1
|
Choe H, Antee T, Ge X. Substrate derived sequences act as subsite-blocking motifs in protease inhibitory antibodies. Protein Sci 2023; 32:e4691. [PMID: 37278099 PMCID: PMC10285753 DOI: 10.1002/pro.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Proteases are involved in many physiologic processes, and dysregulated proteolysis is basis of a variety of diseases. Specific inhibition of pathogenetic proteases via monoclonal antibodies therefore holds significant therapeutic promise. Inspired by the competitive mechanism utilized by many naturally occurring and man-made protease inhibitors, we hypothesized that substrate-like peptide sequences can act as protease subsite blocking motifs if they occupy only one side of the reaction center. To test this hypothesis, a degenerate codon library representing MMP-14 substrate profiles at P1-P5' positions was constructed in the context of an anti-MMP-14 Fab by replacing its inhibitory motif in CDR-H3 with MMP-14 substrate repertoires. After selection for MMP-14 active-site binders by phage panning, results indicated that diverse substrate-like sequences conferring antibodies inhibitory potencies were enriched in the isolated clones. Optimal residues at each of P1-P5' positions were then identified, and the corresponding mutation combinations showed improved characteristics as effective inhibitors of MMP-14. Insights on efficient library designs for inhibitory peptide motifs were further discussed. Overall, this study proved the concept that substrate-derived sequences were able to behave as the inhibitory motifs in protease-specific antibodies. With accumulating data available on protease substrate profiles, we expect the approach described here can be broadly applied to facilitate the generation of antibody inhibitors targeting biomedically important proteases.
Collapse
Affiliation(s)
- Hyunjun Choe
- Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
- Present address:
Arrowhead PharmaceuticalsMadisonWIUSA
| | - Tara Antee
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| | - Xin Ge
- Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| |
Collapse
|
2
|
Nam DH, Lee KB, Kruchowy E, Pham H, Ge X. Protease Inhibition Mechanism of Camelid-like Synthetic Human Antibodies. Biochemistry 2020; 59:3802-3812. [PMID: 32997500 PMCID: PMC7572768 DOI: 10.1021/acs.biochem.0c00690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macromolecular protease inhibitors and camelid single-domain antibodies achieve their enzymic inhibition functions often through protruded structures that directly interact with catalytic centers of targeted proteases. Inspired by this phenomenon, we constructed synthetic human antibody libraries encoding long CDR-H3s, from which highly selective monoclonal antibodies (mAbs) that inhibit multiple proteases were discovered. To elucidate their molecular mechanisms, we performed in-depth biochemical characterizations on a panel of matrix metalloproteinase (MMP)-14 inhibitory mAbs. Assays included affinity and potency measurements, enzymatic kinetics, a competitive enzyme-linked immunosorbent assay, proteolytic stability, and epitope mapping followed by quantitative analysis of binding energy changes. The results collectively indicated that these mAbs of convex paratopes were competitive inhibitors recognizing the vicinity of the active cleft, with their significant epitopes scattered across the north and south rims of the cleft. Remarkably, identified epitopes were the surface loops that were highly diverse among MMPs and predominately located at the prime side of the proteolytic site, shedding light on the mechanisms of target selectivity and proteolytic resistance. Substrate sequence profiling and paratope mutagenesis further suggested that mAb 3A2 bound to the active-site cleft in a canonical (substrate-like) manner, by direct interactions between 100hNLVATP100m of its CDR-H3 and subsites S1-S5' of MMP-14. Overall, synthetic mAbs carrying convex paratopes can achieve efficient inhibition and thus hold great therapeutic promise for effectively and safely targeting biomedically important proteases.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Evan Kruchowy
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Henry Pham
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
3
|
Lee KB, Dunn ZS, Lopez T, Mustafa Z, Ge X. Generation of highly selective monoclonal antibodies inhibiting a recalcitrant protease using decoy designs. Biotechnol Bioeng 2020; 117:3664-3676. [PMID: 32716053 DOI: 10.1002/bit.27519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 11/11/2022]
Abstract
Matrix metalloproteinase-12 (MMP-12), also known as macrophage elastase, is a potent inflammatory mediator and therefore an important pharmacological target. Clinical trial failures of broad-spectrum compound MMP inhibitors suggested that specificity is the key for a successful therapy. To provide the required selectivity, monoclonal antibody (mAb)-based inhibitors are on the rise. However, poor production of active recombinant human MMP-12 catalytic domain (cdMMP-12) presented a technical hurdle for its inhibitory mAb development. We hypothesized that this problem could be solved by designing an expression-optimized cdMMP-12 mutant without structural disruptions at its reaction cleft and surrounding area, and thus isolated active-site inhibitory mAbs could maintain their binding and inhibition functions toward wild-type MMP-12. We combined three advances in the field-PROSS algorithm for cdMMP-12 mutant design, convex paratope antibody library construction, and functional selection for inhibitory mAbs. As a result, isolated Fab inhibitors showed nanomolar affinity and potency toward cdMMP-12 with high selectivity and high proteolytic stability. Particularly, Fab LH11 targeted the reaction cleft of wild-type cdMMP-12 with 75 nM binding KD and 23 nM inhibition IC50 . We expect that our methods can promote the development of mAbs inhibiting important proteases, many of which are recalcitrant to functional production.
