1
|
Huizenga JM, Schindler J, Simonich MT, Truong L, Garcia-Jaramillo M, Tanguay RL, Semprini L. PAH bioremediation with Rhodococcus rhodochrous ATCC 21198: Impact of cell immobilization and surfactant use on PAH treatment and post-remediation toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134109. [PMID: 38547751 PMCID: PMC11042972 DOI: 10.1016/j.jhazmat.2024.134109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.
Collapse
Affiliation(s)
- Juliana M Huizenga
- Oregon State University, School of Chemical, Biological, and Environmental Engineering, 105 SW 26th St, Corvallis, OR 97331, USA.
| | - Jason Schindler
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Michael T Simonich
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Lisa Truong
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Manuel Garcia-Jaramillo
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Robyn L Tanguay
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Lewis Semprini
- Oregon State University, School of Chemical, Biological, and Environmental Engineering, 105 SW 26th St, Corvallis, OR 97331, USA.
| |
Collapse
|
2
|
Hou R, Zhang S, Huang Q, Lin L, Li H, Li J, Liu S, Sun C, Xu X. Role of Gastrointestinal Microbiota from Crucian Carp in Microbial Transformation and Estrogenicity Modification of Novel Plastic Additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11476-11488. [PMID: 37462611 DOI: 10.1021/acs.est.3c03595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Ingestion is a major exposure route for hydrophobic organic pollutants in fish, but the microbial transformation and estrogenic modification of the novel plastic additives by the gut microbiota of fish remain obscure. Using an in vitro approach, we provide evidence that structure-related transformation of various plastic additives by the gastric and intestinal (GI) microbiota from crucian carp, with the degradation ratio of bisphenols and triphenyl phosphate faster than those of brominated compounds. The degradation kinetics for these pollutants could be limited by oxygen and cometabolic substrates (i.e., glucose). The fish GI microbiota could utilize the vast majority of carbon sources in a Biolog EcoPlate, suggesting their high metabolic potential and ability to transform various organic compounds. Unique microorganisms associated with transformation of the plastic additives including genera of Citrobacter, Klebsiella, and some unclassified genera in Enterobacteriaceae were identified by combining high-throughput genetic analyses and metagenomic analyses. Through identification of anaerobic transformation products by high-resolution mass spectrometry, alkyl-cleavage was found the common transformation mechanism, and hydrolysis was the major pathway for ester-containing pollutants. After anaerobic incubation, the estrogenic activities of triphenyl phosphate and bisphenols A, F, and AF declined, whereas that of bisphenol AP increased.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Siqi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Jingxi Li
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| |
Collapse
|
3
|
Mathematical Analysis of Biodegradation Model under Nonlocal Operator in Caputo Sense. MATHEMATICS 2021. [DOI: 10.3390/math9212787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To lower the concentration of organic pollutants in the effluent stream, wastewater must be treated before being discharged into the environment. The question of whether wastewater treatment facilities can successfully reduce the concentration of micropollutants found in their influent streams is becoming increasingly pressing. The removal of micropollutants in treatment plants is investigated using a model that incorporates biodegradation and sorption as the key processes of micropollutant removal. This article provides the mathematical analysis of the wastewater model that describes the removal of micropollutant in treatment plants under a non-local operator in Caputo sense. The positivity of the solution is presented for the Caputo fractional model. The steady state’s solution of model and their stability is presented. The fixed point theorems of Leray–Schauder and Banach are used to deduce results regarding the existence of the solution of the model. Ulam–Hyers (UH) types of stabilities are presented via functional analysis. The fractional Euler method is used to find the numerical results of the proposed model. The numerical results are illustrated via graphs to show the effects of recycle ratio and the impact of fractional order on the evolution of the model.
Collapse
|
4
|
Kinetics of Cometabolic Transformation of 4-chlorophenol and Phenol Degradation by Pseudomonas putida Cells in Batch and Biofilm Reactors. Processes (Basel) 2021. [DOI: 10.3390/pr9091663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The biodegradation kinetics of 4-chlorophenol (4-CP) and phenol and microbial growth of Pseudomonas putida (P. putida) cells were estimated in batch and biofilm reactors. The kinetic parameters of cells on phenol were determined using the Haldane formula. The maximum specific growth rate of P. putida on phenol, the half-saturation constant of phenol and the self-inhibition constant of phenol were 0.512 h−1, 78.38 mg/L and 228.5 mg/L, respectively. The yield growth of cells on phenol (YP) was 0.618 mg phenol/mg cell. The batch experimental results for the specific transformation rate of 4-CP by resting P. putida cells were fitted with Haldane kinetics to evaluate the maximum specific utilization rate of 4-CP, half-saturation constant of 4-CP, and self-inhibition constant of 4-CP, which were 0.246 h−1, 1.048 mg/L and 53.40 mg/L, respectively. The negative specific growth rates of cells on 4-CP obtained were fitted using a kinetic equation to investigate the true transformation capacity and first-order endogenous decay coefficient, which were 4.34 mg 4-CP/mg cell and 5.99 × 10−3 h−1, respectively. The competitive inhibition coefficients of phenol to 4-CP transformation and 4-CP to phenol degradation were 6.75 and 9.27 mg/L, respectively; therefore, phenol had a higher competitive inhibition of 4-CP transformation than the converse. The predicted model examining cometabolic transformation of 4-CP and phenol degradation showed good agreement with the experimental observations. The removal efficiencies for phenol and 4-CP were 94.56–98.45% and 96.09–98.85%, respectively, for steady-state performance.
Collapse
|
5
|
Madeira CL, Menezes O, Park D, Jog KV, Hatt JK, Gavazza S, Krzmarzick MJ, Sierra-Alvarez R, Spain JC, Konstantinidis KT, Field JA. Bacteria Make a Living Breathing the Nitroheterocyclic Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5806-5814. [PMID: 33835790 DOI: 10.1021/acs.est.0c07161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The nitroheterocyclic 3-nitro-1,2,4-triazol-5-one (NTO) is an ingredient of insensitive explosives increasingly used by the military, becoming an emergent environmental pollutant. Cometabolic biotransformation of NTO occurs in mixed microbial cultures in soils and sludges with excess electron-donating substrates. Herein, we present the unusual energy-yielding metabolic process of NTO respiration, in which the NTO reduction to 3-amino-1,2,4-triazol-5-one (ATO) is linked to the anoxic acetate oxidation to CO2 by a culture enriched from municipal anaerobic digester sludge. Cell growth was observed simultaneously with NTO reduction, whereas the culture was unable to grow in the presence of acetate only. Extremely low concentrations (0.06 mg L-1) of the uncoupler carbonyl cyanide m-chlorophenyl hydrazone inhibited NTO reduction, indicating that the process was linked to respiration. The ultimate evidence of NTO respiration was adenosine triphosphate production due to simultaneous exposure to NTO and acetate. Metagenome sequencing revealed that the main microorganisms (and relative abundances) were Geobacter anodireducens (89.3%) and Thauera sp. (5.5%). This study is the first description of a nitroheterocyclic compound being reduced by anaerobic respiration, shedding light on creative microbial processes that enable bacteria to make a living reducing NTO.
