Lau J, Frykman S, Regentin R, Ou S, Tsuruta H, Licari P. Optimizing the heterologous production of epothilone D in Myxococcus xanthus.
Biotechnol Bioeng 2002;
78:280-8. [PMID:
11920444 DOI:
10.1002/bit.10202]
[Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The heterologous production of epothilone D in Myxococcus xanthus was improved by 140-fold from an initial titer of 0.16 mg/L with the incorporation of an adsorber resin, the identification of a suitable carbon source, and the implementation of a fed-batch process. To reduce the degradation of epothilone D in the basal medium, XAD-16 (20 g/L) was added to stabilize the secreted product. This greatly facilitated its recovery and enhanced the yield by three-fold. The potential of using oils as a carbon source for cell growth and product formation was also evaluated. From a screen of various oils, methyl oleate was shown to have the greatest impact. At the optimal concentration of 7 mL/L in a batch process, the maximum cell density was increased from 0.4 g dry cell weight (DCW)/L to 2 g DCW/L. Product yield, however, depended on the presence of trace elements in the production medium. With an exogenous supplement of trace metals to the basal medium, the peak epothilone D titer was enhanced eight-fold. This finding demonstrates the significant role of metal ions in cell metabolism and in epothilone biosynthesis. To further increase the product yield, a continuous fed-batch process was used to promote a higher cell density and to maintain an extended production period. The optimized fed-batch cultures consistently yielded a cell density of 7 g DCW/L and an average production titer of 23 mg/L.
Collapse