Collapse
Affiliation(s)
- Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| | - Zachary S Dunn
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California.,Element Biosciences, Inc., San Diego, California
| | - Zahid Mustafa
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| |
Collapse
|
4
|
Lopez T, Mustafa Z, Chen C, Lee KB, Ramirez A, Benitez C, Luo X, Ji RR, Ge X. Functional selection of protease inhibitory antibodies. Proc Natl Acad Sci U S A 2019; 116:16314-16319. [PMID: 31363054 PMCID: PMC6697876 DOI: 10.1073/pnas.1903330116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Critical for diverse biological processes, proteases represent one of the largest families of pharmaceutical targets. To inhibit pathogenic proteases with desired selectivity, monoclonal antibodies (mAbs) hold great promise as research tools and therapeutic agents. However, identification of mAbs with inhibitory functions is challenging because current antibody discovery methods rely on binding rather than inhibition. This study developed a highly efficient selection method for protease inhibitory mAbs by coexpressing 3 recombinant proteins in the periplasmic space of Escherichia coli-an antibody clone, a protease of interest, and a β-lactamase modified by insertion of a protease cleavable peptide sequence. During functional selection, inhibitory antibodies prevent the protease from cleaving the modified β-lactamase, thereby allowing the cell to survive in the presence of ampicillin. Using this method to select from synthetic human antibody libraries, we isolated panels of mAbs inhibiting 5 targets of 4 main protease classes: matrix metalloproteinases (MMP-14, a predominant target in metastasis; MMP-9, in neuropathic pain), β-secretase 1 (BACE-1, an aspartic protease in Alzheimer's disease), cathepsin B (a cysteine protease in cancer), and Alp2 (a serine protease in aspergillosis). Notably, 37 of 41 identified binders were inhibitory. Isolated mAb inhibitors exhibited nanomolar potency, exclusive selectivity, excellent proteolytic stability, and desired biological functions. Particularly, anti-Alp2 Fab A4A1 had a binding affinity of 11 nM and inhibition potency of 14 nM, anti-BACE1 IgG B2B2 reduced amyloid beta (Aβ40) production by 80% in cellular assays, and IgG L13 inhibited MMP-9 but not MMP-2/-12/-14 and significantly relieved neuropathic pain development in mice.
Collapse
Affiliation(s)
- Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Zahid Mustafa
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Chuan Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Aaron Ramirez
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Chris Benitez
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521;
| |
Collapse
|
5
|
Lee KB, Dunn Z, Ge X. Reducing proteolytic liability of a MMP-14 inhibitory antibody by site-saturation mutagenesis. Protein Sci 2019; 28:643-653. [PMID: 30592555 DOI: 10.1002/pro.3567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022]
Abstract
Playing pivotal roles in tumor growth and metastasis, matrix metalloproteinase-14 (MMP-14) is an important cancer target. Potent inhibitory Fab 3A2 with therapy-desired high selectivity has been isolated from a synthetic antibody library carrying long CDR-H3s. However, like many standard mechanism protease inhibitors, Fab 3A2 can be cleaved by high concentrations of MMP-14 after extended incubation at acidic pH. Edman sequencing of generated 3A2 fragments indicated that cleavage occurred within its CDR-H3 between residues N100h (P1) and L100i (P1'). To improve proteolytic stability of 3A2, three positions adjacent to its cleavage site (P1, P1', and P3') were subjected to site-saturation mutagenesis (SSM). Mutations at P1' (L100i) resulted in loss of inhibition function, while screening of 3A2 Fab mutants at P1 (N100h) or P3' (A100k) positions identified four clones exhibiting improvements in both stability and inhibition potency. The majority of these mutants with improved stability were substitutions to either hydrophobic (Lue, Trp) or basic residues (Arg, Lys, His). Combinations of these beneficial mutations resulted in a double mutant N100hR/A100kR, which prolonged half-life twofold with an inhibition potency KI of 6.6 nM. Enzyme kinetics and competitive ELISA suggested that N100hR/A100kR was a competitive inhibitor overlapping its binding epitope with that of nTIMP-2. This study demonstrated that site-directed mutagenesis at or near the cleavage position reduced proteolytic liability of standard mechanism protease inhibitors especially inhibitory antibodies.