Collapse
Affiliation(s)
- Camila L Madeira
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | - Osmar Menezes
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-530, Brazil
| | - Doyoung Park
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Kalyani V Jog
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-530, Brazil
| | - Mark J Krzmarzick
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | - Jim C Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, Pensacola, Florida 32514, United States
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| |
Collapse
|
6
|
Kennes-Veiga DM, Gonzalez-Gil L, Carballa M, Lema JM. The organic loading rate affects organic micropollutants' cometabolic biotransformation kinetics under heterotrophic conditions in activated sludge. WATER RESEARCH 2021; 189:116587. [PMID: 33188990 DOI: 10.1016/j.watres.2020.116587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Several studies have shown that organic micropollutants (OMPs) are biotransformed cometabolically in activated sludge systems. However, the individual role of heterotrophs in the microbial consortium is still not clear, i.e., there is still a gap regarding the influence of the heterotrophic activity on the cometabolic biotransformation kinetics and yield of the OMPs. Aiming to answer these questions, experiments with increasing primary substrate concentrations were performed under aerobic heterotrophic conditions in a continuous stirred tank reactor operated at several organic loading rates (OLR) with fixed hydraulic retention time. Moreover, the individual kinetic parameters were determined in batch assays with different initial substrate concentrations using the sludges from the continuous reactor. A set of 15 OMPs displaying a variety of physicochemical properties were spiked to the feeding in the ng L-1 - µg L-1 range. Results reveal that the biodegradation of the primary carbon source and the biotransformation of the OMPs occur simultaneously, in clear evidence of cometabolic behavior. Moreover, we conclude that the OMPs biotransformation kinetic constant (kbiol) shows a linear dependence with the OLR of the primary substrate for most of the compounds studied, suggesting that the heterotrophic activity seriously affects the OMPs biotransformation kinetics. However, under typical activated sludge systems operating conditions (hydraulic retention times above 8 h), their biotransformation yield would not be significantly affected.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Lorena Gonzalez-Gil
- Defence University Centre, Spanish Naval Academy, Plaza de España, 36920 Marín, Spain
| | - Marta Carballa
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
7
|
Fonseca RF, de Oliveira GHD, Zaiat M. Modeling anaerobic digestion metabolic pathways for antibiotic-contaminated wastewater treatment. Biodegradation 2020; 31:341-368. [PMID: 33040265 DOI: 10.1007/s10532-020-09914-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/18/2020] [Indexed: 11/26/2022]
Abstract
Anaerobic digestion has been used to treat antibiotic-contaminated wastewaters. However, it is not always effective, since biodegradation is the main removal mechanism and depends on the compound chemical characteristics and on how microbial metabolic pathways are affected by the reactor operational conditions and hydrodynamic characteristics. The aim of this study was to develop a mathematical model to describe 16 metabolic pathways of an anaerobic process treating sulfamethazine-contaminated wastewater. Contois kinetics and a useful reaction volume term were used to represent the biomass concentration impact on bed porosity in a N continuously stirred tank modeling approach. Two sulfamethazine removal hypotheses were evaluated: an apparent enzymatic reaction and a cometabolic degradation. Additionally, long-term modeling was developed to describe how the operational conditions affected the performance of the process. The best degradation correlations were associated with the consumption of carbohydrates, proteins and it was inversely related to acetic acid production during acidogenesis.
Collapse
Affiliation(s)
- Rafael Frederico Fonseca
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13.563-120, Brazil.
| | - Guilherme Henrique Duarte de Oliveira
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13.563-120, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13.563-120, Brazil
| |
Collapse
|
8
|
Delli Compagni R, Polesel F, von Borries KJF, Zhang Z, Turolla A, Antonelli M, Vezzaro L. Modelling the fate of micropollutants in integrated urban wastewater systems: Extending the applicability to pharmaceuticals. WATER RESEARCH 2020; 184:116097. [PMID: 32911442 DOI: 10.1016/j.watres.2020.116097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical active compounds (PhACs) are a category of micropollutants frequently detected across integrated urban wastewater systems. Existing modelling tools supporting the evaluation of micropollutant fate in such complex systems, such as the IUWS_MP model library (which acronym IUWS stands for Integrated Urban Wastewater System), do not consider fate processes and fractions that are typical for PhACs. This limitation was overcome by extending the existing IUWS_MP model library with new fractions (conjugated metabolites, sequestrated fraction) and processes (consumption-excretion, deconjugation). The performance of the extended library was evaluated for five PhACs (carbamazepine, ibuprofen, diclofenac, paracetamol, furosemide) in two different integrated urban wastewater systems where measurements were available. Despite data uncertainty and the simplicity of the modelling approach, chosen to minimize data requirements, model prediction uncertainty overlapped with the measurements ranges across both systems, stressing the robustness of the proposed modelling approach. Possible applications of the extended IUWS_MP model library are presented, illustrating how this tool can support urban water managers in reducing environmental impacts from PhACs discharges.
Collapse
Affiliation(s)
- Riccardo Delli Compagni
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy.
| | - Fabio Polesel
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark; DHI A/S, Agern Allé 5, 2970, Hørsholm, Denmark
| | - Kerstin J F von Borries
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Zhen Zhang
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Andrea Turolla
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy
| | - Manuela Antonelli
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy.
| | - Luca Vezzaro
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
9
|
Rasmussen MT, Saito AM, Hyman MR, Semprini L. Co-encapsulation of slow release compounds and Rhodococcus rhodochrous ATCC 21198 in gellan gum beads to promote the long-term aerobic cometabolic transformation of 1,1,1-trichloroethane, cis-1,2-dichloroethene and 1,4-dioxane. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:771-791. [PMID: 32083262 DOI: 10.1039/c9em00607a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rhodococcus rhodochrous ATCC 21198 (strain ATCC 21198) was successfully co-encapsulated in gellan gum beads with orthosilicates as slow release compounds (SRCs) to support aerobic cometabolism of a mixture of 1,1,1-trichloroethane (1,1,1-TCA), cis-1,2-dichloroethene (cis-DCE), and 1,4-dioxane (1,4-D) at aqueous concentrations ranging from 250 to 1000 μg L-1. Oxygen (O2) consumption and carbon dioxide (CO2) production showed the co-encapsulated cells utilized the alcohols that were released from the co-encapsulated SRCs. Two model SRCs, tetrabutylorthosilicate (TBOS) and tetra-s-butylorthosilicate (T2BOS), which hydrolyze to produce 1- and 2-butanol, respectively, were encapsulated in gellan gum (GG) at mass loadings as high as 10% (w/w), along with strain ATCC 21198. In the GG encapsulated beads, TBOS hydrolyzed 26 times faster than T2BOS and rates were ∼4 times higher in suspension than when encapsulated. In biologically active reactors, the co-encapsulated strain ATCC 21198 effectively utilized the SRC hydrolysis products (1- and 2-butanol) and cometabolized repeated additions of a mixture of 1,1,1-TCA, cis-DCE, and 1,4-D for over 300 days. The transformation followed pseudo-first-order kinetics. Vinyl chloride (VC) and 1,1-dichloroethene (1,1-DCE) were also transformed in the reactors after 250 days. In the long-term treatment, the batch reactors with co-encapsulated T2BOS GG beads achieved similar transformation rates, but at much lower O2 consumption rates than those with TBOS. The results demonstrate that the co-encapsulation technology can be a passive method for the cometabolic treatment of dilute groundwater plumes.
Collapse
Affiliation(s)
- Mitchell T Rasmussen
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331 USA.
| | - Alyssa M Saito
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331 USA.
| | - Michael R Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Lewis Semprini
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331 USA.
| |
Collapse
|
10
|
Rolston HM, Hyman MR, Semprini L. Aerobic cometabolism of 1,4-dioxane by isobutane-utilizing microorganisms including Rhodococcus rhodochrous strain 21198 in aquifer microcosms: Experimental and modeling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133688. [PMID: 31756820 DOI: 10.1016/j.scitotenv.2019.133688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Aerobic cometabolism of the emerging contaminant 1,4-dioxane (1,4-D) by isobutane-utilizing microorganisms was assessed in pure culture and aquifer microcosm studies. The bacterium Rhodococcus rhodochrous strain ATCC 21198 transformed low, environmentally-relevant concentrations of 1,4-D when grown on isobutane. Microcosms were constructed with aquifer solids from Fort Carson, Colorado, a site contaminated with 1,4-D and trichloroethene (TCE). Multiple additions of isobutane and 1,4-D over 300 days were transformed in microcosms biostimulated with isobutane and microcosms bioaugmented with strain 21198. Results showed that, over time and with sufficient inorganic nutrients, biostimulation of native microorganisms with isobutane was just as effective as bioaugmentation with strain 21198 to achieve 1,4-D transformation in the microcosms. The presence of TCE at 0.2 mg/L did not inhibit 1,4-D transformation, though TCE itself was not readily transformed. An iterative process was used to determine kinetic parameter values to fit Michaelis-Menten/Monod models to experimental data for simultaneous isobutane utilization, biomass growth, and cometabolic transformation of 1,4-D. Parameter optimization resulted in good model fit to the data over multiple transformations of isobutane and 1,4-D in both short- and long-term experiments. Results suggest low concentrations of 1,4-D studied in the microcosms were cometabolically transformed according to a pseudo first-order rate of 0.37 L/mg TSS/day of 21198. Isobutane consumption was modeled with a maximum rate of 2.58 mg/mg TSS/day and a half saturation constant of 0.09 mg/L. 1,4-D transformation was competitively inhibited by the presence of isobutane and transformation rates were significantly reduced when inorganic nutrients were limiting. Simulations of the repeated additions found a first-order microbial endogenous decay coefficient of 0.03 day-1 fit the alternating periods of active transformation and stagnation between isobutane and 1,4-D additions over approximately one year. The model fitting process highlighted the importance of determining kinetic parameters from data representing low concentrations typically found in the environment.
