1
|
Zhang N, Bittner JP, Fiedler M, Beretta T, de María PD, Jakobtorweihen S, Kara S. Unraveling Alcohol Dehydrogenase Catalysis in Organic–Aqueous Biphasic Systems Combining Experiments and Molecular Dynamics Simulations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ningning Zhang
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Jan Philipp Bittner
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Marius Fiedler
- Institute of Process Systems Engineering, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073 Hamburg, Germany
| | - Thomas Beretta
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Selin Kara
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167 Hannover, Germany
| |
Collapse
|
2
|
Xiang L, Kaspar F, Schallmey A, Constantinou I. Two-Phase Biocatalysis in Microfluidic Droplets. BIOSENSORS 2021; 11:bios11110407. [PMID: 34821623 PMCID: PMC8616014 DOI: 10.3390/bios11110407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 05/24/2023]
Abstract
This Perspective discusses the literature related to two-phase biocatalysis in microfluidic droplets. Enzymes used as catalysts in biocatalysis are generally less stable in organic media than in their native aqueous environments; however, chemical and pharmaceutical compounds are often insoluble in water. The use of aqueous/organic two-phase media provides a solution to this problem and has therefore become standard practice for multiple biotransformations. In batch, two-phase biocatalysis is limited by mass transport, a limitation that can be overcome with the use of microfluidic systems. Although, two-phase biocatalysis in laminar flow systems has been extensively studied, microfluidic droplets have been primarily used for enzyme screening. In this Perspective, we summarize the limited published work on two-phase biocatalysis in microfluidic droplets and discuss the limitations, challenges, and future perspectives of this technology.
Collapse
Affiliation(s)
- Lanting Xiang
- Institute for Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany;
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| | - Felix Kaspar
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, 13355 Berlin, Germany
| | - Anett Schallmey
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Iordania Constantinou
- Institute for Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany;
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|
3
|
Kuroiwa T, Hamazaki K, Katayama M, Sato S, Matsui T. Improvement of synthetic activity and stability of a commercial lipase in a low-water system via immobilization of hydrated lipase aggregates. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Kumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 2016; 18:2. [PMID: 26766927 PMCID: PMC4711063 DOI: 10.1186/s12575-016-0033-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/03/2016] [Indexed: 12/17/2022] Open
Abstract
Lipases are industrial biocatalysts, which are involved in several novel reactions, occurring in aqueous medium as well as non-aqueous medium. Furthermore, they are well-known for their remarkable ability to carry out a wide variety of chemo-, regio- and enantio-selective transformations. Lipases have been gained attention worldwide by organic chemists due to their general ease of handling, broad substrate tolerance, high stability towards temperatures and solvents and convenient commercial availability. Most of the synthetic reactions on industrial scale are carried out in organic solvents because of the easy solubility of non-polar compounds. The effect of organic system on their stability and activity may determine the biocatalysis pace. Because of worldwide use of lipases, there is a need to understand the mechanisms behind the lipase-catalyzed reactions in organic solvents. The unique interfacial activation of lipases has always fascinated enzymologists and recently, biophysicists and crystallographers have made progress in understanding the structure-function relationships of these enzymes. The present review describes the advantages of lipase-catalyzed reactions in organic solvents and various effects of organic solvents on their activity.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171 005 India
| | - Kartik Dhar
- Departmentof Microbiology, University of Chittagong, Chittagong, Bangladesh
| | | | - Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
5
|
Ward K, Xi J, Stuckey DC. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Activity kinetics, conformation, and energetics. Biotechnol Bioeng 2015; 113:970-8. [DOI: 10.1002/bit.25865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Keeran Ward
- Department of Chemical Engineering; Imperial College London; SW7 2AZ London United Kingdom
| | - Jingshu Xi
- Department of Chemical Engineering; Imperial College London; SW7 2AZ London United Kingdom
| | - David C. Stuckey
- Department of Chemical Engineering; Imperial College London; SW7 2AZ London United Kingdom
| |
Collapse
|
6
|
Pabbathi A, Patra S, Samanta A. Structural transformation of bovine serum albumin induced by dimethyl sulfoxide and probed by fluorescence correlation spectroscopy and additional methods. Chemphyschem 2013; 14:2441-9. [PMID: 23780704 DOI: 10.1002/cphc.201300313] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Indexed: 11/10/2022]
Abstract
Determining the structure of a protein and its transformation under different conditions is key to understanding its activity. The structural stability and activity of proteins in aqueous-organic solvent mixtures, which is an intriguing topic of research in biochemistry, is dependent on the nature of the protein and the properties of the medium. Herein, the effect of a commonly used cosolvent, dimethyl sulfoxide (DMSO), on the structure and conformational dynamics of bovine serum albumin (BSA) protein is studied by fluorescence correlation spectroscopy (FCS) measurements on fluorescein isothiocyanate (FITC)-labeled BSA. The FCS study reveals a change of the hydrodynamic radius of BSA from 3.7 nm in the native state to 7.0 nm in the presence of 40% DMSO, which suggests complete unfolding of the protein under these conditions. Fluorescence self-quenching of FITC has been exploited to understand the conformational dynamics of BSA. The time constant of the conformational dynamics of BSA is found to change from 35 μs in its native state to 50 μs as the protein unfolds with increasing DMSO concentration. The FCS results are corroborated by the near-UV circular dichroism spectra of the protein, which suggest a loss of its tertiary structure with increasing concentration of DMSO. The intrinsic fluorescence of BSA and the fluorescence response of 1-anilinonaphthalene-8-sulfonic acid, used as a probe molecule, provide information that is consistent with the FCS measurements, except that aggregation of BSA is observed in the presence of 40% DMSO in the ensemble measurements.
Collapse
Affiliation(s)
- Ashok Pabbathi
- School of Chemistry, University of Hyderabad, Gachi Bowli, Hyderabad, India
| | | | | |
Collapse
|
7
|
|
8
|
Couston RG, Lamprou DA, Uddin S, van der Walle CF. Interaction and destabilization of a monoclonal antibody and albumin to surfaces of varying functionality and hydrophobicity. Int J Pharm 2012; 438:71-80. [DOI: 10.1016/j.ijpharm.2012.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/30/2012] [Accepted: 09/01/2012] [Indexed: 01/31/2023]
|
9
|
|
10
|
Pinholt C, Hartvig RA, Medlicott NJ, Jorgensen L. The importance of interfaces in protein drug delivery – why is protein adsorption of interest in pharmaceutical formulations? Expert Opin Drug Deliv 2011; 8:949-64. [DOI: 10.1517/17425247.2011.577062] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Systematic assessment of the stability of benzaldehyde lyase in aqueous–organic biphasic systems and its stabilization by modification with methoxy-poly(ethylene) glycol. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Karande R, Schmid A, Buehler K. Enzyme catalysis in an aqueous/organic segment flow microreactor: ways to stabilize enzyme activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9152-9159. [PMID: 20201570 DOI: 10.1021/la9048727] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multiphase flow microreactors benefit from rapid mixing and high mass transfer rates, yet their application in enzymatic catalysis is limited due to the fast inactivation of enzymes used as biocatalysts. Enzyme inactivation during segment flow is due to the large interfacial area between aqueous and organic phases. The Peclet number of the system points to strong convective forces within the segments, and this results in rapid deactivation of the enzyme depending on segment length and flow rate. Addition of surfactant to the aqueous phase or enzyme immobilization prevents the biocatalyst from direct contact with the interface and thus stabilizes the enzyme activity. Almost 100% enzyme activity can be recovered compared to 45% without any enzyme or medium modification. Drop tensiometry measurements point to a mixed enzyme-surfactant interfacial adsorption, and above a certain concentration, the surfactant forms a protective layer between the interface and the biocatalyst in the aqueous compartments. Theoretical models were used to compare adsorption kinetics of the protein to the interface in the segment flow microreactor and in the drop tensiometry measurements. This study is the basis for the development of segment flow microreactors as a tool to perform productive enzymatic catalysis.
Collapse
Affiliation(s)
- Rohan Karande
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU- Dortmund, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | | | | |
Collapse
|
13
|
Triantafyllou AO, Wehtje E, Adlercreutz P, Mattiasson B. How do additives affect enzyme activity and stability in nonaqueous media? Biotechnol Bioeng 2009; 54:67-76. [PMID: 18634074 DOI: 10.1002/(sici)1097-0290(19970405)54:1<67::aid-bit8>3.0.co;2-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The catalytic activities of lyophilized powders of alpha-chymotrypsin and Candida antarctica lipase were found to increase 4- to 8-fold with increasing amounts of either buffer salts or potassium chloride in the enzyme preparation. Increasing amounts of sorbitol in the chymotrypsin preparation produced a modest increase in activity. The additives are basically thought to serve as immobilization matrices, the sorbitol being inferior because of its poor mechanical properties. Besides their role as supports, the buffer species were indispensable for the transesterification activity of chymotrypsin because they prevented perturbations of the pH during the course of the reaction. Hence, increasing amounts of buffer species yielded a 100-fold increase in transesterification activity. Effects of pH changes were not as predominant in the peptide synthesis and the lipase-catalyzed reactions. Immobilization of the protease on celite resulted in a remarkable improvement of transesterification activity as compared to the suspended protease, even in the absence of buffer species. Immobilization of the lipase caused a small improvement of activity. The activity of the immobilized enzymes was further enhanced 3-4 times by including increasing amounts of buffer salts in the preparation.The inclusion of increasing amounts of sodium phosphate or sorbitol to chymotrypsin rendered the catalyst more labile against thermal inactivation. The denaturation temperature decreased with 7 degrees C at the highest content of sodium phosphate, as compared to the temperature obtained for the denaturation of the pure protein. The apparent enthalpy of denaturation increased with increasing contents of the additives. The enhancement of hydration level and flexibility of the macromolecule upon addition of the compounds partly provides the explanation for the observed results.
Collapse
Affiliation(s)
- A O Triantafyllou
- Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-22100 Lund, Sweden.
| | | | | | | |
Collapse
|
14
|
Bielecki S, Somiari RI. Synthesis of Oligosaccharides by β-Fructofuranosidase in Biphasic Medium Containing Organic Solvent as Bulk Phase. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429609003601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Guisán JM, Polo E, Aguado J, Romero MD, Álvaro G, Guerra MJ. Immobilization-Stabilization of Thermolysin Onto Activated Agarose Gels. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429709103507] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
van den Wittenboer A, Schmidt T, Müller P, Ansorge-Schumacher MB, Greiner L. Biphasic mini-reactor for characterization of biocatalyst performance. Biotechnol J 2009; 4:44-50. [DOI: 10.1002/biot.200800271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Vazquez-Figueroa E, Yeh V, Broering JM, Chaparro-Riggers JF, Bommarius AS. Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media. Protein Eng Des Sel 2008; 21:673-80. [PMID: 18799474 DOI: 10.1093/protein/gzn048] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Enzyme instability is a major factor preventing widespread adoption of enzymes for catalysis. Stability at high temperatures and in the presence of high salt concentrations and organic solvents would allow enzymes to be employed for transformations of compounds not readily soluble in low temperature or in purely aqueous systems. Furthermore, many redox enzymes require costly cofactors for function and consequently a robust cofactor regeneration system. In this work, we demonstrate how thermostable variants developed via an amino acid sequence-based consensus method also showed improved stability in solutions with high concentrations of kosmotropic and chaotropic salts and water-miscible organic solvents. This is invaluable to protein engineers since deactivation in salt solutions and organic solvents is not well understood, rendering a priori design of enzyme stability in these media difficult. Variants of glucose 1-dehydrogenase (GDH) were studied in solutions of different salts along the Hofmeister series and in the presence of varying amounts of miscible organic solvent. Only the most stable variants showed little deactivation dependence on salt-type and salt concentration. Kinetic stability, expressed by the deactivation rate constant k(d,obs), did not always correlate with thermodynamic stability of variants, as measured by melting temperature T(m). However, a strong correlation (R(2) > 0.95) between temperature stability and organic solvent stability was found when plotting T(50)(60) versus C(50)(60) values. All GDH variants retained stability in homogeneous aqueous-organic solvents with >80% v/v of organic solvent.
Collapse
Affiliation(s)
- E Vazquez-Figueroa
- School of Chemical and Biomolecular Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332-0363, USA
| | | | | | | | | |
Collapse
|
18
|
Chandrayan SK, Dhaunta N, Guptasarma P. Expression, purification, refolding and characterization of a putative lysophospholipase from Pyrococcus furiosus: retention of structure and lipase/esterase activity in the presence of water-miscible organic solvents at high temperatures. Protein Expr Purif 2008; 59:327-33. [PMID: 18400514 DOI: 10.1016/j.pep.2008.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
A putative lysophospholipase (PF0480) encoded by the Pyrococcus furiosus genome has previously been cloned and expressed in Escherichia coli. Studies involving crude extracts established the enzyme to be an esterase; however, owing presumably to its tendency to precipitate into inclusion bodies, purification and characterization have thus far not been reported. Here, we report the overexpression and successful recovery and refolding of the enzyme from inclusion bodies. Dynamic light scattering suggests that the enzyme is a dimer, or trimer, in aqueous solution. Circular dichroism and fluorescence spectroscopy show, respectively, that it has mixed beta/alpha structure and well-buried tryptophan residues. Conformational changes are negligible over the temperature range of 30-80 degrees C, and over the concentration range of 0-50% (v/v) of water mixtures with organic solvents such as methanol, ethanol and acetonitrile. The enzyme is confirmed to be an esterase (hydrolyzing p-NP-acetate and p-NP-butyrate) and also shown to be a lipase (hydrolyzing p-NP-palmitate), with lipolytic activity being overall about 18- to 20-fold lower than esterase activity. Against p-NP-palmitate the enzyme displays optimally activity at pH 7.0 and 70 degrees C. Remarkably, over 50% activity is retained at 70 degrees C in the presence of 25% acetonitrile. The high organic solvent stability and thermal stability suggest that this enzyme may have useful biodiesel-related applications, or applications in the pharmaceutical industry, once yields are optimized.
Collapse
Affiliation(s)
- Sanjeev Kumar Chandrayan
- Protein Science & