 mg/100 g dw). Additionally, produced algal extracts exhibited interesting antioxidant and anti-enzymatic activities for potential applications in medical and/or cosmetic products. Thus, this study provides the basis to reach a superior valorization of algal biomass by using alternative methods to extract biologically active compounds following eco-friendly approaches. Moreover, the strategies developed not only open new possibilities for the commercial use of Gelidium sesquipedale, but also for the valorization of different algae species since the techniques established can be easily adapted.
Collapse
|
30
|
Kamal H, Le CF, Salter AM, Ali A. Extraction of protein from food waste: An overview of current status and opportunities. Compr Rev Food Sci Food Saf 2021; 20:2455-2475. [PMID: 33819382 DOI: 10.1111/1541-4337.12739] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
The chief intent of this review is to explain the different extraction techniques and efficiencies for the recovery of protein from food waste (FW) sources. Although FW is not a new concept, increasing concerns about chronic hunger, nutritional deficiency, food security, and sustainability have intensified attention on alternative and sustainable sources of protein for food and feed. Initiatives to extract and utilize protein from FW on a commercial scale have been undertaken, mainly in the developed countries, but they remain largely underutilized and generally suited for low-quality products. The current analysis reveals the extraction of protein from FW is a many-sided (complex) issue, and that identifies for a stronger and extensive integration of diverse extraction perspectives, focusing on nutritional quality, yield, and functionality of the isolated protein as a valued recycled ingredient.
Collapse
Affiliation(s)
- Hina Kamal
- Future Food Beacon and Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan broga, Semenyih, Selangor, 43500, Malaysia
| | - Cheng Foh Le
- Future Food Beacon and Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan broga, Semenyih, Selangor, 43500, Malaysia
| | - Andrew M Salter
- School of Biosciences, Faculty of Science, University of Nottingham, Loughborough, LE 12 5RD, United Kingdom
| | - Asgar Ali
- Future Food Beacon and Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan broga, Semenyih, Selangor, 43500, Malaysia
| |
Collapse
|
31
|
Canelli G, Murciano Martínez P, Austin S, Ambühl ME, Dionisi F, Bolten CJ, Carpine R, Neutsch L, Mathys A. Biochemical and Morphological Characterization of Heterotrophic Crypthecodinium cohnii and Chlorella vulgaris Cell Walls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2226-2235. [PMID: 33570396 DOI: 10.1021/acs.jafc.0c05032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microalgae are attractive for the food and cosmetic industries because of their nutrient composition. However, the bioaccessibility and extractability of nutrients in microalgae are limited by the rigid and indigestible cell wall. The goal of this study is to explore the cell wall polysaccharides (CWPSs) composition and morphology in heterotrophic Crypthecodinium cohnii and Chlorella vulgaris biomasses during growth. Our results showed that glucose was the major component of CWPSs and exopolysaccharides in C. cohnii. C. vulgaris CWPSs have a similar sugar profile in exponential and stationary phases, essentially composed of rhamnose and galactose. C. vulgaris cell wall thickness increased from 82 nm in the exponential phase to 114 nm in the stationary phase and consisted of two main layers. C. cohnii's cell wall was 133 nm thick and composed of several membranes surrounding thecal plates. Understanding of the microalgae cell wall helps developing a more efficient and targeted biorefinery approach.