Collapse
Affiliation(s)
- Hannah M Rolston
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Michael R Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Lewis Semprini
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
11
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
12
|
Gonzalez-Gil L, Krah D, Ghattas AK, Carballa M, Wick A, Helmholz L, Lema JM, Ternes TA. Biotransformation of organic micropollutants by anaerobic sludge enzymes. WATER RESEARCH 2019; 152:202-214. [PMID: 30669042 DOI: 10.1016/j.watres.2018.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/30/2018] [Accepted: 12/27/2018] [Indexed: 05/27/2023]
Abstract
Biotransformation of organic micropollutants (OMPs) in wastewater treatment plants ultimately depends on the enzymatic activities developed in each biological process. However, few research efforts have been made to clarify and identify the role of enzymes on the removal of OMPs, which is an essential knowledge to determine the biotransformation potential of treatment technologies. Therefore, the purpose of the present study was to investigate the enzymatic transformation of 35 OMPs under anaerobic conditions, which have been even less studied than aerobic systems. Initially, 13 OMPs were identified to be significantly biotransformed (>20%) by anaerobic sludge obtained from a full-scale anaerobic digester, predestining them as potential targets of anaerobic enzymes. Native enzymes were extracted from this anaerobic sludge to perform transformation assays with the OMPs. In addition, the effect of detergents to recover membrane enzymes, as well as the effects of cofactors and inhibitors to promote and suppress specific enzymatic activities were evaluated. In total, it was possible to recover enzymatic activities towards 10 out of these 13 target OMPs (acetyl-sulfamethoxazole and its transformation product sulfamethoxazole, acetaminophen, atenolol, clarithromycin, citalopram, climbazole, erythromycin, and terbutryn, venlafaxine) as well as towards 8 non-target OMPs (diclofenac, iopamidol, acyclovir, acesulfame, and 4 different hydroxylated metabolites of carbamazepine). Some enzymatic activities likely involved in the anaerobic biotransformation of these OMPs were identified. Thereby, this study is a starting point to unravel the still enigmatic biotransformation of OMPs in wastewater treatment systems.
Collapse
Affiliation(s)
- Lorena Gonzalez-Gil
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, Santiago de Compostela, E-15782, Spain.
| | - Daniel Krah
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, Koblenz, D-56068, Germany
| | - Ann-Kathrin Ghattas
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, Koblenz, D-56068, Germany
| | - Marta Carballa
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, Santiago de Compostela, E-15782, Spain
| | - Arne Wick
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, Koblenz, D-56068, Germany
| | - Lissa Helmholz
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, Koblenz, D-56068, Germany
| | - Juan M Lema
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, Santiago de Compostela, E-15782, Spain
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, Koblenz, D-56068, Germany
| |
Collapse
|
13
|
Oliveira BM, Zaiat M, Oliveira GHD. The contribution of selected organic substrates to the anaerobic cometabolism of sulfamethazine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:263-270. [PMID: 30628525 DOI: 10.1080/03601234.2018.1553909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradation of organic micropollutants is likely to occur due to cometabolism by particular microbial groups. In an effort to identify the stages of anaerobic digestion potentially involved in the biodegradation of the veterinary antimicrobial sulfamethazine (SMZ), the influence of selected carbon sources (sucrose, glucose, fructose, ethanol, meat extract, cellulose, soluble starch, soy oil, acetic acid, propionic acid and butyric acid) on SMZ removal by anaerobic sludge was evaluated in short-term batch experiments. Adsorption to the granular sludge constituted a significant removal mechanism, accounting for 39% of SMZ removal in control experiments. The presence of glucose, fructose, sucrose and meat extract exerted an inducing effect on SMZ degradation, resulting in removal efficiencies of 54, 53, 58 and 61%, respectively, indicating the occurrence of cometabolism. Time courses of sucrose and meat extract degradation revealed markedly distinct organic acid profiles but resulted in similar SMZ removals. Temporal profiles of acetic and propionic acid degradation were not associated with SMZ removal, as changes in SMZ concentration were observed even after the organic acids had been completely removed. The experimental results suggest that SMZ cometabolism is not associated to sucrose hydrolysis, acetoclastic methanogenesis and acetogenesis from propionic acid.
Collapse
Affiliation(s)
- Bruna M Oliveira
- a Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering , University of São Paulo (USP) , São Carlos , São Paulo , Brazil
| | - Marcelo Zaiat
- a Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering , University of São Paulo (USP) , São Carlos , São Paulo , Brazil
| | - Guilherme H D Oliveira
- a Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering , University of São Paulo (USP) , São Carlos , São Paulo , Brazil
| |
Collapse
|
14
|
Ooi GTH, Tang K, Chhetri RK, Kaarsholm KMS, Sundmark K, Kragelund C, Litty K, Christensen A, Lindholst S, Sund C, Christensson M, Bester K, Andersen HR. Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes. BIORESOURCE TECHNOLOGY 2018; 267:677-687. [PMID: 30071459 DOI: 10.1016/j.biortech.2018.07.077] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 05/22/2023]
Abstract
Hospital wastewater contains high concentrations of pharmaceuticals, which pose risks to receiving waters. In this study, a pilot plant consisting of six moving bed biofilm reactors (MBBRs) in series (with the intention to integrate Biological Oxygen Demand (BOD) removal, nitrification and denitrification as well as prepolishing Chemical Oxygen Demand (COD) for ozonation) was built to integrate pharmaceutical removal and intermittent feeding of the latter reactors aimed for micropollutant removal. Based on the experimental resultss, nitrifying MBBRs achieved higher removal as compared to denitrifying MBBRs except for azithromycin, clarithromycin, diatrizoic acid, propranolol and trimethoprim. In the batch experiments, nitrifying MBBRs showed the ability to remove most of the analysed pharmaceuticals, with degradation rate constants ranging from 5.0 × 10-3 h-1 to 2.6 h-1. In general, the highest degradation rate constants were observed in the nitrifying MBBRs while the latter MBBRs showed lower degradation rate constant. However, when the degradation rate constants were normalised to the respective biomass, the intermittently fed reactors presented the highest specific activity. Out of the 22 compounds studied, 17 compounds were removed with more than 20%.
Collapse
Affiliation(s)
- Gordon T H Ooi
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark; Institute of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Ravi K Chhetri
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Kamilla M S Kaarsholm
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Kim Sundmark
- Krüger Veolia, Gladsaxevej 262, 2860 Søborg, Denmark
| | - Caroline Kragelund
- Department of Water and Environment, Danish Technological Institute, Kongsvang Alle 29, DK-8000 Aarhus C, Denmark
| | - Klaus Litty
- Department of Water and Environment, Danish Technological Institute, Kongsvang Alle 29, DK-8000 Aarhus C, Denmark
| | - Alice Christensen
- Department of Water and Environment, Danish Technological Institute, Kongsvang Alle 29, DK-8000 Aarhus C, Denmark
| | - Sabine Lindholst
- Department of Water and Environment, Danish Technological Institute, Kongsvang Alle 29, DK-8000 Aarhus C, Denmark
| | | | - Magnus Christensson
- Veolia Water Technologies AnoxKaldnes, Klosterängsvägen 11A, SE-226 47 Lund, Sweden
| | - Kai Bester
- Institute of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Gonzalez-Gil L, Mauricio-Iglesias M, Carballa M, Lema JM. Why are organic micropollutants not fully biotransformed? A mechanistic modelling approach to anaerobic systems. WATER RESEARCH 2018; 142:115-128. [PMID: 29864647 DOI: 10.1016/j.watres.2018.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Biotransformation of most organic micropollutants (OMPs) during wastewater treatment is not complete and an unexplained steady decrease of the biotransformation rate with time is reported for many OMPs in different biological processes. To minimize and accurately predict the emission of OMPs into the environment, the mechanisms and limitations behind their biotransformations should be clarified. Aiming to achieve this objective, the present study follows a mechanistic modelling approach, based on the formulation of four models according to different biotransformation hypotheses: Michaelis-Menten kinetics, chemical equilibrium between the parent compound and the transformation product (TP), enzymatic inhibition by the TP, and a limited compound bioavailability due to its sequestration in the solid phase. These models were calibrated and validated with kinetic experiments performed in two different anaerobic systems: continuous reactors enriched with methanogenic biomass and batch assays with anaerobic sludge. Model selection was conducted according to model suitability criteria (goodness of fitting the experimental data, confidence of the estimated parameters, and model parsimony) but also considering mechanistic evidences. The findings suggest that reversibility of the biological reactions and/or sequestration of compounds are likely the causes preventing the complete biotransformation of OMPs, and biotransformation is probably limited by thermodynamics rather than by kinetics. Taking into account its simplicity and broader applicability spectrum, the reversible biotransformation is the proposed model to explain the incomplete biotransformation of OMPs.
