1
|
Sar T, Harirchi S, Ramezani M, Bulkan G, Akbas MY, Pandey A, Taherzadeh MJ. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152253. [PMID: 34902412 DOI: 10.1016/j.scitotenv.2021.152253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The dairy industry generates excessive amounts of waste and by-products while it gives a wide range of dairy products. Alternative biotechnological uses of these wastes need to be determined to aerobic and anaerobic treatment systems due to their high chemical oxygen demand (COD) levels and rich nutrient (lactose, protein and fat) contents. This work presents a critical review on the fermentation-engineering aspects based on defining the effective use of dairy effluents in the production of various microbial products such as biofuel, enzyme, organic acid, polymer, biomass production, etc. In addition to microbial processes, techno-economic analyses to the integration of some microbial products into the biorefinery and feasibility of the related processes have been presented. Overall, the inclusion of dairy wastes into the designed microbial processes seems also promising for commercial approaches. Especially the digestion of dairy wastes with cow manure and/or different substrates will provide a positive net present value (NPV) and a payback period (PBP) less than 10 years to the plant in terms of biogas production.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Gülru Bulkan
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Turkey
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | |
Collapse
|
2
|
Lawton MR, deRiancho DL, Alcaine SD. Lactose utilization by Brettanomyces claussenii expands potential for valorization of dairy by-products to functional beverages through fermentation. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Fermentation of Dairy-Relevant Sugars by Saccharomyces, Kluyveromyces, and Brettanomyces: An Exploratory Study with Implications for the Utilization of Acid Whey, Part I. FERMENTATION 2021. [DOI: 10.3390/fermentation7040266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Acid whey from Greek-style yogurt (YAW) is an underutilized byproduct and a challenge for the dairy industry. One alternative is the fermentation of YAW by yeasts such as Saccharomyces, Brettanomyces, and Kluyveromyces spp., to produce new styles of fermented beverages. Previous research in our group suggested that the sugar profiles of the dairy coproducts impacted the fermentation profiles produced by B. claussenii. The present work aims to describe the fermentation of dairy sugars by S. cerevisiae, K. marxianus, and B. claussenii, under conditions comparable to those of YAW. For this purpose, four preparations of yeast nitrogen base, each containing 40 g/L of either lactose (LAC), glucose (GLU), galactose (GAL), or a 1:1 mixture of glucose and galactose (GLU:GAL), all at pH 4.20, were used as fermentation media. The fermentation was performed independently by each organism at 25 °C under anoxic conditions, while density, pH, cell count, ethanol, and organic acids were monitored. Non-linear modeling was used to characterize density curves, and Analysis of Variance and Tukey’s Honest Significant Difference tests were used to compare fermentation products. K. marxianus and S. cerevisiae displayed rapid sugar consumption with consistent ethanol yields in all media, as opposed to B. claussenii, which showed more variable results. The latter organism exhibited what appears to be a selective glucose fermentation in GLU:GAL, which will be explored in the future. These results provide a deeper understanding of dairy sugar utilization by relevant yeasts, allowing for future work to optimize fermentations to improve value-added beverage and ingredient production from YAW.
Collapse
|
4
|
Abstract
Whey, the liquid remaining after milk fat and casein have been separated from whole milk, is one of the major disposal problems of the dairy industry, and demands simple and economical solutions. In view of the fast developments in biotechnological techniques, alternatives of treating whey by transforming lactose present in it to value added products have been actively explored. Whey can be used directly as a substrate for the growth of different microorganisms to obtain various products such as ethanol, single-cell protein, enzymes, lactic acid, citric acid, biogas and so on. In this review, a comprehensive and illustrative survey is made to elaborate the various biotechnological innovations/techniques applied for the effective utilization of whey for the production of different bioproducts.
Collapse
Affiliation(s)
- Parmjit S Panesar
- Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148 106, Punjab, India.
| | | |
Collapse
|
5
|
Mahmoud NS, Ghaly AE. On-Line Sterilization of Cheese Whey Using Ultraviolet Radiation. Biotechnol Prog 2008; 20:550-60. [PMID: 15059002 DOI: 10.1021/bp030050i] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effectiveness of ultraviolet radiation for on-line sterilization of cheese whey was investigated. The effects of flow rate and residence time on the performance of three UV reactors having different gap sizes (18, 13, and 6 mm) were studied. Six flow rates and six residence times were tested with the three UV reactors. The cheese whey used in this study had a very high turbidity (4317 NTU), very poor transmittance in the UV radiation germicidal range ( approximately 0%), and high percentage of large solid particles ( approximately 20% > 100 microm). Although the cheese whey physical characteristics showed low probability of sterilization using UV radiation, the study showed that UV radiation can be used on-line to sterilize cheese whey if the proper reactor gap size and the appropriate residence time are used. There were combined effects of the flow rate and gap size. The cell removal efficiency increased with increases in residence time and decreases in the UV reactor gap size. Removal efficiency of 100% was not achieved in this study with the first UV reactor (18-mm gap size), whereas 100% removal efficiency was achieved with the second (13-mm gap size) and third (6-mm gap size) UV reactors at residence times of 2.0 and 0.5 h, respectively. The microbial decay rates achieved in this study were 4.94, 7.62, and 20.9 h(-)(1) using the first, second, and third UV reactor, respectively. Residence times of 3.3, 2.1, and 0.8 h would be required to completely destruct a microbial population of 5.95 x 10(6) cells/mL using the first, second, and third UV reactors, respectively. Although cheese whey sterilization using UV radiation seems to be a good alternative to pasteurization, increases in cheese whey temperature resulted in lamp fouling. If online sterilization is to be used, the fouling problem should be investigated and a maintenance scheme for the UV reactor should be developed.