Collapse
Affiliation(s)
- Greta Canelli
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | | | - Sean Austin
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Mark E Ambühl
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Fabiola Dionisi
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | | | - Roberta Carpine
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820 Wädenswil, Switzerland
- Department of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lukas Neutsch
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820 Wädenswil, Switzerland
| | - Alexander Mathys
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
32
|
Pôjo V, Tavares T, Malcata FX. Processing Methodologies of Wet Microalga Biomass Toward Oil Separation: An Overview. Molecules 2021; 26:641. [PMID: 33530628 PMCID: PMC7866146 DOI: 10.3390/molecules26030641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022] Open
Abstract
One of the main goals of Mankind is to ensure food system sustainability-including management of land, soil, water, and biodiversity. Microalgae accordingly appear as an innovative and scalable alternative source in view of the richness of their chemical profiles. In what concerns lipids in particular, microalgae can synthesize and accumulate significant amounts of fatty acids, a great fraction of which are polyunsaturated; this makes them excellent candidates within the framework of production and exploitation of lipids by various industrial and health sectors, either as bulk products or fine chemicals. Conventional lipid extraction methodologies require previous dehydration of microalgal biomass, which hampers economic feasibility due to the high energy demands thereof. Therefore, extraction of lipids directly from wet biomass would be a plus in this endeavor. Supporting processes and methodologies are still limited, and most approaches are empirical in nature-so a deeper mechanistic elucidation is a must, in order to facilitate rational optimization of the extraction processes. Besides circumventing the current high energy demands by dehydration, an ideal extraction method should be selective, sustainable, efficient, harmless, and feasible for upscale to industrial level. This review presents and discusses several pretreatments incurred in lipid extraction from wet microalga biomass, namely recent developments and integrated processes. Unfortunately, most such developments have been proven at bench-scale only-so demonstration in large facilities is still needed to confirm whether they can turn into competitive alternatives.
Collapse
Affiliation(s)
- Vânia Pôjo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (V.P.); (F.X.M.)
| | - Tânia Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (V.P.); (F.X.M.)
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (V.P.); (F.X.M.)
- FEUP—Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-264 Porto, Portugal
| |
Collapse
|
33
|
Timira V, Meki K, Li Z, Lin H, Xu M, Pramod SN. A comprehensive review on the application of novel disruption techniques for proteins release from microalgae. Crit Rev Food Sci Nutr 2021; 62:4309-4325. [PMID: 33480267 DOI: 10.1080/10408398.2021.1873734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There is an emergent demand for sustainable and alternative protein sources such as insects and microorganisms that meet the nutritional requirements. Microalgae possess valuable substances that could satisfy the population's dietary requirement, medicinal purpose, and energy, aligned with effective processing techniques. Several disruption techniques were applied to microalgae species for protein recovery and other compounds. The thick microalgae cell wall makes it difficult to recover all the valuable biomolecules through several downstream processes. Thus, forethought key factors need to be considered when choosing a cell lysis method. The most challenging and crucial issue is selecting a technique that requires consideration of their ability to disrupt all cell types, easy to use, purity degree, reproducible, scalable, and energy efficient. This review aims to provide useful information specifically on mechanical and non-mechanical disruption methods, the status and potential in protein extraction capacities, and constraints. Therefore, further attention in the future on potential technologies, namely explosive decompression, microfluidization, pulsed arc technology, is required to supplement the discussed techniques. This article summarizes recent advances in cell disruption methods and demonstrates insights on new directions of the techniques and future developments.
Collapse
Affiliation(s)
- Vaileth Timira
- College College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Kudakwashe Meki
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhenxing Li
- College College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Hong Lin
- College College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Mengyao Xu
- College College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Siddanakoppalu N Pramod
- Laboratory of immunomodulation and inflammation biology, Department of Studies and Research in Biochemistry, Sahyadri Science College, Kuvempu University, Shimoga, Karnataka, India
| |
Collapse
|
34
|