Collapse
Affiliation(s)
- Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California, 92521
| | - Zachary Dunn
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California, 92521
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California, 92521
| |
Collapse
|
6
|
Staudacher AH, Liapis V, Brown MP. Selectivity Conversion of Protease Inhibitory Antibodies. Antib Ther 2018; 1:55-63. [PMID: 30406213 PMCID: PMC7990135 DOI: 10.1093/abt/tby008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 11/14/2022] Open
Abstract
Background: Proteases are one of the largest pharmaceutical targets for drug developments. Their dysregulations result in a wide variety of diseases. Because proteolytic networks usually consist of protease family members that share high structural and catalytic homology, distinguishing them using small molecule inhibitors is often challenging. To achieve specific inhibition, this study described a novel approach for the generation of protease inhibitory antibodies. As a proof of concept, we aimed to convert a matrix metalloproteinase (MMP)-14 specific inhibitor to MMP-9 specific inhibitory antibodies with high selectivity. Methods: An error-prone single-chain Fv (scFv) library of an MMP-14 inhibitor 3A2 was generated for yeast surface display. A dual-color competitive FACS was developed for selection on MMP-9 catalytic domain (cdMMP-9) and counter-selection on cdMMP-14 simultaneously, which were fused/conjugated with different fluorophores. Isolated MMP-9 inhibitory scFvs were biochemically characterized by inhibition assays on MMP-2/-9/-12/-14, proteolytic stability tests, inhibition mode determination, competitive ELISA with TIMP-2 (a native inhibitor of MMPs), and paratope mutagenesis assays. Results: We converted an MMP-14 specific inhibitor 3A2 into a panel of MMP-9 specific inhibitory antibodies with dramatic selectivity shifts of 690-4,500 folds. Isolated scFvs inhibited cdMMP-9 at nM potency with high selectivity over MMP-2/-12/-14 and exhibited decent proteolytic stability. Biochemical characterizations revealed that these scFvs were competitive inhibitors binding to cdMMP-9 near its reaction cleft via their CDR-H3s. Conclusions: This study developed a novel approach able to convert the selectivity of inhibitory antibodies among closely related protease family members. This methodology can be directly applied for mAbs inhibiting many proteases of biomedical importance.
Collapse
Affiliation(s)
- Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
7
|
Chen KHE, Chen C, Lopez T, Radecki KC, Bustamante K, Lorenson MY, Ge X, Walker AM. Use of a novel camelid-inspired human antibody demonstrates the importance of MMP-14 to cancer stem cell function in the metastatic process. Oncotarget 2018; 9:29431-29444. [PMID: 30034628 PMCID: PMC6047671 DOI: 10.18632/oncotarget.25654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are considered excellent targets for cancer therapy because of their important roles in multiple aspects of tumor growth and metastatic spread. However, not all MMPs, or even all activities of specific MMPs, promote cancer. Therefore, there is a need for highly specific inhibitors. Monoclonal antibodies provide the potential for the degree of specificity required, but the isolation of antibodies able to inhibit a specific protease with high selectivity is challenging. Proteolysis specificity lies in recognition of the substrate in or around the active site, which generally forms a concave cleft inaccessible by human IgGs. Inspired by camelid antibodies, which have convex paratopes, we have produced a recombinant human IgG, designated 3A2, which binds in the substrate cleft of MMP-14, inhibiting its activity, but not the activity of highly homologous MMPs. In the 4T1 highly metastatic, syngeneic, orthotopic model of breast cancer, IgG 3A2 markedly inhibited growth of the primary tumor, but more importantly reduced metastatic spread to the lungs and liver by 94%. Stem cells in the tumor population expressed twice as much MMP-14 mRNA as bulk tumor cells. In addition to reducing dissemination of tumor stem cells, as would be expected from inhibition of MMP-14's ability to degrade components of the extracellular matrix, IgG 3A2 also inhibited the ability of individual stem cells to proliferate and produce colonies. We conclude that it is possible to produce antibodies with sufficient specificity for development as therapeutics and that IgG 3A2 has therapeutic potential.
