1
|
|
2
|
Klein T, Niklas J, Heinzle E. Engineering the supply chain for protein production/secretion in yeasts and mammalian cells. J Ind Microbiol Biotechnol 2015; 42:453-64. [PMID: 25561318 DOI: 10.1007/s10295-014-1569-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022]
Abstract
Metabolic bottlenecks play an increasing role in yeasts and mammalian cells applied for high-performance production of proteins, particularly of pharmaceutical ones that require complex posttranslational modifications. We review the present status and developments focusing on the rational metabolic engineering of such cells to optimize the supply chain for building blocks and energy. Methods comprise selection of beneficial genetic modifications, rational design of media and feeding strategies. Design of better producer cells based on whole genome-wide metabolic network analysis becomes increasingly possible. High-resolution methods of metabolic flux analysis for the complex networks in these compartmented cells are increasingly available. We discuss phenomena that are common to both types of organisms but also those that are different with respect to the supply chain for the production and secretion of pharmaceutical proteins.
Collapse
Affiliation(s)
- Tobias Klein
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | | | | |
Collapse
|
3
|
|
4
|
Resistance to influenza A virus infection in transformed cell lines expressing an anti-PB2 monoclonal antibody. Vet J 2013; 198:487-93. [PMID: 24140339 DOI: 10.1016/j.tvjl.2013.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/24/2022]
Abstract
The polymerase basic 2 (PB2) protein is one of four proteins that make up the influenza A virus replication complex, which is responsible for viral gene transcription and replication. To assess the antiviral potential of an anti-PB2 monoclonal antibody that inhibits RNA transcription of influenza A viruses, Mardin-Darby canine kidney (MDCK) cells were transformed with two transgenes that encode the light and heavy chains of the monoclonal antibody. The transformed cell lines expressing this monoclonal antibody displayed resistance to several subtypes of influenza A virus infection. In the transformed cell lines infected with influenza A virus, the level of viral RNA transcription was decreased and the effective nuclear transportation of the PB2 protein was also inhibited. These results demonstrate that the anti-PB2 intrabody is potentially able to interfere with the effective nuclear transportation of PB2 protein, resulting in the observed resistance to influenza A virus infection in vitro.
Collapse
|
5
|
Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells. Appl Microbiol Biotechnol 2012; 97:2531-9. [PMID: 22926643 DOI: 10.1007/s00253-012-4365-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/09/2012] [Accepted: 08/12/2012] [Indexed: 10/28/2022]
Abstract
Secretory capacities including folding and assembly are believed to be limiting factors in the establishment of mammalian cell lines producing high levels of recombinant therapeutic proteins. To achieve industrial success, it is also important to improve protein folding, assembly, and secretory processes in combination with increasing transcription and translation. Here, we identified the expression of CHOP/Gadd153 and GRP78, which are unfolded protein response (UPR)-related genes, correlated with recombinant antibody production in stable CHO cells. Subsequently, CHOP overexpression resulted in increasing recombinant antibody production in some mammalian cell lines, and in addition a threefold further enhancement was obtained by combining expression with UPR-related genes or ER chaperones in transient assays. Overexpression of CHOP had no effect on the biochemical characteristics of the product. These results suggest overexpression of CHOP and its combinations may be an effective method to efficiently select a single cell line with a high level of antibody production in the development of cell lines for manufacturing.
Collapse
|
6
|
McLeod J, O'Callaghan PM, Pybus LP, Wilkinson SJ, Root T, Racher AJ, James DC. An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer. Biotechnol Bioeng 2011; 108:2193-204. [PMID: 21445882 DOI: 10.1002/bit.23146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/31/2011] [Accepted: 03/14/2011] [Indexed: 12/16/2022]
Abstract
In this study we have combined empirically derived mathematical models of intracellular Mab synthesis to quantitatively compare the degree to which individual cellular processes limit recombinant IgG(4) monoclonal antibody production by GS-CHO cells throughout a state-of-the-art industrial fed-batch culture process. Based on the calculation of a production process control coefficient for each stage of the intracellular Mab synthesis and secretion pathway, we identified the major cellular restrictions on Mab production throughout the entire culture process to be recombinant heavy chain gene transcription and heavy chain mRNA translation. Surprisingly, despite a substantial decline in the rate of cellular biomass synthesis during culture, with a concomitant decline in the calculated rate constants for energy-intensive Mab synthetic processes (Mab folding/assembly and secretion), these did not exert significant control of Mab synthesis at any stage of production. Instead, cell-specific Mab production was maintained by increased Mab gene transcription which offset the decline in cellular biosynthetic rates. Importantly, this study shows that application of this whole-process predictive modeling strategy should rationally precede and inform cell engineering approaches to increase production of a recombinant protein by a mammalian host cell--where control of productivity is inherently protein product and cell line specific.