Zeb L, Shafiq M, Chi ZY, Xiu ZL. Separation of microalgal docosahexaenoic acid-rich oils using a microwave-assisted three-phase partitioning system. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Hwangbo M, Chu KH. Recent advances in production and extraction of bacterial lipids for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139420. [PMID: 32464391 DOI: 10.1016/j.scitotenv.2020.139420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Lipid-based biofuel is a clean and renewable energy that has been recognized as a promising replacement for petroleum-based fuels. Lipid-based biofuel can be made from three different types of intracellular biolipids; triacylglycerols (TAGs), wax esters (WEs), and polyhydroxybutyrate (PHB). Among many lipid-producing prokaryotes and eukaryotes, biolipids from prokaryotes have been recently highlighted due to simple cultivation of lipid-producing prokaryotes and their ability to accumulate high biolipid contents. However, the cost of lipid-based biofuel production remains high, in part, because of high cost of lipid extraction processes. This review summarizes the production mechanisms of these different types of biolipids from prokaryotes and extraction methods for these biolipids. Traditional and improved physical/chemical approaches for biolipid extraction remain costly, and these methods are summarized and compared in this review. Recent advances in biological lipid extraction including phage-based cell lysis or secretion of biolipids are also discussed. These new techniques are promising for bacterial biolipids extraction. Challenges and future research needs for cost-effective lipid extraction are identified in this review.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
36
|
Effect of milling and enzymatic hydrolysis in the production of glucose from starch-rich Chlorella sorokiniana biomass. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Amorim ML, Soares J, Coimbra JSDR, Leite MDO, Albino LFT, Martins MA. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr 2020; 61:1976-2002. [PMID: 32462889 DOI: 10.1080/10408398.2020.1768046] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many countries have been experienced an increase in protein consumption due to the population growth and adoption of protein-rich dietaries. Unfortunately, conventional-based protein agroindustry is associated with environmental impacts that might aggravate as the humankind increase. Thus, it is important to screen for novel protein sources that are environmentally friendly. Microalgae farming is a promising alternative to couple the anthropic emissions with the production of food and feed. Some microalgae show protein contents two times higher than conventional protein sources. The use of whole microalgae biomass as a protein source in food and feed is simple and well-established. Conversely, the production of microalgae protein supplements and isolates requires the development of feasible and robust processes able to fractionate the microalgae biomass in different value-added products. Since most of the proteins are inside the microalgae cells, several techniques of disruption have been proposed to increase the efficiency to extract them. After the disruption of the microalgae cells, the proteins can be extracted, concentrated, isolated or purified allowing the development of different products. This critical review addresses the current state of the production of microalgae proteins for multifarious applications, and possibilities to concatenate the production of proteins and advanced biofuels.
Collapse
Affiliation(s)
- Matheus Lopes Amorim
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
38
|
Zhao S, Li P, Fang H, Song L, Li D, Liu R, Niu Q. Enhancement methane fermentation of Enteromorpha prolifera waste by Saccharomyces cerevisiae: batch kinetic investigation, dissolved organic matter characterization, and synergistic mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16254-16267. [PMID: 32124286 DOI: 10.1007/s11356-020-08013-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/05/2020] [Indexed: 05/27/2023]
Abstract
With the invasion of green tide, there were millions of tons of Enteromorpha prolifera (Enteromorpha) that need to be disposed of. An efficient microecological system for Enteromorpha fermentation was constructed using Saccharomyces cerevisiae (S. cerevisiae) and granular sludge at mesophilic condition (35 °C). In order to investigate the influence of S. cerevisiae dosage on fermentation, biomethane production and variations in dissolved organic matter (DOM) were investigated. The results indicated that the microecosystem with added S. cerevisiae exhibited improved fermentation capacity. Specifically, biomethane production was improved by 18%, with a maximum methane yield of 331 mL/g VS, and the time required to reach 90% methane yield was reduced by 41%. There were positive linear relationships between S. cerevisiae dosage and the efficiency of hydrolysis, acidogenesis, acetogenesis, and methanogenesis (R2 > 0.9). According to theoretical calculations, there was a positive effect of lower S. cerevisiae dosage (less than 0.93 g/g TS) on biomethane production, and excess dosage (more than 0.93 g/g TS) led to a negative effect due to volatile fatty acid (VFA) accumulation. The excitation-emission matrix (EEM) indicated that the humification index (HIX) and fulvic acid (FA) percentage of fluorescence regional integration in the system were decreased because the quinone and ketone groups of the FA accepted electrons from S. cerevisiae. These findings suggested that this microecosystem can accelerate fermentation speed (41%) and increase biomethane output (18.2%). The synergistic effect of Enteromorpha fermentation with Saccharomyces cerevisiae addition.