Collapse
Affiliation(s)
- Kuan-Hui E Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Chuan Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Kelly C Radecki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Karissa Bustamante
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Mary Y Lorenson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Abstract
Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.
Collapse
Affiliation(s)
- Aaron Dolor
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| | - Francis C. Szoka
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| |
Collapse
|
9
|
Remacle AG, Cieplak P, Nam DH, Shiryaev SA, Ge X, Strongin AY. Selective function-blocking monoclonal human antibody highlights the important role of membrane type-1 matrix metalloproteinase (MT1-MMP) in metastasis. Oncotarget 2018; 8:2781-2799. [PMID: 27835863 PMCID: PMC5356841 DOI: 10.18632/oncotarget.13157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/13/2016] [Indexed: 02/05/2023] Open
Abstract
The invasion-promoting MT1-MMP is a cell surface-associated collagenase with a plethora of critical cellular functions. There is a consensus that MT1-MMP is a key protease in aberrant pericellular proteolysis in migrating cancer cells and, accordingly, a promising drug target. Because of high homology in the MMP family and a limited success in the design of selective small-molecule inhibitors, it became evident that the inhibitor specificity is required for selective and successful MT1-MMP therapies. Using the human Fab antibody library (over 1.25×109 individual variants) that exhibited the extended, 23-27 residue long, VH CDR-H3 segments, we isolated a panel of the inhibitory antibody fragments, from which the 3A2 Fab outperformed others as a specific and potent, low nanomolar range, inhibitor of MT1-MMP. Here, we report the in-depth characterization of the 3A2 antibody. Our multiple in vitro and cell-based tests and assays, and extensive structural modeling of the antibody/protease interactions suggest that the antibody epitope involves the residues proximal to the protease catalytic site and that, in contrast with tissue inhibitor-2 of MMPs (TIMP-2), the 3A2 Fab inactivates the protease functionality by binding to the catalytic domain outside the active site cavity. In agreement with the studies in metastasis by others, our animal studies in acute pulmonary melanoma metastasis support a key role of MT1-MMP in metastatic process. Conversely, the selective anti-MT1-MMP monotherapy significantly alleviated melanoma metastatic burden. It is likely that further affinity maturation of the 3A2 Fab will result in the lead inhibitor and a proof-of-concept for MT1-MMP targeting in metastatic cancers.
Collapse
Affiliation(s)
- Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, USA
| | - Sergey A Shiryaev
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Nam DH, Lee KB, Ge X. Functional Production of Catalytic Domains of Human MMPs in Escherichia coli Periplasm. Methods Mol Biol 2018; 1731:65-72. [PMID: 29318544 DOI: 10.1007/978-1-4939-7595-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to their central roles in tumor growth and invasion, milligram-level amounts of active MMPs are frequently required for cancer research and development of chemical or biological MMP inhibitors. Here we describe methods for functional production of catalytic domains of MMPs (cdMMPs) in E. coli periplasm without refolding or activation process. We demonstrate applications of this straightforward approach for cdMMP-9, cdMMP-14, and cdMMP-14 mutants.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
11
|
Abstract
Inhibiting individual MMPs of biomedical importance with high selectivity is critical for both fundamental research and therapy development. Here we describe the methods for discovery of inhibitory monoclonal antibodies from synthetic human antibody phage display libraries carrying convex paratopes encoded by long complementarity-determining region (CDR)-H3 segments. We demonstrate the application of this technique for isolation of highly specific and potent antibody inhibitors of human MMP-14.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
12
|
Rodriguez C, Nam DH, Kruchowy E, Ge X. Efficient Antibody Assembly in E. coli Periplasm by Disulfide Bond Folding Factor Co-expression and Culture Optimization. Appl Biochem Biotechnol 2017; 183:520-529. [PMID: 28488120 DOI: 10.1007/s12010-017-2502-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/01/2017] [Indexed: 01/20/2023]
Abstract
Molecular chaperones and protein folding factors of bacterial periplasmic space play important roles in assisting disulfide bond formation and proper protein folding. In this study, effects of disulfide bond protein (Dsb) families were investigated on assembly of 3F3 Fab, an antibody inhibitor targeting matrix metalloproteinase-14 (MMP-14). By optimizing DsbA/C co-expression, promoter for 3F3 Fab, host strains, and culture media and conditions, a high yield of 30-mg purified 3F3 Fab per liter culture was achieved. Produced 3F3 Fab exhibited binding affinity of 34 nM and inhibition potency of 970 nM. This established method of DsbA/C co-expression can be applied to produce other important disulfide bond-dependent recombinant proteins in E. coli periplasm.