Collapse
Affiliation(s)
- Lorena Gonzalez-Gil
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Miguel Mauricio-Iglesias
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Marta Carballa
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Fonseca RF, Oliveira GHDD, Zaiat M. Development of a mathematical model for the anaerobic digestion of antibiotic-contaminated wastewater. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Gonzalez-Gil L, Mauricio-Iglesias M, Serrano D, Lema JM, Carballa M. Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:459-466. [PMID: 29220770 DOI: 10.1016/j.scitotenv.2017.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Several studies showed that some organic micropollutants (OMPs) are biotransformed during anaerobic digestion (AD). Yet, most of them aim at reporting removal efficiencies instead of understanding the biotransformation process. Indeed, how each of the main AD stages (i.e., hydrolysis, acidogenesis, and methanogenesis) contribute to OMP biotransformation remains unknown. This study focuses on investigating the role of methanogenesis, the most characteristic step of AD, to OMP removal. More specifically, the sorption and the biotransformation of 20 OMPs by methanogenic biomass were analyzed determining their concentrations in both liquid and solid phases. Sorption onto methanogenic biomass displayed a similar behavior as reported for digested sludge. Most of the OMPs were biotransformed to a medium extent (35-70%) and only sulfamethoxazole was completely removed. Comparing these results with those reported for the complete AD process, methanogenesis was proven to play a key role, accounting for more than 50% of the OMP biotransformation (except for roxithromycin) during AD. An increase in the organic loading rate from 1 to 2gCOD/Ld, typical loads employed in sewage sludge anaerobic digesters, did not exert a clear cometabolic effect on the OMPs biotransformation. It is hypothesized that biotransformation occurs in both liquid and solid phases because no link between the partition coefficient (Kd) and the overall biotransformation efficiency was found. These findings allow a better understanding of the OMPs fate under anaerobic conditions, which is necessary to design efficient biological mitigation strategies.
Collapse
Affiliation(s)
- Lorena Gonzalez-Gil
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Miguel Mauricio-Iglesias
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Denisse Serrano
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain; Department of Water and Environmental Sciences, Instituto Tecnológico de Sonora, 5 de febrero 818 sur, Colonia Centro, 85000 Ciudad Obregón, Mexico.
| | - Juan M Lema
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Marta Carballa
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Oliveira GHD, Santos-Neto AJ, Zaiat M. Removal of the veterinary antimicrobial sulfamethazine in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step changes in the applied organic loading rate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:674-683. [PMID: 28957708 DOI: 10.1016/j.jenvman.2017.09.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/21/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
A bench-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor treating synthetic swine wastewater was operated under different applied organic loading rates (OLR) through both variations in feed strength and in hydraulic retention time (HRT). The influence of step changes in OLR on the removal of the veterinary antimicrobial sulfamethazine (SMZ) was assessed. The highest observed SMZ removal efficiency, 75 ± 6%, was achieved with an OLR of 2.7 ± 0.4 kg O2 m-3 d-1 when a significant increase in COD removal rate was observed. The SMZ removal rate was positively correlated (r = 0.899) to the COD removal rate in all of the experimental conditions in which the HRT was kept at 24 h, indicating a cometabolic transformation of the antimicrobial. Decreasing the HRT caused a significant decrease in SMZ removal efficiency without affecting the HAIB reactor performance in terms of stability, COD removal or metabolic intermediates production. Functionally equivalent steady states were observed in four different operational phases with similar operating conditions but with widely different behavior in relation to SMZ removal. The experimental results showed the potential of anaerobic technology in removing environmentally relevant concentrations of SMZ, and the possibility of enhancing reactor performance by controlling operating conditions.
Collapse
Affiliation(s)
- G H D Oliveira
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - A J Santos-Neto
- Institute of Chemistry of São Carlos, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., 13566-590, São Carlos, São Paulo, Brazil
| | - M Zaiat
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil
| |
Collapse
|
19
|
Peng L, Kassotaki E, Liu Y, Sun J, Dai X, Pijuan M, Rodriguez-Roda I, Buttiglieri G, Ni BJ. Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Liu Y, Ngo HH, Guo W, Sun J, Wang D, Peng L, Ni BJ. Modeling aerobic biotransformation of vinyl chloride by vinyl chloride-assimilating bacteria, methanotrophs and ethenotrophs. JOURNAL OF HAZARDOUS MATERIALS 2017; 332:97-103. [PMID: 28285111 DOI: 10.1016/j.jhazmat.2017.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/11/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Recent studies have investigated the potential of enhanced groundwater Vinyl Chloride (VC) remediation in the presence of methane and ethene through the interactions of VC-assimilating bacteria, methanotrophs and ethenotrophs. In this study, a mathematical model was developed to describe aerobic biotransformation of VC in the presence of methane and ethene for the first time. It examines the metabolism of VC by VC-assimilating bacteria as well as cometabolism of VC by both methanotrophs and ethenotrophs, using methane and ethene respectively, under aerobic conditions. The developed model was successfully calibrated and validated using experimental data from microcosms with different experimental conditions. The model satisfactorily describes VC, methane and ethene dynamics in all microcosms tested. Modeling results describe that methanotrophic cometabolism of ethene promotes ethenotrophic VC cometabolism, which significantly enhances aerobic VC degradation in the presence of methane and ethene. This model is expected to be a useful tool to support effective and efficient processes for groundwater VC remediation.
Collapse
Affiliation(s)
- Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
21
|
Biodegradation of sulfamethazine by an isolated thermophile–Geobacillus sp. S-07. World J Microbiol Biotechnol 2017; 33:85. [DOI: 10.1007/s11274-017-2245-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
|
22
|
Gonzalez-Gil L, Carballa M, Lema JM. Cometabolic Enzymatic Transformation of Organic Micropollutants under Methanogenic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2963-2971. [PMID: 28198617 DOI: 10.1021/acs.est.6b05549] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Anaerobic digestion (AD) has been shown to have the biological potential to decrease concentrations of several organic micropollutants (OMPs) in sewage sludge. However, the mechanisms and factors behind these biotransformations, which are essential for elucidating the possible transformation products and to foster the complete removal of OMPs via operational strategies, remain unclear. Therefore, this study investigated the transformation mechanisms of 20 OMPs during the methanogenic step of AD with a focus on the role of acetate kinase (AK), which is a key enzyme in methane production. The results from lab-scale methanogenic reactors showed that this step accounts for much of the reported OMP biotransformation in AD. Furthermore, enzymatic assays confirmed that AK transforms galaxolide, naproxen, nonylphenol, octylphenol, ibuprofen, diclofenac, bisphenol A, and triclosan. Except for galaxolide, for which further studies are required to refine conclusions, the OMP's chemical structure was a determinant for AK action because only compounds that contain a carboxyl or hydroxyl group and have moderate steric hindrance were enzymatically transformed, likely by phosphorylation. For these seven compounds, this enzymatic mechanism accounts for 10-90% of the measured methanogenic biotransformation, suggesting that other active enzymes of the AD process are also involved in OMP biotransformation.
Collapse
Affiliation(s)
- Lorena Gonzalez-Gil
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela , Campus Vida, 15782 Santiago de Compostela, Spain
| | - Marta Carballa
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela , Campus Vida, 15782 Santiago de Compostela, Spain
| | - Juan M Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela , Campus Vida, 15782 Santiago de Compostela, Spain
| |
Collapse
|
23
|
Torresi E, Escolà Casas M, Polesel F, Plósz BG, Christensson M, Bester K. Impact of external carbon dose on the removal of micropollutants using methanol and ethanol in post-denitrifying Moving Bed Biofilm Reactors. WATER RESEARCH 2017; 108:95-105. [PMID: 27871747 DOI: 10.1016/j.watres.2016.10.068] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Addition of external carbon sources to post-denitrification systems is frequently used in wastewater treatment plants to enhance nitrate removal. However, little is known about the fate of micropollutants in post-denitrification systems and the influence of external carbon dosing on their removal. In this study, we assessed the effects of two different types and availability of commonly used carbon sources -methanol and ethanol- on the removal of micropollutants in biofilm systems. Two laboratory-scale moving bed biofilm reactors (MBBRs), containing AnoxKaldnes K1 carriers with acclimated biofilm from full-scale systems, were operated in continuous-flow using wastewater dosed with methanol and ethanol, respectively. Batch experiments with 22 spiked pharmaceuticals were performed to assess removal kinetics. Acetyl-sulfadiazine, atenolol, citalopram, propranolol and trimethoprim were easily biotransformed in both MBBRs (biotransformations rate constants kbio between 1.2 and 12.9 L gbiomass-1 d-1), 13 compounds were moderately biotransformed (rate constants between 0.2 and 2 L gbiomass-1 d-1) and 4 compounds were recalcitrant. The methanol-dosed MBBR showed higher kbio (e.g., 1.5-2.5-fold) than in the ethanol-dosed MBBR for 9 out of the 22 studied compounds, equal kbio for 10 compounds, while 3 compounds (i.e., targeted sulfonamides) were biotransformed faster in the ethanol-dosed MBBR. While biotransformation of most of the targeted compounds followed first-order kinetics, removal of venlafaxine, carbamazepine, sulfamethoxazole and sulfamethizole could be described with a cometabolic model. Analyses of the microbial composition in the biofilms using 16S rRNA amplicon sequencing revealed that the methanol-dosed MBBR contained higher microbial richness than the one dosed with ethanol, suggesting that improved biotransformation of targeted compounds could be associated with higher microbial richness. During continuous-flow operation, at conditions representative of full-scale denitrification systems (hydraulic residence time = 2 h), the removal efficiencies of micropollutants were below 35% in both MBBRs, with the exception of atenolol and trimethoprim (>80%). Overall, this study demonstrated that MBBRs used for post-denitrification could be optimized to enhance the biotransformation of a number of micropollutants by accounting for optimal carbon sources and extended residence time.