Collapse
Affiliation(s)
- Jane McLeod
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
O'Callaghan PM, McLeod J, Pybus LP, Lovelady CS, Wilkinson SJ, Racher AJ, Porter A, James DC. Cell line-specific control of recombinant monoclonal antibody production by CHO cells. Biotechnol Bioeng 2010; 106:938-51. [DOI: 10.1002/bit.22769] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Shen D, Kiehl TR, Khattak SF, Li ZJ, He A, Kayne PS, Patel V, Neuhaus IM, Sharfstein ST. Transcriptomic responses to sodium chloride-induced osmotic stress: A study of industrial fed-batch CHO cell cultures. Biotechnol Prog 2010; 26:1104-15. [DOI: 10.1002/btpr.398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Engineering Mammalian Cells for Recombinant Monoclonal Antibody Production. CELL ENGINEERING 2009. [DOI: 10.1007/978-90-481-2245-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Sun Z, Zhou R, Liang S, McNeeley KM, Sharfstein ST. Hyperosmotic Stress in Murine Hybridoma Cells: Effects on Antibody Transcription, Translation, Posttranslational Processing, and the Cell Cycle. Biotechnol Prog 2008; 20:576-89. [PMID: 15059005 DOI: 10.1021/bp0342203] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanisms for increased antibody production in batch cultures of murine hybridoma cells in response to hyperosmotic stress were investigated. The rates of immunoglobulin transcription and protein translation and posttranslational processing were determined in control and hyperosmotic cultures. Changes in immunoglobulin transcription played a minor role in the increase in antibody production in response to hyperosmotic stress. In contrast, protein translation increased substantially in response to osmotic stress. However, the antibody translation rate remained relatively constant after correcting for the overall increase in protein translation. Cell size and intracellular antibody pool also increased in response to hyperosmolarity. The intracellular antibody pool increased proportionately with the increase in cell size, indicating that hyperosmotic cultures do not selectively increase their intracellular antibody population. Changes in cell cycle distribution in response to osmotic stress and the relationship between the cell cycle and antibody production were also evaluated. Hyperosmotic stress altered the cell cycle distribution, increasing the fraction of the cells in S-phase. However, this change was uncorrelated with the increase in antibody production rate. Immunoglobulin degradation was relatively low ( approximately 15%) and remained largely unchanged in response to hyperosmotic stress. There was no apparent increase in immunoglobulin stability as a result of osmotic stress. Antibody secretion rates increased approximately 50% in response to osmotic stress, with a commensurate increase in the antibody assembly rate. The rate of transit through the entire posttranslational processing apparatus increased, particularly for immunoglobulin light chains. The levels of endoplasmic reticulum chaperones did not increase as a fraction of the total cellular protein but were increased on a per cell basis as the result of an increase in total cellular protein. A difference in the interactions between the immunoglobulin heavy chains and BiP/GRP78 was observed in response to hyperosmotic conditions. This change in interaction may be correlated with the decrease in transit time through the posttranslational pathways. The increase in the posttranslational processing rate appears to be commensurate with the increase in antibody production in response to hyperosmotic stress.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Bioengineering, University of Toledo, Toledo, Ohio 43606, USA
| | | | | | | | | |
Collapse
|
11
|
Stansfield SH, Allen EE, Dinnis DM, Racher AJ, Birch JR, James DC. Dynamic analysis of GS-NS0 cells producing a recombinant monoclonal antibody during fed-batch culture. Biotechnol Bioeng 2007; 97:410-24. [PMID: 17115445 DOI: 10.1002/bit.21263] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study we have analyzed the dynamic covariation of the mammalian cell proteome with respect to functional phenotype during fed-batch culture of NS0 murine myeloma cells producing a recombinant IgG(4) monoclonal antibody. GS-NS0 cells were cultured in duplicate 10 L bioreactors (36.5 degrees C, 15% DOT, pH 7.0) for 335 h and supplemented with a continuous feed stream after 120 h. Cell-specific growth rate declined continuously after 72 h of culture. Cell-specific recombinant monoclonal antibody production rate (qP) varied sixfold through culture. Whilst qP correlated with relative recombinant heavy chain mRNA abundance up to 216 h, qP subsequently declined, independent of recombinant heavy chain or light chain mRNA abundance. GS-NS0 cultures were sampled at 48 h intervals between 24 and 264 h of culture for proteomic analyses. Total protein abundance and nascent polypeptide synthesis was determined by 2D PAGE of unlabeled proteins visualized by SYPRO Ruby and autoradiography of (35)S-labeled polypeptides, respectively. Covariation of nascent polypeptide synthesis and abundance with biomass-specific cell growth, glucose and glutamate consumption, lactate and Mab production rates were then examined using two partial least squares regression models. Most changes in polypeptide synthesis or abundance for proteins previously identified by mass spectrometry were positively correlated with biomass-specific growth rate. We conclude that the substantial transitions in cell physiology and qP that occur during culture utilize a relatively constant complement of the most abundant host cell machines that vary primarily with respect to induced changes in cell growth rate.
Collapse
|
12
|
Shen D, Sharfstein ST. Genome-wide analysis of the transcriptional response of murine hybridomas to osmotic shock. Biotechnol Bioeng 2005; 93:132-45. [PMID: 16196057 DOI: 10.1002/bit.20691] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperosmotic stress has been shown to increase specific antibody productivity in murine hybridoma systems; however, the mechanisms underlying this phenomenon are still poorly understood. To elucidate the mechanisms for this phenomenon as well as other physiological changes that occur in response to hyperosmotic stress, we performed a genome-wide analysis of the transcriptional response of murine hybridoma OKT3 toward hyperosmotic stress using DNA microarrays. GeneChip MOE430A from Affymetrix was used to determine the differences in transcription patterns between OKT3 in hyperosmotic culture (approximately 100 mOsm above control) and control culture. The chip contains 22,690 probe sets for over 14,000 known genes and more than 4,000 ESTs. Signals were normalized using the GC-RMA algorithm and the effectiveness of hyperosmotic stress in altering the expression of each gene was evaluated using one-way ANOVA. 2,793 probe sets on the chip were differentially expressed with a P < 0.05. Among them, 349 probe sets exhibited a two-fold or greater change (with 202 up-regulated and 147 down-regulated) at one or more time points. Within the 215 characterized, differentially expressed genes, many are involved in metabolism/catabolism (19 induced, 12 repressed), cell-cycle regulation (10 induced, 5 repressed) and apoptosis (8 induced, 2 repressed), regulation of transcription (18 induced, 13 repressed) and translation (2 induced, 2 repressed), transport and signaling pathways (24 induced, 12 repressed). Surprisingly, there were very few changes within the stress-response genes. Interestingly, the transcription levels of both the immunoglobulin kappa and lambda light chains showed a significant change in response to hyperosmotic stress, although there is no detectable lambda chain in the immunoglobulin produced in this cell line. Quantitative PCR assays with TaqMan probes were applied to selected genes to validate the results obtained from microarray analysis.
Collapse
Affiliation(s)
- Duan Shen
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
13
|
|
14
|
|
15
|
Abstract
Optimizing productivity by hybridoma cells relies partly on developing suitable methods for screening and selection of high producing cultures and on understanding regulation of antibody production. In this study, the behavior of hybridoma cells in batch culture was investigated using flow cytometry, and a simple model for antibody production was used to explain production data obtained from these cultures. Surface antibody fluorescence values were found to closely follow the decreasing trend of specific antibody secretion rate over the course of several batch cultures. Therefore, for the hybridoma cell lines studied here (ATCC HB124 and TIB138), surface immunofluorescence levels can be used to select high producing cells as well as to monitor culture productivity. Surface and intracellular antibody fluorescence values were also found to be correlated for cells exhibiting a bimodal distribution with respect to intracellular antibody content. The population of cells containing a bimodal distribution with respect to intracellular antibody content. The population of cells containing lower levels of intracellular antibody was determined to secrete significantly less antibody than the population possessing high intracellular antibody concentrations. Factors which influence antibody production rates and possible strategies for optimizing monoclonal antibody yield are discussed.
Collapse
Affiliation(s)
- K L McKinney
- Howard P. Isermann Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
16
|
Tuite MF, Freedman RB. Improving secretion of recombinant proteins from yeast and mammalian cells: rational or empirical design? Trends Biotechnol 1994; 12:432-4. [PMID: 7765539 DOI: 10.1016/0167-7799(94)90015-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M F Tuite
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
17
|
Abstract
Models of cell processes can be particularly useful in simulating, optimizing and controlling cell culture systems. Models reported in the literature are of various degrees of biological structure and mathematical complexity and describe cell growth, death, metabolism, and product formation, alone or in combination with each other. This paper reviews these modeling efforts, discusses their results, potential and limitations, and identifies areas where future modeling studies may be especially valuable.
Collapse
Affiliation(s)
- E Tziampazis
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta 30332-0100
| | | |
Collapse
|
18
|
Mosser DD, Massie B. Genetically engineering mammalian cell lines for increased viability and productivity. Biotechnol Adv 1994; 12:253-77. [PMID: 14545894 DOI: 10.1016/0734-9750(94)90013-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The generation of new host cell lines for the production of foreign proteins can be achieved by cell engineering. This approach can be used to enhance the cell's ability to produce proteins that are properly processed and secreted at elevated levels and consequently can increase the overall productivity of an expression system. One potential target for cell engineering is the modification of the cell's protein folding capacity. The appropriate folding, assembly, localization and secretion of newly synthesized proteins is dependent upon the action of a group of proteins known as molecular chaperones. Improving the host cell's chaperoning capacity might increase the yield of properly folded recombinant proteins by preventing the formation of insoluble aggregates. Another potentially beneficial cell engineering goal is the inhibition of physiological cell death. The productivity of genetically engineered cells is dependent upon the maintenance of high levels of cell viability throughout the bioprocess period. Fluctuations in a cell's environment can trigger a deliberate form of cell death known as apoptosis. The proteins that mediate this self-destruction are currently being characterized. Regulating the expression of these death genes by cellular engineering could limit the loss of productivity that results from the physiological death of the recombinant cell line.
Collapse
Affiliation(s)
- D D Mosser
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
| | | |
Collapse
|
19
|
Bibila TA, Flickinger MC. Use of a structured kinetic model of antibody synthesis and secretion for optimization of antibody production systems: II. Transient analysis. Biotechnol Bioeng 1992; 39:262-72. [DOI: 10.1002/bit.260390303] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|