Collapse
Affiliation(s)
- Carlos Rodriguez
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Xencor Inc., 111 W Lemon Ave., Monrovia, CA, 91016, USA
| | - Evan Kruchowy
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Direct expression of active human tissue inhibitors of metalloproteinases by periplasmic secretion in Escherichia coli. Microb Cell Fact 2017; 16:73. [PMID: 28454584 PMCID: PMC5410052 DOI: 10.1186/s12934-017-0686-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background As regulators of multifunctional metalloproteinases including MMP, ADAM and ADAMTS families, tissue inhibitors of metalloproteinases (TIMPs) play a pivotal role in extracellular matrix remodeling, which is involved in a wide variety of physiological processes. Since abnormal metalloproteinase activities are related to numerous diseases such as arthritis, cancer, atherosclerosis, and neurological disorders, TIMPs and their engineered mutants hold therapeutic potential and thus have been extensively studied. Traditional productions of functional TIMPs and their N-terminal inhibitory domains (N-TIMPs) rely on costly and time-consuming insect and mammalian cell systems, or tedious and inefficient refolding from denatured inclusion bodies. The later process is also associated with heterogeneous products and batch-to-batch variation. Results In this study, we developed a simple approach to directly produce high yields of active TIMPs in the periplasmic space of Escherichia coli without refolding. Facilitated by disulfide isomerase (DsbC) co-expression in protease-deficient strain BL21 (DE3), N-TIMP-1/-2 and TIMP-2 which contain multiple disulfide bonds were produced without unwanted truncations. 0.2–1.4 mg purified monomeric TIMPs were typically yielded per liter of culture media. Periplasmically produced TIMPs exhibited expected inhibition potencies towards MMP-1/2/7/14, and were functional in competitive ELISA to elucidate the binding epitopes of MMP specific antibodies. In addition, prepared N-TIMPs were fully active in a cellular context, i.e. regulating cancer cell morphology and migration in 2D and 3D bioassays. Conclusion Periplasmic expression in E. coli is an excellent strategy to recombinantly produce active TIMPs and N-TIMPs. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0686-9) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Lopez T, Nam DH, Kaihara E, Mustafa Z, Ge X. Identification of highly selective MMP-14 inhibitory Fabs by deep sequencing. Biotechnol Bioeng 2017; 114:1140-1150. [PMID: 28090632 DOI: 10.1002/bit.26248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 02/01/2023]
Abstract
Matrix metalloproteinase (MMP)-14 is an important target for cancer treatment due to its critical roles in tumor invasion and metastasis. Previous failures of all compound-based broad-spectrum MMP inhibitors in clinical trials suggest that selectivity is the key for a successful therapy. With inherent high specificity, monoclonal antibodies (mAbs) therefore arise as attractive inhibitors able to target the particular MMP of interest. As a routine screening method, enzyme-linked immunosorbent assays (ELISA) have been applied to panned phage libraries for the isolation of mAbs inhibiting MMP-14. However, because of suboptimal growth conditions and insufficient antibody expression associated with monoclonal ELISA, a considerable number of potentially inhibitory clones might not be identified. Taking advantage of next-generation sequencing (NGS), we monitored enrichment profiles of millions of antibody clones along three rounds of phage panning, and identified 20 Fab inhibitors of MMP-14 with inhibition IC50 values of 10-4,000 nM. Among these inhibitory Fabs, 15 were not found by monoclonal phage ELISA. Particularly, Fab R2C7 exhibited an inhibition potency of 100 nM with an excellent selectivity to MMP-14 over MMP-9. Inhibition kinetics and epitope mapping suggested that as a competitive inhibitor, R2C7 directly bound to the vicinity of the MMP-14 catalytic site. This study demonstrates that deep sequencing is a powerful tool to facilitate the systematic discovery of mAbs with protease inhibition functions. Biotechnol. Bioeng. 2017;114: 1140-1150. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California, 900 University Ave, Riverside, California 92521
| | - Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, 900 University Ave, Riverside, California 92521
| | - Evan Kaihara
- Department of Chemical and Environmental Engineering, University of California, 900 University Ave, Riverside, California 92521
| | - Zahid Mustafa
- Department of Chemical and Environmental Engineering, University of California, 900 University Ave, Riverside, California 92521
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, 900 University Ave, Riverside, California 92521
| |
Collapse
|
15
|
Nam DH, Fang K, Rodriguez C, Lopez T, Ge X. Generation of inhibitory monoclonal antibodies targeting matrix metalloproteinase-14 by motif grafting and CDR optimization. Protein Eng Des Sel 2016; 30:113-118. [PMID: 27986919 DOI: 10.1093/protein/gzw070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinase-14 (MMP-14) plays important roles in cancer metastasis, and the failures of broad-spectrum MMP compound inhibitors in clinical trials suggested selectivity is critical. By grafting an MMP-14 specific inhibition motif into complementarity determining region (CDR)-H3 of antibody scaffolds and optimizing other CDRs and the sequences that flank CDR-H3, we isolated a Fab 1F8 showing a binding affinity of 8.3 nM with >1000-fold enhancement on inhibition potency compared to the peptide inhibitor. Yeast surface display and fluorescence-activated cell sorting results indicated that 1F8 was highly selective to MMP-14 and competed with TIMP-2 on binding to the catalytic domain of MMP-14. Converting a low-affinity peptide inhibitor into a high potency antibody, the described methods can be used to develop other inhibitory antibodies of therapeutic significance.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Kuili Fang
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Carlos Rodriguez
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc Natl Acad Sci U S A 2016; 113:14970-14975. [PMID: 27965386 DOI: 10.1073/pnas.1609375114] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteases are frequent pharmacological targets, and their inhibitors are valuable drugs in multiple pathologies. The catalytic mechanism and the active-site fold, however, are largely conserved among the protease classes, making the development of the selective inhibitors exceedingly challenging. In our departure from the conventional strategies, we reviewed the structure of known camelid inhibitory antibodies, which block enzyme activities via their unusually long, convex-shaped paratopes. We synthesized the human Fab antibody library (over 1.25 × 109 individual variants) that carried the extended, 23- to 27-residue, complementarity-determining region (CDR)-H3 segments. As a proof of principle, we used the catalytic domain of matrix metalloproteinase-14 (MMP-14), a promalignant protease and a drug target in cancer, as bait. In our screens, we identified 20 binders, of which 14 performed as potent and selective inhibitors of MMP-14 rather than as broad-specificity antagonists. Specifically, Fab 3A2 bound to MMP-14 in the vicinity of the active pocket with a high 4.8 nM affinity and was similarly efficient (9.7 nM) in inhibiting the protease cleavage activity. We suggest that the convex paratope antibody libraries described here could be readily generalized to facilitate the design of the antibody inhibitors to many additional enzymes.