Collapse
Affiliation(s)
- Shunan Zhao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Ping Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Hongli Fang
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Liuying Song
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Dunjie Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Qigui Niu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
39
|
Trivedi J, Atray N, Agrawal D. Evaluating Cell Disruption Strategies for Aqueous Lipid Extraction from Oleaginous
Scenedesmus obliquus
at High Solid Loadings. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jayati Trivedi
- Biofuels DivisionCSIR‐ Indian Institute of Petroleum Mohkampur Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐HRDC Campus Ghaziabad 201002 India
| | - Neeraj Atray
- Biofuels DivisionCSIR‐ Indian Institute of Petroleum Mohkampur Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐HRDC Campus Ghaziabad 201002 India
| | - Deepti Agrawal
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐HRDC Campus Ghaziabad 201002 India
- Materials resource efficiency DivisionCSIR‐ Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| |
Collapse
|
40
|
Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, Matsakas L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020; 8:E434. [PMID: 32204542 PMCID: PMC7143722 DOI: 10.3390/microorganisms8030434] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Microorganisms are known to be natural oil producers in their cellular compartments. Microorganisms that accumulate more than 20% w/w of lipids on a cell dry weight basis are considered as oleaginous microorganisms. These are capable of synthesizing vast majority of fatty acids from short hydrocarbonated chain (C6) to long hydrocarbonated chain (C36), which may be saturated (SFA), monounsaturated (MUFA), or polyunsaturated fatty acids (PUFA), depending on the presence and number of double bonds in hydrocarbonated chains. Depending on the fatty acid profile, the oils obtained from oleaginous microorganisms are utilized as feedstock for either biodiesel production or as nutraceuticals. Mainly microalgae, bacteria, and yeasts are involved in the production of biodiesel, whereas thraustochytrids, fungi, and some of the microalgae are well known to be producers of very long-chain PUFA (omega-3 fatty acids). In this review article, the type of oleaginous microorganisms and their expertise in the field of biodiesel or omega-3 fatty acids, advances in metabolic engineering tools for enhanced lipid accumulation, upstream and downstream processing of lipids, including purification of biodiesel and concentration of omega-3 fatty acids are reviewed.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Dimitra Karageorgou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; (D.K.); (P.K.)
| | - Emma Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Petros Katapodis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; (D.K.); (P.K.)
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| |
Collapse
|
41
|
de Carvalho JC, Magalhães AI, de Melo Pereira GV, Medeiros ABP, Sydney EB, Rodrigues C, Aulestia DTM, de Souza Vandenberghe LP, Soccol VT, Soccol CR. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. BIORESOURCE TECHNOLOGY 2020; 300:122719. [PMID: 31956056 DOI: 10.1016/j.biortech.2019.122719] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Microalgae are sources of nutritional products and biofuels. However, their economical processing is challenging, because of (i) the inherently low concentration of biomass in algal cultures, below 0.5%, (ii) the high-water content in the harvested biomass, above 70%; and (iii) the variable intracellular content and composition. Cell wall structure and strength vary enormously among microalgae, from naked Dunaliella cells to robust Haematococcus cysts. High-value products justify using fast and energy-intensive processes, ranging from 0.23 kWh/kg dry biomass in high-pressure homogenization, to 6 kWh/kg dry biomass in sonication. However, in biofuels production, the energy input must be minimized, requiring slower, thermal or chemical pretreatments. Whichever the primary fraction of interest, the spent biomass can be processed into valuable by-products. This review discusses microalgal cell structure and composition, how it affects pretreatment, focusing on technologies tested for large scale or promising for industrial processes, and how these can be integrated into algal biorefineries.