Collapse
Affiliation(s)
- Elena Torresi
- Veolia Water Technologies AnoxKaldnes, Klosterängsvägen 11A, SE-226 47, Lund, Sweden; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, 2800, Kgs. Lyngby, Denmark
| | - Mònica Escolà Casas
- Department of Environmental Science, Århus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, 2800, Kgs. Lyngby, Denmark
| | - Benedek G Plósz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, 2800, Kgs. Lyngby, Denmark.
| | - Magnus Christensson
- Veolia Water Technologies AnoxKaldnes, Klosterängsvägen 11A, SE-226 47, Lund, Sweden.
| | - Kai Bester
- Department of Environmental Science, Århus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
24
|
Xu Y, Yuan Z, Ni BJ. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:796-805. [PMID: 27243932 DOI: 10.1016/j.scitotenv.2016.05.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound.
Collapse
Affiliation(s)
- Yifeng Xu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
25
|
Sedighi M, Zamir SM, Vahabzadeh F. Cometabolic degradation of ethyl mercaptan by phenol-utilizing Ralstonia eutropha in suspended growth and gas-recycling trickle-bed reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 165:53-61. [PMID: 26406878 DOI: 10.1016/j.jenvman.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/26/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
The degradability of ethyl mercaptan (EM), by phenol-utilizing cells of Ralstonia eutropha, in both suspended and immobilized culture systems, was investigated in the present study. Free-cells experiments conducted at EM concentrations ranging from 1.25 to 14.42 mg/l, showed almost complete removal of EM at concentrations below 10.08 mg/l, which is much higher than the maximum biodegradable EM concentration obtained in experiments that did not utilize phenol as the primary substrate, i.e. 2.5 mg/l. The first-order kinetic rate constant (kSKS) for EM biodegradation by the phenol-utilizing cells (1.7 l/g biomass/h) was about 10 times higher than by cells without phenol utilization. Immobilized-cells experiments performed in a gas recycling trickle-bed reactor packed with kissiris particles at EM concentrations ranging from 1.6 to 36.9 mg/l, showed complete removal at all tested concentrations in a much shorter time, compared with free cells. The first-order kinetic rate constant (rmaxKs) for EM utilization was 0.04 l/h for the immobilized system compared to 0.06 for the suspended-growth culture, due to external mass transfer diffusion. Diffusion limitation was decreased by increasing the recycling-liquid flow rate from 25 to 65 ml/min. The removed EM was almost completely mineralized according to TOC and sulfate measurements. Shut down and starvation experiments revealed that the reactor could effectively handle the starving conditions and was reliable for full-scale application.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Chemical Engineering Department, Amirkabir University of Technology, 424, Hafez Ave., Tehran, Iran
| | - Seyed Morteza Zamir
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
| | - Farzaneh Vahabzadeh
- Chemical Engineering Department, Amirkabir University of Technology, 424, Hafez Ave., Tehran, Iran
| |
Collapse
|
26
|
Oliveira GHD, Santos-Neto AJ, Zaiat M. Evaluation of sulfamethazine sorption and biodegradation by anaerobic granular sludge using batch experiments. Bioprocess Biosyst Eng 2015; 39:115-24. [DOI: 10.1007/s00449-015-1495-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
|
27
|
Pomiès M, Choubert JM, Wisniewski C, Miège C, Budzinski H, Coquery M. Lab-scale experimental strategy for determining micropollutant partition coefficient and biodegradation constants in activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4383-4395. [PMID: 25300180 DOI: 10.1007/s11356-014-3646-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
The nitrifying/denitrifying activated sludge process removes several micropollutants from wastewater by sorption onto sludge and/or biodegradation. The objective of this paper is to propose and evaluate a lab-scale experimental strategy for the determination of partition coefficient and biodegradation constant for micropollutant with an objective of modelling their removal. Four pharmaceutical compounds (ibuprofen, atenolol, diclofenac and fluoxetine) covering a wide hydrophobicity range (log Kow from 0.16 to 4.51) were chosen. Dissolved and particulate concentrations were monitored for 4 days, inside two reactors working under aerobic and anoxic conditions, and under different substrate feed conditions (biodegradable carbon and nitrogen). We determined the mechanisms responsible for the removal of the target compounds: (i) ibuprofen was biodegraded, mainly under aerobic conditions by cometabolism with biodegradable carbon, whereas anoxic conditions suppressed biodegradation; (ii) atenolol was biodegraded under both aerobic and anoxic conditions (with a higher biodegradation rate under aerobic conditions), and cometabolism with biodegradable carbon was the main mechanism; (iii) diclofenac and fluoxetine were removed by sorption only. Finally, the abilities of our strategy were evaluated by testing the suitability of the parameters for simulating effluent concentrations and removal efficiency at a full-scale plant.
Collapse
Affiliation(s)
- M Pomiès
- Irstea, UR MALY, 5 rue de la Doua, CS70077, 69626, Villeurbanne, Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Liu L, Binning PJ, Smets BF. Evaluating alternate biokinetic models for trace pollutant cometabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2230-6. [PMID: 25546565 DOI: 10.1021/es5035393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mathematical models of cometabolic biodegradation kinetics can improve our understanding of the relevant microbial reactions and allow us to design in situ or in-reactor applications of cometabolic bioremediation. A variety of models are available, but their ability to describe experimental data has not been systematically evaluated for a variety of operational/experimental conditions. Here five different models were considered: first-order; Michaelis-Menten; reductant; competition; and combined models. The models were assessed on their ability to fit data from simulated batch experiments covering a realistic range of experimental conditions. The simulated observations were generated by using the most complex model structure and parameters based on the literature, with added experimental error. Three criteria were used to evaluate model fit: ability to fit the simulated experimental data, identifiability of parameters using a colinearity analysis, and suitability of the model size and complexity using the Bayesian and Akaike Information criteria. Results show that no single model fits data well for a range of experimental conditions. The reductant model achieved best results, but required very different parameter sets to simulate each experiment. Parameter nonuniqueness was likely to be due to the parameter correlation. These results suggest that the cometabolic models must be further developed if they are to reliably simulate experimental and operational data.
Collapse
Affiliation(s)
- Li Liu
- Department of Environmental Engineering, Technical, University of Denmark , Bygningstorvet 115, 2800 Kgs.Lyngby, Denmark
| | | | | |
Collapse
|
29
|
Su L, Aga D, Chandran K, Khunjar WO. Factors impacting biotransformation kinetics of trace organic compounds in lab-scale activated sludge systems performing nitrification and denitrification. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:116-124. [PMID: 25199437 DOI: 10.1016/j.jhazmat.2014.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/18/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
To predict TOrC fate in biological activated sludge systems, there is a need to accurately determine TOrC biodegradation kinetics in mixed microbial cultures. Short-term batch tests with salicylic acid, 17α-ethinylestradiol, nonylphenol, trimethoprim and carbamazepine were conducted with lab-scale activated sludge cultures in which the initial TOrC concentration (1mg/L and 0.0005mg/L) and readily biodegradable substrate concentrations were varied. The results indicate that pseudo-first order kinetic estimates of TOrC are not sensitive (p>0.05) to the initial TOrC concentration as long as the initial TOrC concentration (S0) to biomass (X0) ratio (on COD basis) is below 2×10(-3). The presence of readily biodegradable organic matter suppresses TOrC biotransformation rates under nitrifying and denitrifying conditions, and this impact can be adequately described using a reversible non-competitive inhibition equation. These results demonstrate the importance of closely mimicking parent reactor conditions in batch testing because biotransformation parameters are impacted by in-situ carbon loading and redox conditions.
