1
|
Chen Y, Guo Y, Liu Y, Xiang Y, Liu G, Zhang Q, Yin Y, Cai Y, Jiang G. Advances in bacterial whole-cell biosensors for the detection of bioavailable mercury: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161709. [PMID: 36682565 DOI: 10.1016/j.scitotenv.2023.161709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) and its organic compounds, especially monomethylmercury (MeHg), cause major damage to the ecosystem and human health. In surface water or sediments, microorganisms play a crucial role in the methylation and demethylation of Hg. Given that Hg transformation processes are intracellular reactions, accurate assessment of the bioavailability of Hg(II)/MeHg in the environment, particularly for microorganisms, is of major importance. Compared with traditional analytical methods, bacterial whole-cell biosensors (BWCBs) provide a more accurate, convenient, and cost-effective strategy to assess the environmental risks of Hg(II)/MeHg. This Review summarizes recent progress in the application of BWCBs in the detection of bioavailable Hg(II)/MeHg, providing insight on current challenges and strategies. The principle and components of BWCBs for Hg(II)/MeHg bioavailability analysis are introduced. Furthermore, the impact of water chemical factors on the bioavailability of Hg is discussed as are future perspectives of BWCBs in bioavailable Hg analysis and optimization of BWCBs.
Collapse
Affiliation(s)
- Yueqian Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Colin Y, Gury J, Monperrus M, Gentes S, Ayala Borda P, Goni-Urriza M, Guyoneaud R. Biosensor for screening bacterial mercury methylation: example within the Desulfobulbaceae. Res Microbiol 2018; 169:44-51. [PMID: 28951230 DOI: 10.1016/j.resmic.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/03/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
Mercury methylation and demethylation processes govern the fate of methylmercury in aquatic ecosystems. Under anoxic conditions, methylation activity is mainly of biological origin and is often the result of sulfate-reducing bacteria. In this study, the use of a luminescent biosensor for screening methylmercury production was validated by exposing the reporter strain to methylating or non-methylating Desulfovibrio strains. The sensitivity of the biosensor to methylmercury was shown to depend on sulfate-reducing bacterial growth conditions. Bioluminescence was measured using 1-10 mM of sulfides. As the sulfide level increased, luminescence decreased by 40-70%, respectively. Nevertheless, assuming an average of 5 mM of sulfide produced during sulfate-reducing growth, a mercury methylation potential of over 4% was detected when using 185 nM of inorganic mercury. Due to technical limitations, mercury speciation has, to date, only been investigated in a small number of bacterial strains, and no consistent phylogenetic distribution has been identified. Here, the biosensor was further used to assess the Hg methylation capacities of an additional 21 strains related to the Desulfobulbaceae. Seven of them were identified as methylmercury producers. Cultivation procedures combined with bacterial biosensors could provide innovative tools to identify new methylator clades amongst the prokaryotes.
Collapse
Affiliation(s)
- Yannick Colin
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| | - Jérôme Gury
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| | - Mathilde Monperrus
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2, av. P. Angot, 64053 Pau cedex 9, France.
| | - Sophie Gentes
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| | - Paola Ayala Borda
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| | - Marisol Goni-Urriza
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| | - Rémy Guyoneaud
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| |
Collapse
|
3
|
Mahmutoglu I, Pei L, Porcar M, Armstrong R, Bedau M. Bioremediation. Synth Biol (Oxf) 2012. [DOI: 10.1002/9783527659296.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
4
|
Luminescent bacteria-based sensing method for methylmercury specific determination. Anal Bioanal Chem 2011; 400:1041-9. [DOI: 10.1007/s00216-011-4866-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 11/25/2022]
|
5
|
|
6
|
Abstract
We propose an in vitro selection strategy to identify bacteriophage variants that recognize metal ions in solution. In 6 M urea, phage T7 loses 99.9% of its activity in less than 5 min. Inactivation is accelerated by gold, but slowed by zinc and magnesium. Selection of phage over five generations in the presence of gold, zinc, and magnesium increases phage half-lives 4-, 10-, and 70-fold, respectively. As selections are repeated, phage become increasingly dependent on the specific metal employed in the selection, indicating the suitability of the strategy for optimization of metal-ion recognition.