Collapse
Affiliation(s)
- N S Mahmoud
- Biological Engineering Department, Dalhousie University, P.O. Box 1000, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
6
|
Effect of Flow Characteristics on Online Sterilization of Cheese Whey in UV Reactors. Appl Biochem Biotechnol 2007; 142:1-16. [DOI: 10.1007/s12010-007-0004-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 09/06/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
|
7
|
Singh JP, Ghaly AE. Reduced fouling and enhanced microbial inactivation during online sterilization of cheese whey using UV coil reactors in series. Bioprocess Biosyst Eng 2006; 29:269-81. [PMID: 16944210 DOI: 10.1007/s00449-006-0076-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 07/06/2006] [Indexed: 11/25/2022]
Abstract
The effectiveness of coil UV reactor series for the online sterilization of cheese whey was compared to those of the single conventional and coil reactors at various flow rates (5-70 mL/min). The residence time varied from 168 to 12 min and from 48 to 24 min for the single and the series reactors, respectively. Hundred percent destruction efficiency could not be achieved in the single reactors whereas in the coil reactor series the destruction efficiency reached 100% at the flow rates of 35 and 40 mL/min. The rate of microbial destruction was described by polynomial equation for the single coil reactor and by exponential equations for the single conventional reactor and the coil reactor series. The temperature of the effluent decreased with the increase in flow rate in all the reactors. The maximum effluent temperatures in the single conventional reactor, single coil reactor and coil reactor series were 45.8, 46.1, and 36.4 degrees C (Deltat = 20.8, 21.1, 11.4 degrees C), respectively. The flow in all the reactors was laminar (R ( e ) = 1.39-20.10) and the Dean number was in the range of 1.09-15.41 in the coil reactors. Visual observation revealed less fouling on the UV lamps of coil reactors than on that of the conventional reactor due to the impact of Dean flow. The total operating time during which 100% destruction efficiency is achieved prior to the advent of fouling was 240 min in the coil reactor series compared to only 45 min in the conventional reactor.
Collapse
Affiliation(s)
- J P Singh
- Department of Process Engineering and Applied Science, Dalhousie University, P.O. Box 1000, Halifax, NS, Canada
| | | |
Collapse
|
8
|
Tzvetkova B, Vassileva S, Katranoushkova C, Losseva L. Fuzzy Regression Modeling of Batch Cultivation of Lactose Utilizing Yeast's using Nefrit. BIOTECHNOL BIOTEC EQ 2000. [DOI: 10.1080/13102818.2000.10819076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
9
|
Tzvetkova B, Vassileva S, Katranoushkova C, Losseva L. Fuzzy Regression Modeling of Batch Cultivation of Lactose Utilising Yeast's Using Nefrit. BIOTECHNOL BIOTEC EQ 1998. [DOI: 10.1080/13102818.1998.10819006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Abstract
The cheese industry produces large amounts of lactose in the form of cheese whey and whey permeate, generating approximately 27 million tonnes/yr in the US alone. Many uses have been found for whey and lactose, including uses in infant formula; bakery, dairy, and confectionery products; animal feed; and feedstocks for lactose derivatives and several industrial fermentations. Lactose use in food products, however, is somewhat limited because of its low solubility and indigestibility in many individuals. For this reason, lactose is often hydrolyzed before use. Still, demand is insufficient to use all available whey lactose. The result is a low market value for lactose; almost half of the whey produced each year remains unused and is a significant waste disposal problem. Several approaches are possible for transforming lactose into value-added products. For example, galactooligosaccharides can be produce through enzymatic treatments of lactose and may be used as a probiotic food ingredient. Organic acids or xanthan gum may be produced via whey fermentation, and the fermented whey product can be used as a food ingredient with special functionality. This paper reviews the physical characteristics, production techniques, and current uses of lactose, whey, and lactose derivatives. Also examined are novel fermentation and separation technologies developed in our laboratory for the production of lactate, propionate, acetate, and xanthan gum from whey.
Collapse
Affiliation(s)
- S T Yang
- Department of Chemical Engineering, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
11
|
Osho A. Evaluation of cashew apple juice for single cell protein and wine production. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/food.19950390518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Michel A, Jacob F, Perrier J, Poncet S. Yeast production from crude sweet whey. Biotechnol Bioeng 1987; 30:780-3. [DOI: 10.1002/bit.260300611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
|
14
|
LAYOKUN S, OBAWOLE A, FATILE I, SOLOMON B. Investigation of Cashew Apple Juice as a Substrate for Single Cell Protein Production. J Food Sci 1986. [DOI: 10.1111/j.1365-2621.1986.tb10882.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
|
16
|
Microbial Biomass from Renewables: A Second Review of Alternatives. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/b978-0-12-040307-3.50013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|