Collapse
Affiliation(s)
- Lijuan Su
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Diana Aga
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
30
|
Fernandez-Fontaina E, Carballa M, Omil F, Lema JM. Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors. WATER RESEARCH 2014; 65:371-383. [PMID: 25150522 DOI: 10.1016/j.watres.2014.07.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
Cometabolism is the ability of microorganisms to degrade non-growth substrates in the presence of primary substrates, being the main removal mechanism behind the biotransformation of organic micropollutants in wastewater treatment plants. In this paper, a cometabolic Monod-type kinetics, linking biotransformation of micropollutants with primary substrate degradation, was applied to a highly enriched nitrifying activated sludge (NAS) reactor operated under different operational conditions (hydraulic retention time (HRT) and nitrifying activity). A dynamic model of the bioreactor was built taking into account biotransformation, sorption and volatilization. The micropollutant transformation capacity (Tc), the half-saturation constant (Ksc) and the solid-liquid partitioning coefficient (Kd) of several organic micropollutants were estimated at 25 °C using an optimization algorithm to fit experimental data to the proposed model with the cometabolic Monod-type biotransformation kinetics. The cometabolic Monod-type kinetic model was validated under different HRTs (1.0-3.7 d) and nitrification rates (0.12-0.45 g N/g VSS d), describing more accurately the fate of those compounds affected by the biological activity of nitrifiers (ibuprofen, naproxen, erythromycin and roxithromycin) compared to the commonly applied pseudo-first order micropollutant biotransformation kinetics, which does not link biotransformation of micropollutants to consumption of primary substrate. Furthermore, in contrast to the pseudo-first order biotransformation constant (k(biol)), the proposed cometabolic kinetic coefficients are independent of operational conditions such as the nitrogen loading rate applied. Also, the influence of the kinetic parameters on the biotransformation efficiency of NAS reactors, defined as the relative amount of the total inlet micropollutant load being biotransformed, was assessed considering different HRTs and nitrification rates.
Collapse
Affiliation(s)
- E Fernandez-Fontaina
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - M Carballa
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - F Omil
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J M Lema
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Fischer K, Majewsky M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl Microbiol Biotechnol 2014; 98:6583-97. [PMID: 24866947 DOI: 10.1007/s00253-014-5826-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.
Collapse
Affiliation(s)
- Klaus Fischer
- Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21, 54296, Trier, Germany,
| | | |
Collapse
|
32
|
Sedighi M, Vahabzadeh F. Kinetic Modeling of cometabolic degradation of ethanethiol and phenol by Ralstonia eutropha. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0625-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Sathyamoorthy S, Chandran K, Ramsburg CA. Biodegradation and cometabolic modeling of selected beta blockers during ammonia oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12835-12843. [PMID: 24112027 DOI: 10.1021/es402878e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Accurate prediction of pharmaceutical concentrations in wastewater effluents requires that the specific biochemical processes responsible for pharmaceutical biodegradation be elucidated and integrated within any modeling framework. The fate of three selected beta blockers-atenolol, metoprolol, and sotalol-was examined during nitrification using batch experiments to develop and evaluate a new cometabolic process-based (CPB) model. CPB model parameters describe biotransformation during and after ammonia oxidation for specific biomass populations and are designed to be integrated within the Activated Sludge Models framework. Metoprolol and sotalol were not biodegraded by the nitrification enrichment culture employed herein. Biodegradation of atenolol was observed and linked to the activity of ammonia-oxidizing bacteria (AOB) and heterotrophs but not nitrite-oxidizing bacteria. Results suggest that the role of AOB in atenolol degradation may be disproportionately more significant than is otherwise suggested by their lower relative abundance in typical biological treatment processes. Atenolol was observed to competitively inhibit AOB growth in our experiments, though model simulations suggest inhibition is most relevant at atenolol concentrations greater than approximately 200 ng·L(-1). CPB model parameters were found to be relatively insensitive to biokinetic parameter selection suggesting the model approach may hold utility for describing pharmaceutical biodegradation during biological wastewater treatment.
Collapse
Affiliation(s)
- Sandeep Sathyamoorthy
- Tufts University , Department of Civil and Environmental Engineering, 200 College Avenue Room 113 Anderson Hall, Medford, Massachusetts 02155, United States
| | | | | |
Collapse
|
34
|
Marchal G, Smith KEC, Rein A, Winding A, Wollensen de Jonge L, Trapp S, Karlson UG. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:200-210. [PMID: 23871817 DOI: 10.1016/j.envpol.2013.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg(-1)) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase.
Collapse
Affiliation(s)
- Geoffrey Marchal
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | | | | | | | | | | | | |
Collapse
|
35
|
Li M, Mathieu J, Yang Y, Fiorenza S, Deng Y, He Z, Zhou J, Alvarez PJJ. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9950-9958. [PMID: 23909410 DOI: 10.1021/es402228x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Soluble di-iron monooxygenases (SDIMOs), especially group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), are of significant interest due to their potential role in the initiation of 1,4-dioxane (dioxane) degradation. Functional gene array (i.e., GeoChip) analysis of Arctic groundwater exposed to dioxane since 1980s revealed that various dioxane-degrading SDIMO genes were widespread, and PCR-DGGE analysis showed that group-5 SDIMOs were present in every tested sample, including background groundwater with no known dioxane exposure history. A group-5 thmA-like gene was enriched (2.4-fold over background, p < 0.05) in source-zone samples with higher dioxane concentrations, suggesting selective pressure by dioxane. Microcosm assays with (14)C-labeled dioxane showed that the highest mineralization capacity (6.4 ± 0.1% (14)CO2 recovery during 15 days, representing over 60% of the amount degraded) corresponded to the source area, which was presumably more acclimated and contained a higher abundance of SDIMO genes. Dioxane mineralization ceased after 7 days and was resumed by adding acetate (0.24 mM) as an auxiliary substrate to replenish NADH, a key coenzyme for the functioning of monoxygenases. Acetylene inactivation tests further corroborated the vital role of monooxygenases in dioxane degradation. This is the first report of the prevalence of oxygenase genes that are likely involved in dioxane degradation and suggests their usefulness as biomarkers of dioxane natural attenuation.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Weidhaas J, Dupont RR. Aerobic biotransformation of N-nitrosodimethylamine and N-nitrodimethylamine in methane and benzene amended soil columns. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 150:45-53. [PMID: 23673086 DOI: 10.1016/j.jconhyd.2013.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
Aerobic biotransformation of N-nitrosodimethylamine (NDMA), an emerging contaminant of concern, and its structural analog N-nitrodimethylamine (DMN), was evaluated in benzene and methane amended groundwater passed through laboratory scale soil columns. Competitive inhibition models were used to model the kinetics for NDMA and DMN cometabolism accounting for the concurrent degradation of the growth and cometabolic substrates. Transformation capacities for NDMA and DMN with benzene (13 and 23μg (mgcells)(-1)) and methane (0.14 and 8.4μg (mgcells)(-1)) grown cultures, respectively are comparable to those presented in the literature, as were first order endogenous decay rates estimated to be 2.1×10(-2)±1.7×10(-3)d(-1) and 6.5×10(-1)±7.1×10(-1)d(-1) for the methane and benzene amended cultures, respectively. These studies highlight possible attenuation mechanisms and rates for NDMA and DMN biotransformation in aerobic aquifers undergoing active remediation, natural attenuation or managed aquifer recharge with treated wastewater (i.e., reclaimed water).
Collapse
Affiliation(s)
- Jennifer Weidhaas
- West Virginia University, Civil and Environmental Engineering, PO Box 6103, Morgantown, WV 26505, United States.
| | | |
Collapse
|
37
|
Nzila A. Update on the cometabolism of organic pollutants by bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:474-82. [PMID: 23570949 DOI: 10.1016/j.envpol.2013.03.042] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 05/20/2023]
Abstract
Each year, tons of various types of molecules pollute our environment, and their elimination is one of the major challenges human kind is facing. Among the strategies to eliminate these pollutants is their biodegradation by microorganisms. However, many pollutants cannot be used efficiently as growth substrates by microorganisms. Biodegradation of such molecules by cometabolism has been reported, which is the ability of a microorganism to biodegrade a pollutant without using it as a growth-substrate (non-growth-substrate), while sustaining its own growth by assimilating a different substrate (growth-substrate). This approach has been used in the field of bioremediation, however, its potential has not been fully exploited yet. This review summarises the work carried out on the cometabolism of important recalcitrant pollutants, and presents strategies that can be used to improve ways of identifying microorganisms that can cometabolise such recalcitrant pollutants.
Collapse
Affiliation(s)
- Alexis Nzila
- King Fahd University of Petroleum and Minerals, Department of Biology, PO Box 468, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
38
|
Krastanov A, Alexieva Z, Yemendzhiev H. Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 2013. [DOI: 10.1002/elsc.201100227] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Albert Krastanov
- Department of Biotechnology; University of Food Technologies; Plovdiv; Bulgaria
| | - Zlatka Alexieva
- Institute of Microbiology; Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Husein Yemendzhiev
- Department of Water Technology; University “Prof. Asen Zlatarov”; Burgas; Bulgaria
| |
Collapse
|
39
|
Ely RL, Williamson KJ, Guenther RB, Hyman MR, Arp DJ. A cometabilic kinetics model incorporating enzyme inhbition, inactivation, and recovery: I. Model development, analysis, and testing. Biotechnol Bioeng 2012; 46:218-31. [PMID: 18623306 DOI: 10.1002/bit.260460305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cometabolic biodegradation prcesses are important for bioremediation of hazardous waste sites. However, these proceeses are not well understood and have not been modeled thoroughly. Traditional Michaelis-Menten kinetics models often are used, but toxic effects and bacterial responses to toxicity may cause changes in enzyme levels, rendering such models inappropriate. In this article, a conceptual and mathematical model of cometabolic enzyme kinetics i described. Model derivation is based on enzyme/growth-substrate/nongrowth-substrate interaction and incorporates enzyme inhibition (caused by the presence of a cometabolic compound), inactivation (resulting from toxicity of a cometabolic product), and recovery (associated with bacterial synthesis of new enbzyme in response to inactivation). The mathematical model consists of a system of two, nonlinear ordinary differential equations that can be solved implicitly using numerical methods, providing estimates of model parameters. Model analysis shows that growth substraate adn nongrowth substrate oxidation rates are related by a dimensionless constant. Reliability of tehy model solution prcedure is verifiedl by abnalyzing data ses, containing random error, from simulated experimentss with trichhloroethyylene (TCE) degradation by ammonia-oxidizing bacterialunder various conditions. Estimation of the recovery rate contant is deterimined to be sensitive to intial TCE concentration. Model assumptions are evaluated in a companion article using data from TCE degradation experiments with amoniaoxidizing bacteria. (c) 1995 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- R L Ely
- Department of Civil Engineering, Oregon State University, Corvallis, Oregon 97331
| | | | | | | | | |
Collapse
|
40
|
Plósz BG, Langford KH, Thomas KV. An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): assessment of diclofenac and carbamazepine. Biotechnol Bioeng 2012; 109:2757-69. [PMID: 22565415 DOI: 10.1002/bit.24553] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 11/09/2022]
Abstract
Conventional models for predicting the fate of xenobiotic organic trace chemicals, identified, and calibrated using data obtained in batch experiments spiked with reference substances, can be limited in predicting xenobiotic removal in wastewater treatment plants (WWTPs). At stake is the level of model complexity required to adequately describe a general theory of xenobiotic removal in WWTPs. In this article, we assess the factors that influence the removal of diclofenac and carbamazepine in activated sludge, and evaluate the complexity required for the model to effectively predict their removal. The results are generalized to previously published cases. Batch experimental results, obtained under anoxic and aerobic conditions, were used to identify extensions to, and to estimate parameter values of the activated sludge modeling framework for Xenobiotic trace chemicals (ASM-X). Measurement and simulation results obtained in the batch experiments, spiked with the diclofenac and carbamazepine content of preclarified municipal wastewater shows comparably high biotransformation rates in the presence of growth substrates. Forward dynamic simulations were performed using full-scale data obtained from Bekkelaget WWTP (Oslo, Norway) to evaluate the model and to estimate the level of re-transformable xenobiotics present in the influent. The results obtained in this study demonstrate that xenobiotic loading conditions can significantly influence the removal capacity of WWTPs. We show that the trace chemical retransformation in upstream sewer pipes can introduce considerable error in assessing the removal efficiency of a WWTP, based only on parent compound concentration measurements. The combination of our data with those from the literature shows that solids retention time (SRT) can enhance the biotransformation of diclofenac, which was not the case for carbamazepine. Model approximation of the xenobiotic concentration, detected in the solid phase, suggest that between approximately 1% and 16% of the total solid carbamazepine and diclofenac concentrations, respectively, is due to sorption-the remainder being non-bioavailable and sequestered. We demonstrate the effectiveness of the model's predictive power over conventional tools in a statistical analysis, performed at four levels of structural complexity. To assess WWTP retrofitting needs to remove xenobiotic trace chemicals, we suggest using mechanistic models, e.g., ASM-X, in regional risk assessments. For preliminary evaluations, we present operating charts that can be used to estimate average xenobiotic removal rates in WWTPs as a function of SRT and the xenobiotics mass loads normalised to design treatment capacity.
Collapse
Affiliation(s)
- Benedek Gy Plósz
- Norwegian Institute for Water Research, NIVA, Gaustadalléen 21, Oslo, Norway.
| | | | | |
Collapse
|
41
|
Goudar CT. An explicit expression for determining cometabolism kinetics using progress curve analysis. J Biotechnol 2012; 159:56-60. [DOI: 10.1016/j.jbiotec.2012.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 11/15/2022]
|
42
|
Aktaş O. Effect of S0/X0 ratio and acclimation on respirometry of activated sludge in the cometabolic biodegradation of phenolic compounds. BIORESOURCE TECHNOLOGY 2012; 111:98-104. [PMID: 22366602 DOI: 10.1016/j.biortech.2012.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 05/31/2023]
Abstract
Aerobic batch biodegradation experiments and respirometric analysis were performed in order to investigate the effect of S(0)/X(0) (substrate/biomass) ratio and preliminary acclimation on bi-solute biodegradation of phenolic compounds. It was shown that 2-chlorophenol (2-CP) and 2-nitrophenol (2-NP) could be cometabolically biodegraded only with acclimated biomass in the presence of phenol as growth substrate. Acclimation resulted in domination of phenol oxidizing bacteria which could induce the necessary enzymes for cometabolic transformation of 2-CP and 2-NP. Biodegradation of the cometabolic compounds occurred even after depletion of phenol at resting cell conditions. Both compounds could be successfully biodegraded by the acclimated biomass at initial substrate concentrations as high as 300 mg/L. Respirometric analysis showed that the optimum S(0)/X(0) ratio ranged between 1.5 and 5.5mg COD(eq)/mg MLSS for cometabolic substrates 2-CP and 2-NP, whereas it was as high as 8.5mg COD(eq)/mg MLSS for phenol which corresponds to a phenol concentration of about 1500 mg/L.
Collapse
Affiliation(s)
- O Aktaş
- Boğaziçi University, Institute of Environmental Sciences, Bebek, Istanbul, Turkey.
| |
Collapse
|
43
|
Delgadillo-Mirquez L, Lardon L, Steyer JP, Patureau D. A new dynamic model for bioavailability and cometabolism of micropollutants during anaerobic digestion. WATER RESEARCH 2011; 45:4511-4521. [PMID: 21719065 DOI: 10.1016/j.watres.2011.05.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/25/2011] [Accepted: 05/31/2011] [Indexed: 05/31/2023]
Abstract
Organic micropollutants (OMPs) are present in wastewater and sludge. Their possible impact to the environment contributes to their increasing scientific and social interest. Anaerobic digestion has been shown as a potential biological process for removal of these compounds. An accurate description of OMP distribution in the environmental system can be used to better understand which compartment is used for degradation and to improve their depletion in conventional wastewater treatment technologies. In this work, we proposed a dynamical model with a four-compartment distribution to describe the Polycyclic Aromatic Hydrocarbons (PAHs) fate during anaerobic digestion. The model is calibrated and validated using experimental data obtained from two continuous reactors fed with primary and secondary sludge operated under mesophilic conditions. A non-linear least square method was used to optimize the model parameters. The resulted model is in accordance with the experimental data. The PAH biodegradation rate is well modeled when considering the aqueous fraction (including free and sorbed to dissolved/colloidal matter PAHs) as the bioavailable compartment. It was also demonstrated in the simulations that the PAHs biodegradation is linked to a mechanism of cometabolism. The model proposed is potentially useful to better understand the micropollutant distribution, predict the fate of PAHs under anaerobic condition and help to optimize the operation process for their depletion.
Collapse
Affiliation(s)
- Liliana Delgadillo-Mirquez
- INRA, UR050, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne F-11100, France.
| | | | | | | |
Collapse
|
44
|
Mohamed M, Hatfield K. Dimensionless parameters to summarize the influence of microbial growth and inhibition on the bioremediation of groundwater contaminants. Biodegradation 2010; 22:877-96. [DOI: 10.1007/s10532-010-9445-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 12/10/2010] [Indexed: 10/18/2022]
|
45
|
Barret M, Carrère H, Delgadillo L, Patureau D. PAH fate during the anaerobic digestion of contaminated sludge: Do bioavailability and/or cometabolism limit their biodegradation? WATER RESEARCH 2010; 44:3797-3806. [PMID: 20569963 DOI: 10.1016/j.watres.2010.04.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
The anaerobic removal of 13 Polycyclic Aromatic Hydrocarbons (PAHs) was measured in five continuous anaerobic digestors with different feed sludge, in which abiotic losses were neglected. These feeds were chosen to generate different levels of PAH bioavailability and cometabolism within the reactors. Based on the accurate modelling of PAH sorption in sludge, the aqueous fraction (including free and sorbed-to-dissolved-and-colloidal-matter PAHs) was demonstrated to be bioavailable, which validated a widespread assumption about micropollutants bioavailability in sludge. It was also demonstrated that bioavailability is not the only influencing factor. Indeed, PAHs biodegradation resulted from a combination of bioavailability and cometabolism. An equation adapted from Criddle (1993, The Kinetics of Cometabolism. Biotechnology and Bioengineering 41, 1048-1056) that takes into account both mechanisms was shown to fit the experimental data, with dry matter removal rate identified as the criteria for cometabolism. The existence of a threshold of dry matter cometabolism was suggested, below which PAHs removal would not be possible. The parameters of the Criddle equation were demonstrated to depend on PAH molecular structure, and the results suggest that they would also be influenced by substrate composition and microbial population. This research provided original outcomes for the assessment of micropollutants fate. Indeed, the understanding of the driving mechanisms was improved, which has implications for the optimization of micropollutants removal.
Collapse
Affiliation(s)
- M Barret
- INRA, UR050, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, 11100 Narbonne, France.
| | | | | | | |
Collapse
|
46
|
Ely RL, Williamson KJ, Hyman MR, Arp DJ. Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnol Bioeng 2010; 54:520-34. [PMID: 18636408 DOI: 10.1002/(sici)1097-0290(19970620)54:6<520::aid-bit3>3.0.co;2-l] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pure cultures of ammonia-oxidizing bacteria, Nitrosomonas europaea, were exposed to trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), chloroform (CF), 1,2-dichloroethane (1,2-DCA), or carbon tetrachloride (CT), in the presence of ammonia, in a quasi-steady-state bioreactor. Estimates of enzyme kinetics constants, solvent inactivation constants, and culture recovery constants were obtained by simultaneously fitting three model curves to experimental data using nonlinear optimization techniques and an enzyme kinetics model, referred to as the inhibition, inactivation, and recovery (IIR) model, that accounts for inhibition of ammonia oxidation by the solvent, enzyme inactivation by solvent product toxicity, and respondent synthesis of new enzyme (recovery). Results showed relative enzyme affinities for ammonia monooxygenase (AMO) of 1,1-DCE approximately TCE > CT > NH(3) > CF > 1,2-DCA. Relative maximum specific substrate transformation rates were NH(3) > 1,2-DCA > CF > TCE approximately 1,1-DCE > CT (=0). The TCE, CF, and 1,1-DCE inactivated the cells, with 1,1-DCE being about three times more potent than TCE or CF. Under the conditions of these experiments, inactivating injuries caused by TCE and 1,1-DCE appeared limited primarily to the AMO enzyme, but injuries caused by CF appeared to be more generalized. The CT was not oxidized by N. europaea while 1,2-DCA was oxidized quite readily and showed no inactivation effects. Recovery capabilities were demonstrated with all solvents except CF. A method for estimating protein yield, the relationship between the transformation capacity model and the IIR model, and a condition necessary for sustainable cometabolic treatment of inactivating substrates are presented. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 520-534, 1997.
Collapse
Affiliation(s)
- R L Ely
- Department of Civil Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
47
|
Aktaş O, Ceçen F. Adsorption and cometabolic bioregeneration in activated carbon treatment of 2-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2010; 177:956-961. [PMID: 20083350 DOI: 10.1016/j.jhazmat.2010.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/27/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
The extent of cometabolic bioregeneration of activated carbons loaded with 2-nitrophenol was investigated in lab-scale batch activated sludge reactors. Bioregeneration was quantified by measuring the deterioration in adsorption capacity of a fresh activated carbon after a pre-loading and a subsequent bioregeneration sequence. Activated carbons loaded with 2-nitrophenol could be partially bioregenerated cometabolically in the presence of phenol as the growth substrate. The occurrence of exoenzymatic bioregeneration was also possible during cometabolic bioregeneration of thermally activated carbon. However, cometabolic bioregeneration of chemically activated carbon was higher in accordance with higher desorbability. Rather than biodegradation, desorption was the rate-limiting step in bi-solute bioregeneration of phenol and 2-nitrophenol. The absence of oxidative coupling reactions leads to sufficient reversible adsorption, which eventually makes 2-nitrophenol an ideal compound in terms of bioregenerability.
Collapse
Affiliation(s)
- Ozgür Aktaş
- Boğaziçi University Institute of Environmental Sciences, 34342 Bebek, Istanbul, Turkey.
| | | |
Collapse
|
48
|
Plósz BGY, Leknes H, Thomas KV. Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:734-742. [PMID: 20000564 DOI: 10.1021/es902264w] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a process model that predicts the removal of the antibiotic micropollutants, sulfamethoxazole (SMX), tetracycline (TCY), and ciprofloxacin (CIP), in an activated sludge treatment system. A novel method was developed to solve the inverse problem of inferring process rate, sorption, and correction factor parameter values from batch experimental results obtained under aerobic and anoxic conditions. Instead of spiking the batch reactors with reference substances, measurements were made using the xenobiotic organic micropollutant content of preclarified municipal sewage. Parent compound formation and removal were observed, and the model developed using the simulation software West showed limited efficiency to describe the selected micropollutants profiles, when growth substrate removal occurs. The model structure was optimized by accounting for competitive inhibition by readily biodegradable substrates on the cometabolic micropollutant biotransformation processes. Our results suggest that, under anoxic conditions, hydrophobicity-independent mechanisms can significantly impact solid-liquid partitioning that our model takes into account by using the sorption coefficient as a lumped parameter. Forward dynamic simulations were carried out to evaluate the developed model and to confirm it for SMX using data obtained in a full-scale treatment plant. Evaluation of measured and simulation results suggest that, robust model prediction can be achieved by approximating the influent load of chemicals biodegrading via a given parent compound, e.g., human conjugates, as an antibiotic mass that is proportional to the parent compound load.
Collapse
Affiliation(s)
- Benedek G Y Plósz
- Norwegian Institute for Water Research (NIVA), NO-0349, Oslo, Norway.
| | | | | |
Collapse
|
49
|
Kern S, Baumgartner R, Helbling DE, Hollender J, Singer H, Loos MJ, Schwarzenbach RP, Fenner K. A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. ACTA ACUST UNITED AC 2010; 12:2100-11. [DOI: 10.1039/c0em00238k] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Aktaş O, Ceçen F. Cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol. BIORESOURCE TECHNOLOGY 2009; 100:4604-4610. [PMID: 19467865 DOI: 10.1016/j.biortech.2009.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/24/2009] [Accepted: 04/26/2009] [Indexed: 05/27/2023]
Abstract
Thermally and chemically activated carbons were used to investigate the extent of cometabolic bioregeneration in laboratory scale activated sludge reactors. Bioregeneration was determined and quantified by measuring the substrate and chloride concentrations, oxygen uptake rates, and deterioration in adsorption capacities. Activated carbons loaded with 2-chlorophenol could be partially bioregenerated in the presence of phenol as the growth substrate. The occurrence of exoenzymatic bioregeneration was also possible during cometabolic bioregeneration of thermally activated carbons. However, cometabolic bioregeneration of chemically activated carbons was much superior compared with thermally activated carbons. In cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol, biodegradation, rather than desorption, was the rate-limiting step. Environmental Scanning Electron Microscopy analyses showed that groups of cocci-shaped phenol-oxidizers were attached to the outer surface or internal cavities of activated carbon as a fingerprint of bioregeneration.
Collapse
Affiliation(s)
- Ozgür Aktaş
- Boğaziçi University, Institute of Environmental Sciences, Bebek, Istanbul, Turkey.
| | | |
Collapse
|