Collapse
Affiliation(s)
- K Gupta
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000, USA
| | | |
Collapse
|
7
|
Ivask A, Rõlova T, Kahru A. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 2009; 9:41. [PMID: 19426479 PMCID: PMC2685376 DOI: 10.1186/1472-6750-9-41] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 05/08/2009] [Indexed: 02/01/2023] Open
Abstract
Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights-off" construct (control) for every constructed recombinant metal sensor strain. To our knowledge, no Gram-positive metal sensor expressing a full bacterial bioluminescence cassette (luxCDABE) has been constructed previously.
Collapse
Affiliation(s)
- Angela Ivask
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia.
| | | | | |
Collapse
|
8
|
Srivastava NK, Majumder CB. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. JOURNAL OF HAZARDOUS MATERIALS 2008; 151:1-8. [PMID: 17997034 DOI: 10.1016/j.jhazmat.2007.09.101] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 05/07/2023]
Abstract
Most heavy metals are well-known toxic and carcinogenic agents and when discharged into the wastewater represent a serious threat to the human population and the fauna and flora of the receiving water bodies. In the present review paper, the sources have discussed the industrial source of heavy metals contamination in water, their toxic effects on the fauna and flora and the regulatory threshold limits of these heavy metals. The various parameters of the biofiltration processes, their mechanism for heavy metals removal along with the kinetics of biofilters and its modeling aspects have been discussed. The comparison of various physico-chemical treatment and the advantages of biofiltration over other conventional processes for treatment of heavy metals contaminated wastewater have also been discussed. The applications of genetic engineering in the modification of the microorganisms for increasing the efficiency of the biofiltration process for heavy metals removal have been critically analyzed. The results show that the efficiency of the process can be increased three to six folds with the application of recombinant microbial treatment.
Collapse
Affiliation(s)
- N K Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | | |
Collapse
|
9
|
Abstract
The delicate and dynamic balance of the physiological steady state and its maintenance is well characterized by studies of bacterial stress response. Through the use of genetic analysis, numerous stress regulons, their physiological regulators and their biochemical processes have been delineated. In particular, transcriptionally activated stress regulons are subjects of study and application. These regulons include those that respond to macromolecular damage and toxicity as well as to nutrient starvation. The convenience of reporter gene fusions has allowed the creation of biosensor strains, resulting from the fusion of stress-responsive promoters with a variety of reporter genes. Such cellular biosensors are being used for monitoring dynamic systems and can report the presence of environmental stressors in real time. They provide a greater range of sensitivity, e.g. to sub-lethal concentrations of toxicants, than the simple assessment of cell viability. The underlying physiological context of the reporter strains results in the detection of bioavailable concentrations of both toxicants and nutrients. Culture conditions and host strain genotypes can be customized so as to maximize the sensitivity of the strain for a particular application. Collections of specific strains that are grouped in panels are used to diagnose targets or mode of action for unknown toxicants. Further application in massive by parallel DNA and gene fusion arrays greatly extends the information available for diagnosis of modes of action and may lead to development of novel high-throughput screens. Future studies will include more panels, arrays, as well as single reporter cell detection for a better understanding of the population heterogeneity during stress response. New knowledge of physiology gained from further studies of novel systems, or using innovative methods of analysis, will undoubtedly yield still more useful and informative environmental biosensors.
Collapse
Affiliation(s)
- Amy Cheng Vollmer
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| | | |
Collapse
|
10
|
Omura T, Kiyono M, Pan-Hou H. Development of a Specific and Sensitive Bacteria Sensor for Detection of Mercury at Picomolar Levels in Environment. ACTA ACUST UNITED AC 2004. [DOI: 10.1248/jhs.50.379] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoko Omura
- Faculty of Pharmaceutical Sciences, Setsunan University
| | - Masako Kiyono
- Faculty of Pharmaceutical Sciences, Setsunan University
| | | |
Collapse
|
11
|
Shi GQ, Jiang G. A dip-and-read test strip for the determination of mercury(II) ion in aqueous samples based on urease activity inhibition. ANAL SCI 2002; 18:1215-9. [PMID: 12458706 DOI: 10.2116/analsci.18.1215] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A sensitive dip-and-read test strip for the determination of mercury in aqueous samples based on the inhibition of urease reaction by the ion has been developed. The strip has a circular sensing zone that containing two layers: the top layer is a cellulose acetate membrane where urease is immobilized on it; the bottom layer is a pH indicator wafer that is impregnated with urea. The principle of the measurement is based on the disappearance of a yellow spot on the pH indicator wafer. The elapsing time until the disappearance of the spot which depends on the concentration of mercury(II) ion is measured with a stopwatch. Under the experimental conditions, as low as 0.2 ng/ml mercury can be observed with the detection range from 0.2 to 200 ng/ml in water. Organomercury compounds give essentially the same response as inorganic mercury. Heavy-metal ions such as Ag(I), Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) as well as other sample matrixes basically do not interfere with the mercury measurement.
Collapse
Affiliation(s)
- Guo-Qing Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P 0. Box 2871, Beijing 100085, China
| | | |
Collapse
|
12
|
Leth S, Maltoni S, Simkus R, Mattiasson B, Corbisier P, Klimant I, Wolfbeis O, Csöregi E. Engineered Bacteria Based Biosensors for Monitoring Bioavailable Heavy Metals. ELECTROANAL 2002. [DOI: 10.1002/1521-4109(200201)14:1<35::aid-elan35>3.0.co;2-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Roda A, Pasini P, Mirasoli M, Guardigli M, Russo C, Musiani M, Baraldini M. SENSITIVE DETERMINATION OF URINARY MERCURY(II) BY A BIOLUMINESCENT TRANSGENIC BACTERIA-BASED BIOSENSOR. ANAL LETT 2001. [DOI: 10.1081/al-100002702] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Han S, Zhu M, Yuan Z, Li X. A methylene blue-mediated enzyme electrode for the determination of trace mercury(II), mercury(I), methylmercury, and mercury-glutathione complex. Biosens Bioelectron 2001; 16:9-16. [PMID: 11261858 DOI: 10.1016/s0956-5663(00)00114-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A methylene blue-mediated enzyme biosensor has been developed for the detection of inhibitors including mercury(II), mercury(I), methylmercury, and mercury-glutathione complex. The inhibition to horseradish peroxidase was apparently reversible and noncompetitive in the presence of HgCl2 in less than 8 s and irreversibly inactivated when incubated with different concentrations of HgCl2 for 1-8 min. The binding site of horseradish peroxidase with HgCl2 probably was a cysteine residue SH. Mercury compounds can be assayed amperometrically with the detection limits 0.1 ng ml(-1) Hg for HgCl2 and methylmercury, 0.2 ng ml(-1) Hg for Hg2(NO3)2 and 1.7 ng ml(-1) Hg for mercury glutathione complex. Inactivation of the immobilized horseradish peroxidase was displayed in the AFM images of the enzyme membranes.
Collapse
Affiliation(s)
- S Han
- Department of Chemistry, Graduate School, University of Science and Technology of China, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Yolcubal I, Piatt JJ, Pierce SA, Brusseau ML, Maier RM. Fiber optic detection of in situ lux reporter gene activity in porous media: system design and performance. Anal Chim Acta 2000. [DOI: 10.1016/s0003-2670(00)01072-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 2000; 100:2705-38. [PMID: 11749302 DOI: 10.1021/cr990115p] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- S Daunert
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| | | | | | | | | | | |
Collapse
|
17
|
Biran I, Babai R, Levcov K, Rishpon J, Ron EZ. Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2000; 2:285-90. [PMID: 11200429 DOI: 10.1046/j.1462-2920.2000.00103.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Online sensitive monitoring of gene expression is essential for understanding microbial life and microbial communities, especially under stress-inducing conditions, such as the presence of environmental pollutants. We describe here a novel use of promoter-based electrochemical biosensing for online and in situ monitoring of gene expression in response to pollutants. As a model system, we used a cadmium-responsive promoter from Escherichia coil fused to a promoterless lacZ gene, which was monitored using an electrochemical assay of beta-galactosidase activity. This whole-cell biosensor could detect, within minutes, nanomolar concentrations of cadmium in water, sea water and soil samples, and it can be used for continuous online and in situ monitoring.
Collapse
Affiliation(s)
- I Biran
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | | | |
Collapse
|
18
|
Rettberg P, Baumstark-Khan C, Bandel K, Ptitsyn LR, Horneck G. Microscale application of the SOS-LUX-TEST as biosensor for genotoxic agents. Anal Chim Acta 1999. [DOI: 10.1016/s0003-2670(99)00049-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Eismann F, Montuelle B. Microbial methods for assessing contaminant effects in sediments. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 1999; 159:41-93. [PMID: 9921139 DOI: 10.1007/978-1-4612-1496-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Contaminated sediments influence drastically the long-term toxicological and ecological properties of aquatic ecosystems. During the past three decades, scientific knowledge about sediment-water exchange processes and the deposition and distribution of pollutants in water and sediment phases has been supplemented by extensive research on the effects of sediment-associated pollutants on aquatic organisms. Basic research in microbiology, ecology, and toxicology has uncovered the crucial role of sediment microorganisms for the biodegradation of organic matter and for the cycling of nutrients, as well as the susceptibility of these processes to toxic pollution events. Microorganisms have been extensively applied in aquatic toxicology, and various microbial toxicity tests are today available that successfully couple microbial toxicity endpoints to the specificity of the sediment matrix. Sediment-associated toxicants can be brought in contact with test bacteria using sediment pore waters, elutriates, extracts, or whole-sediment material. Toxicity indication principles for microorganisms are versatile and comprise growth and biomass determinations, respiration or oxygen uptake, bacterial luminescence, the activity of a variety of enzymes, and a compendium of genotoxicity assays. The border between toxicological and ecological contaminant effect evaluations in sediments is flexible, and long-term ecological predictions should also include an assessment of pollutant degradation capacities and of key reactions in element cycling. Evaluating microbial community structure and function in environmental systems makes use of modern molecular techniques and bioindicators that could trigger a new quality in the assessment of contaminated sediments in terms of indication of subtoxic effects and early-warning requirements.
Collapse
Affiliation(s)
- F Eismann
- University of Leipzig, Institute for Animal Hygiene and Public Veterinary Affairs, Germany
| | | |
Collapse
|
20
|
Abstract
A sensor plasmid was constructed by inserting the regulation unit from the cadA determinant of plasmid pI258 to control the expression of firefly luciferase. The resulting sensor plasmid pTOO24 is capable of replicating in Gram-positive and Gram-negative bacteria. The expression of the reporter gene as a function of added extracellular heavy metals was studied in Staphylococcus aureus strain RN4220 and Bacillus subtilis strain BR151. Strain RN4220(pTOO24) mainly responded to cadmium, lead and antimony, the lowest detectable concentrations being 10 nM, 33 nM and 1 nM respectively. Strain BR151(pTOO24) responded to cadmium, antimony, zinc and tin at concentrations starting from 3.3 nM, 33 nM, 1 microM, and 100 microM, respectively. The luminescence ratios between induced and uninduced cells, the induction coefficients, of strains RN4220(pTOO24) and BR151(pTOO24) were 23-50 and about 5, respectively. These results were obtained with only 2-3 h incubation times. Freeze-drying of the sensor strains had only moderate effects on the performance with respect to sensitivity or induction coefficients.
Collapse
Affiliation(s)
- S Tauriainen
- University of Turku, Department of Biotechnology, Finland
| | | | | | | |
Collapse
|
21
|
Ramanathan S, Shi W, Rosen BP, Daunert S. Bacteria-based chemiluminescence sensing system using β-galactosidase under the control of the ArsR regulatory protein of the ars operon. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(98)00244-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Klein J, Mattes R. Enzyme-complemented activatorsorbent assay (ECASA): genetic engineering for enzyme-linked immunosorbent assay-type mercuric ion detection. Anal Biochem 1998; 260:173-82. [PMID: 9657875 DOI: 10.1006/abio.1998.2689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sensor component of bacterial mercury resistance systems is the metalloregulatory protein MerR, which has nanomolar sensitivity and high selectivity for Hg(II). A fusion protein of MerR and the alpha-peptide part of beta-galactosidase (LacZalpha) was constructed by fusing the relevant genes. The protein exhibited both MerR functions and alpha-complementing activity to the inactive LacZDeltaM15 (M15) protein. The bifunctional character of the appropriate MerR-LacZalpha-complemented M15 protein (MerR-LacZalpha:M15 protein complex) was used to develop a Hg(II)-specific enzyme-complemented activatorsorbent assay. Hg(II) was immobilized and presented on a matrix taking advantage of the high affinity of Hg(II) to SH residues. The immobilized Hg(II) could be specifically detected down to the parts-per-billion level by quantifying the beta-galactosidase activity of the bound fusion protein complex.
Collapse
Affiliation(s)
- J Klein
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, Stuttgart, D-70569, Germany.
| | | |
Collapse
|
23
|
Affiliation(s)
- Jiří Janata
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta, Georgia 30332-0400
| | - Mira Josowicz
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta, Georgia 30332-0400
| | - Petr Vanýsek
- Department of Chemistry, Nothern Illinois University DeKalb, Illinois 60115
| | | |
Collapse
|
24
|
Justus T, Thomas SM. Construction of a umuC'-luxAB plasmid for the detection of mutagenic DNA repair via luminescence. Mutat Res 1998; 398:131-41. [PMID: 9626973 DOI: 10.1016/s0027-5107(97)00215-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper describes a novel system for the detection of mutagenic DNA repair in Escherichia coli. The DNA damage inducible umuC gene of Escherichia coli has been fused to the luxAB genes from Vibrio harvleyi that encode the enzyme luciferase. Mutagenicity has been assessed semi-quantitatively by the induction of bioluminescence. This system is simple, rapid and equivalent in sensitivity to other currently available test procedures. Its use in the detection of known SOS mutagens MMS, MNNG and UV is described.
Collapse
Affiliation(s)
- T Justus
- School of Biological Sciences, The Flinders University of South Australia, Adelaide, Australia
| | | |
Collapse
|
25
|
|
26
|
Abstract
Biosensors utilize biological components to provide selectivity for monitoring compounds of environmental, clinical and industrial importance. A number of biosensors based on bacteria have recently been developed for monitoring toxic metals in the environment. The advantages and disadvantages of these types of biosensors are discussed.
Collapse
Affiliation(s)
- S Ramanathan
- Department of Chemistry, University of Kentucky, Lexington 40506-0055, USA
| | | | | |
Collapse
|
27
|
Barkay T, Gillman M, Turner RR. Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 1997; 63:4267-71. [PMID: 9361413 PMCID: PMC168746 DOI: 10.1128/aem.63.11.4267-4271.1997] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypotheses that dissolved organic carbon (DOC) and electrochemical charge affect the rate of methylmercury [CH3Hg(I)] synthesis by modulating the availability of ionic mercury [Hg(II)] to bacteria were tested by using a mer-lux bioindicator (O. Selifonova, R. Burlage, and T. Barkay, Appl. Environ. Microbiol. 59:3083-3090, 1993). A decline in Hg(II)-dependent light production was observed in the presence of increasing concentrations of DOC, and this decline was more pronounced at pH 7 than at pH 5, suggesting that DOC is a factor controlling the bioavailability of Hg(II). A thermodynamic model (MINTEQA2) was used to select assay conditions that clearly distinguished among various Hg(II) species. By using this approach, it was shown that negatively charged forms of mercuric chloride (HgCl3-/HgCl(4)2-) induced less light production than the electrochemically neutral form (HgCl2), and no difference was observed between the two neutral forms, HgCl2 and Hg(OH)2. These results suggest that the negative charge of Hg(II) species reduces their availability to bacteria and may be one reason why accumulation of CH3Hg(I) is more often reported to occur in freshwater than in estuarine and marine biota.