Collapse
|
17
|
Bogachek MV, Park JM, De Andrade JP, Lorenzen AW, Kulak MV, White JR, Gu VW, Wu VT, Weigel RJ. Inhibiting the SUMO Pathway Represses the Cancer Stem Cell Population in Breast and Colorectal Carcinomas. Stem Cell Reports 2016; 7:1140-1151. [PMID: 27916539 PMCID: PMC5161532 DOI: 10.1016/j.stemcr.2016.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022] Open
Abstract
Many solid cancers have an expanded CD44+/hi/CD24−/low cancer stem cell (CSC) population, which are relatively chemoresistant and drive recurrence and metastasis. Achieving a more durable response requires the development of therapies that specifically target CSCs. Recent evidence indicated that inhibiting the SUMO pathway repressed tumor growth and invasiveness, although the mechanism has yet to be clarified. Here, we demonstrate that inhibition of the SUMO pathway repressed MMP14 and CD44 with a concomitant reduction in cell invasiveness and functional loss of CSCs in basal breast cancer. Similar effects were demonstrated with a panel of E1 and E3 SUMO inhibitors. Identical results were obtained in a colorectal cancer cell line and primary colon cancer cells. In both breast and colon cancer, SUMO-unconjugated TFAP2A mediated the effects of SUMO inhibition. These data support the development of SUMO inhibitors as an approach to specifically target the CSC population in breast and colorectal cancer. Sumoylation regulates CD44 and MMP14 expression in basal breast and colon cancer SUMO inhibition clears cancer stem cells, repressing invasiveness and tumor growth Anacardic acid functions as a SUMO inhibitor to repress cancer stem cells TFAP2A mediates anti-tumor effects of SUMO inhibition in breast and colon cancers
Collapse
Affiliation(s)
- Maria V Bogachek
- Department of Surgery, University of Iowa, 200 Hawkins Drive, 1516 JCP, Iowa City, IA 52242, USA
| | - Jung M Park
- Department of Surgery, University of Iowa, 200 Hawkins Drive, 1516 JCP, Iowa City, IA 52242, USA
| | - James P De Andrade
- Department of Surgery, University of Iowa, 200 Hawkins Drive, 1516 JCP, Iowa City, IA 52242, USA
| | - Allison W Lorenzen
- Department of Surgery, University of Iowa, 200 Hawkins Drive, 1516 JCP, Iowa City, IA 52242, USA
| | - Mikhail V Kulak
- Department of Surgery, University of Iowa, 200 Hawkins Drive, 1516 JCP, Iowa City, IA 52242, USA
| | - Jeffrey R White
- Department of Surgery, University of Iowa, 200 Hawkins Drive, 1516 JCP, Iowa City, IA 52242, USA
| | - Vivian W Gu
- Department of Surgery, University of Iowa, 200 Hawkins Drive, 1516 JCP, Iowa City, IA 52242, USA
| | - Vincent T Wu
- Department of Surgery, University of Iowa, 200 Hawkins Drive, 1516 JCP, Iowa City, IA 52242, USA
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, 200 Hawkins Drive, 1516 JCP, Iowa City, IA 52242, USA.
| |
Collapse
|
18
|
Ruskyte K, Liutkevicienė R, Vilkeviciute A, Vaitkiene P, Valiulytė I, Glebauskiene B, Kriauciuniene L, Zaliuniene D. MMP-14 and TGFβ-1 methylation in pituitary adenomas. Oncol Lett 2016; 12:3013-3017. [PMID: 27698891 DOI: 10.3892/ol.2016.4919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Pituitary adenoma (PA) is one of the most common abnormalities in the sellar region. Despite the fact that PA is a benign monoclonal neoplasm, it can cause serious complications, including ophthalmological, neurological and endocrinological abnormalities. Currently, the causes that increase the progression of tumors are unknown. Epigenetic silencing of the matrix metalloproteinase-14 (MMP-14) and transforming growth factor beta-1 (TGFβ-1) genes may be associated with the development of PA, since these genes are important in the processes of tumor metastasis and angiogenesis. The purpose of the present study was to determine if the methylation status of the MMP-14 and TGFβ-1 promoters is associated with PA development. In the present study, 120 tissue samples of PA were used. The methylation status of the MMP-14 and TGFβ-1 promoters was investigated by methylation specific-polymerase chain reaction. Statistical analysis was conducted to investigate the associations between the methylation status, age and gender of PA patients, PA tumoral activity, recurrence and invasiveness. The MMP-14 gene was methylated in 30.00% (17/56 functioning and 19/64 non-functioning) of patients with PA, while the TGFβ-1 gene was methylated in 13.33% (9/56 functioning and 7/64 non-functioning) of patients with PA. It was also observed that promoter methylation of MMP-14 correlated with the male gender (58.8 vs. 35.7%, P=0.022), while unmethylated (non-silenced) MMP-14 correlated with the female gender (64.3 vs. 41.7%, P=0.027). Associations between the promoter methylation status of the MMP-14 and TGFβ-1 genes and PA functioning or recurrence were not identified. The present study reveals that silencing of the MMP-14 gene correlates with patients' gender. However, MMP-14 and TGFβ-1 promoter methylation cannot be considered as a prognostic marker in PAs.
Collapse
Affiliation(s)
- Kornelija Ruskyte
- Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Rasa Liutkevicienė
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania; Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Paulina Vaitkiene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Indre Valiulytė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Brigita Glebauskiene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania; Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Dalia Zaliuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| |
Collapse
|