Collapse
Affiliation(s)
- Júlio C de Carvalho
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil.
| | - Antônio Irineudo Magalhães
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Gilberto Vinicius de Melo Pereira
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Adriane Bianchi Pedroni Medeiros
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Eduardo Bittencourt Sydney
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Cristine Rodrigues
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Denisse Tatiana Molina Aulestia
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Vanete Thomaz Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| |
Collapse
|
42
|
Gomes TA, Zanette CM, Spier MR. An overview of cell disruption methods for intracellular biomolecules recovery. Prep Biochem Biotechnol 2020; 50:635-654. [DOI: 10.1080/10826068.2020.1728696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tatiane Aparecida Gomes
- Food Engineering Postgraduate Program, Department of Chemical Engineering, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Cristina Maria Zanette
- Food Engineering Postgraduate Program, Department of Chemical Engineering, Federal University of Paraná (UFPR), Curitiba, Brazil
- Food Engineering Department, Midwestern State University (UNICENTRO), Guarapuava, Brazil
| | - Michele Rigon Spier
- Food Engineering Postgraduate Program, Department of Chemical Engineering, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
43
|
Fouad DE, Zhang C, Mekuria TD, Bi C, Zaidi AA, Shah AH. Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α-Fe 2O 3) nanoparticles: A comparative study. ULTRASONICS SONOCHEMISTRY 2019; 59:104713. [PMID: 31421612 DOI: 10.1016/j.ultsonch.2019.104713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 05/25/2023]
Abstract
The present study reports a new approach to improve the adsorption and catalytic properties of hematite nanoparticles (HNPs) synthesized via the chemical precipitation technique as one of the most applicable and preferable synthesis methods. This could be performed through controlling the particles' crystallinity where a facile ultrasonic pathway (UP) modification was introduced as a hybrid replacement for the conventionally-used magnetic stirring pathway (MP) using different precursor concentrations. The X-ray diffraction and Raman spectra define the pristine phase of α-Fe2O3 crystal with lower crystallinity and higher degrees of structural disorder for UP products. UP also shows smaller nanosized particles with lower bundles of aggregations and lumps formation in addition to lesser values of polydispersity index compared to the MP products. The catalytic performance supported by the reaction kinetics for the degradation of hazardous Rose Bengal and Congo Red dyes in light and dark, respectively, were examined. It revealed superior efficiencies for all of the UP products within a short span against the conventional MP and previous studies. Moreover, it was confirmed that UP products could catalyze the biodegradation reactions of green algae (Enteromorpha) and induced higher rates of biogas production. In addition to this, decreasing the precursor concentrations was found to be another key factor reducing the produced particles' crystallinity, size, and lumps formation as well as affecting the morphology development. Thus, the synergetic effects of applying the UP at low precursor concentrations could show a practical pathway for the synthesis of low-crystalline HNPs with enhanced properties for green applications over the conventional MP products. Hence, the obtained findings are of vital importance to show the improved catalytic efficiency of HNPs by shedding new light on controlling the crystallinity and developing the surface features in the conventional precipitation process via the proposed modification.
Collapse
Affiliation(s)
- Diaa Eldin Fouad
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Forensic Authority, Ministry of Justice, Cairo, Egypt
| | - Chunhong Zhang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Tadele Daniel Mekuria
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Department of Chemistry, College of Natural and Computational Sciences, Assosa University, Assoa, Ethiopia
| | - Changlong Bi
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Asad A Zaidi
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi 75350, Pakistan; College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Ahmer Hussain Shah
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Department of Textile Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| |
Collapse
|
44
|
Qiu C, He Y, Huang Z, Li S, Huang J, Wang M, Chen B. Lipid extraction from wet Nannochloropsis biomass via enzyme-assisted three phase partitioning. BIORESOURCE TECHNOLOGY 2019; 284:381-390. [PMID: 30959375 DOI: 10.1016/j.biortech.2019.03.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
A green and efficient enzyme assisted three phase partitioning (EA-TPP) process was firstly developed to extract microalgal lipids using wet Nannochloropsis sp. biomass. In the pretreatment of microalgal biomass by four hydrolytic enzymes, TPP obtained a higher TFAs lipid extraction efficiency by cellulase compared with the resting enzymes. After optimization by EA-TPP of the wet disrupted Nannochloropsis biomass (3 g), the maximum TFAs extraction yield (90.40%) was attained at 20% ammonium sulphate, 6-7 pH, 1:2 slurry/tert-butanol ratio and 70 °C for 2 h incubation time and two extraction cycles. Moreover, results also revealed that the lipidic species compositions of Nannochloropsis sp. biomass were greatly related with the EA-TPP parameters. In the laboratory scale for wet disrupted microalgae biomass, EA-TPP process achieved 88.70% TFAs extraction yield under the optimized conditions. In all, EA-TPP process could be a promising approach to extract microalgae lipids for food application using wet microalgae biomass.
Collapse
Affiliation(s)
- Changyang Qiu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Feed Biotechnology, The Ministry of Agriculture of the People's Republic of China, Beijing 100081, China
| | - Zicheng Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Shaofeng Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Jian Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
45
|
Scenedesmus obliquus metabolomics: effect of photoperiods and cell growth phases. Bioprocess Biosyst Eng 2019; 42:727-739. [DOI: 10.1007/s00449-019-02076-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/15/2019] [Indexed: 11/27/2022]
|
46
|
Combining Microwave Pretreatment with Iron Oxide Nanoparticles Enhanced Biogas and Hydrogen Yield from Green Algae. Processes (Basel) 2019. [DOI: 10.3390/pr7010024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The available energy can be effectively upgraded by adopting smart energy conversion measures. The biodegradability of biomass can be improved by employing pretreatment techniques; however, such methods result in reduced energy efficiency. In this study, microwave (MW) irradiation is used for green algae (Enteromorpha) pretreatment in combination with iron oxide nanoparticles (NPs) which act as a heterogeneous catalyst during anaerobic digestion process for biogas enhancement. Batch-wise anaerobic digestion was carried out. The results showed that MW pretreatment and its combination with Fe3O4 NPs produced highest yields of biogas and hydrogen as compared to the individual ones and control. The biogas amount and hydrogen % v/v achieved by MW pretreatment + Fe3O4 NPs group were 328 mL and 51.5%, respectively. The energy analysis indicated that synergistic application of MW pretreatment with Fe3O4 NPs produced added energy while consuming less input energy than MW pretreatment alone. The kinetic parameters of the reaction were scientifically evaluated by using modified Gompertz and Logistic function model for each experimental case. MW pretreatment + Fe3O4 NPs group improved biogas production potential and maximum biogas production rate.
Collapse
|
47
|
Pulsed electric field permeabilization and extraction of phycoerythrin from Porphyridium cruentum. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Simultaneous extraction and fractionation of omega-3 acylglycerols and glycolipids from wet microalgal biomass of Nannochloropsis gaditana using pressurized liquids. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
He Y, Wu T, Wang X, Chen B, Chen F. Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process. BIORESOURCE TECHNOLOGY 2018; 268:583-591. [PMID: 30138870 DOI: 10.1016/j.biortech.2018.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 05/13/2023]
Abstract
In this study, a novel two-step enzymatic process was firstly established to produce microalgae biodiesel using wet Chlorella biomass. In the first hydrolysis step, to reduce energy consumption and effectively disrupt microalgal cell wall, among cellulase, hemicellulase, papain, lysozyme and pectinase, the highest hydrolysis efficiency (67.52%) was obtained by cellulase at pH 5.0 with enzyme dosage of 200 U/g dry biomass at 40 °C for 12 h. In the second transesterification step, compared with liquid CAL-A/B from Candida antarctica and PLA from Aspergillus oryzae, liquid lipase TL from Thermomyces lanuginosus achieved the highest biodiesel conversion at 81.15:1 (v/w) ethanol/g TFAs ratio in 78-83% water content with 100 PLU/g TFAs lipase loading at 25 °C for 48 h. Moreover, similar results were obtained with three Chlorella species by this process. Overall, this two-step enzymatic process was a green, low-energy and efficient method for cost-effective biodiesel production using wet microalgal biomass.
Collapse
Affiliation(s)
- Yongjin He
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaofei Wang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
50
|
Wirth R, Lakatos G, Böjti T, Maróti G, Bagi Z, Rákhely G, Kovács KL. Anaerobic gaseous biofuel production using microalgal biomass – A review. Anaerobe 2018; 52:1-8. [DOI: 10.1016/j.anaerobe.2018.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
|