Collapse
Affiliation(s)
- T Barkay
- Gulf Ecology Division, National Health and Environmental Effects Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, USA.
| | | | | |
Collapse
|
28
|
Braha O, Walker B, Cheley S, Kasianowicz JJ, Song L, Gouaux JE, Bayley H. Designed protein pores as components for biosensors. CHEMISTRY & BIOLOGY 1997; 4:497-505. [PMID: 9263637 DOI: 10.1016/s1074-5521(97)90321-5] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is a pressing need for new sensors that can detect a variety of analytes, ranging from simple ions to complex compounds and even microorganisms. The devices should offer sensitivity, speed, reversibility and selectivity. Given these criteria, protein pores, remodeled so that their transmembrane conductances are modulated by the association of specific analytes, are excellent prospects as components of biosensors. RESULTS Structure-based design and a separation method that employs targeted chemical modification have been used to obtain a heteromeric form of the bacterial pore-forming protein staphylococcal alpha-hemolysin, in which one of the seven subunits contains a binding site for a divalent metal ion, M(II), which serves as a prototypic analyte. The single-channel current of the heteromer in planar bilayers is modulated by nanomolar Zn(II). Other M(II)s modulate the current and produce characteristic signatures. In addition, heteromers containing more than one mutant subunit exhibit distinct responses to M(II)s Hence, a large collection of responsive pores can be generated through subunit diversity and combinatorial assembly. CONCLUSIONS Engineered pores have several advantages as potential sensor elements: sensitivity is in the nanomolar range; analyte binding is rapid (diffusion limited in some cases) and reversible; strictly selective binding is not required because single-channel recordings are rich in information; and for a particular analyte, the dissociation rate constant, the extent of channel block and the voltage-dependence of these parameters are distinguishing, while the frequency of partial channel block reflects the analyte concentration. A single sensor element might, therefore, be used to quantitate more than one analyte at once. The approach described here can be generalized for additional analytes.
Collapse
Affiliation(s)
- O Braha
- Department of Medical Biochemistry and Genetics, Texas A&M Health Science Center, College Station 77843-1114, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Scott DL, Ramanathan S, Shi W, Rosen BP, Daunert S. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal Chem 1997; 69:16-20. [PMID: 8990978 DOI: 10.1021/ac960788x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A bacterial sensing system that responds selectively to antimonite and arsenite has been investigated. The bacteria used in these studies have been genetically engineered to produce the enzyme beta-galactosidase in response to these ions. This is accomplished by using a plasmid that incorporates the gene for beta-galactosidase (reporter gene) under the control of the promoter of the ars operon. This plasmid also encodes for the ArsR protein, a regulatory protein of the ars operon, which, in the absence of antimonite or arsenite, restricts the expression of beta-galactosidase. In the presence of antimonite or arsenite the ArsR protein is released from the operator/ promoter region of the ars operon and beta-galactosidase is expressed. The activity of this enzyme was monitored electrochemically using p-aminophenyl beta-D-galactopyranoside as the substrate. The bacterial sensing system responds selectively to arsenite and antimonite (and to a lesser extent arsenate) and shows no significant response to phosphate, sulfate, nitrate, and carbonate.
Collapse
Affiliation(s)
- D L Scott
- Department of Chemistry, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
The discovery of new metal-selective complexing agents may be facilitated by applying an in vitro selection strategy. Such a strategy was recently devised to identify and enrich populations of bacteriophage that rely on Mg(II)-, Zn(II)-, or Au(III)-selective stabilization for survival in the presence of denaturing urea. The potential for extension of the strategy to other metal ions is investigated here. The kinetics of phage inactivation in 5 M urea was measured for a spectrum of metals. At a concentration of 1 mM, Mg(II), Ca(II), Co(II), and Ni(II) were found to be the most stabilizing, followed by Cd(II), Cu(II), and Zn(II), respectively. K(I) had virtually no effect. In contrast, Al(III) and Au(III) significantly destabilized the phage, even at concentrations of 0.25 mM.
Collapse
Affiliation(s)
- T Whang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000, USA
| | | | | |
Collapse
|
31
|
Rogers KR, Williams LR. Biosensors for environmental monitoring: a regulatory perspective. Trends Analyt Chem 1995. [DOI: 10.1016/0165-9936(95)97054-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Kong IC, Bitton G, Koopman B, Jung KH. Heavy metal toxicity testing in environmental samples. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 1995; 142:119-147. [PMID: 7652196 DOI: 10.1007/978-1-4612-4252-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The toxicity of heavy metals in the environment depends on a number of physicochemical and biological factors. The complexity of these relationships has encouraged the use of bioassays for direct measurement of the [table: see text] impact of toxic metals on selected test species. Fish and daphnid bioassays are well accepted by the scientific and regulatory communities, but their length (48 h or more) and the considerable time and effort needed to culture the test organisms make their application to sample screening problematical. Microbial and biochemical assays based on the inhibition of bioluminescence, enzyme activity, enzyme biosynthesis, growth, respiration, and heat production are typically faster and less expensive than the traditional and fish bioassays. Some of these tests approach or equal the sensitivity of daphnids to heavy metals. Since the soil acts as a sink for airborne and waste-applied metals, the uptake of metals by plants and the associated toxic impacts are important. Growth inhibition, enzyme induction, and production of stress proteins have been considered as toxicity end points. Enzymatic tests have been developed that are specific for heavy metal toxicity. Such tests can facilitate toxicity reduction evaluations. Detection of individual metals in the environment may eventually be possible using biosensors consisting of genetically engineered microorganisms. Direct solid-phase tests for soil, sediment, or sludge toxicity, using bacterial bioluminescence or enzyme activity as end points, have been developed. Such tests may complement traditional solid-phase toxicity tests using nematodes or earthworms as indicator organisms. Based on the work reviewed, we draw the following conclusions: 1. The Microtox assay is sensitive to mercury but would fail to detect the toxicity of certain metals, such as cadmium. Among all the microbial assays reviewed, the bioassay based on growth inhibition of the alga Selenastrum capricornutum appears to give the lowest EC50s, similar to those seen for daphnid bioassays. 2. Biosensors, using genetically engineered microorganisms, offer an elegant means of detecting the presence of specific heavy metals in environmental samples. However, at the present time, they are not designed for assessing heavy metal toxicity. 3. The use of bioassays specific for heavy metal toxicity can be useful for directly assessing the bioavailability of these toxicants in environmental samples, thus avoiding the need for fractionation.+4
Collapse
Affiliation(s)
- I C Kong
- Department of Environmental Engineering Sciences, University of Florida, Gainesville 32611-6450, USA
| | | | | | | |
Collapse
|
33
|
Frederick RJ, Egan M. Environmentally Compatible Applications of Biotechnology. Bioscience 1994. [DOI: 10.2307/1312280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Karube I, Nakanishi K. Microbial biosensors for process and environmental control. ACTA ACUST UNITED AC 1994. [DOI: 10.1109/51.294008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Abstract
Many kinds of biosensor have now been developed and utilized for various types of analysis including clinical, medical and environmental monitoring, industrial process control, as well as many other applications. The microbial biosensor has advantages, such as longer lifetime and lower cost, over other types of biosensor. Recently, photobacteria and recombinant bacteria have been employed in biosensors both for determining biochemical oxygen demand and for detecting heavy metals and other toxic compounds.
Collapse
Affiliation(s)
- I Karube
- Research Center for Advanced Science and Technology, University of Tokyo, Japan
| | | |
Collapse
|
36
|
Abstract
During the past year, several papers describing the potential of new sensor devices for application in real bioprocesses have been published. Biosensors, optical sensors, and immunosensors are all gaining in importance. At present, the development of correct/adequate interfacing of biosensors to bioprocesses is the major limitation on progress. On the basis of new analytical data, a more precise modeling and control of fermentations can now be performed. Recent research efforts attest to the increasing importance of this area in biotechnology.
Collapse
Affiliation(s)
- T H Scheper
- Institut für Biochemie, Westfälische Wilhelms-Universität Münster, Germany
| | | |
Collapse
|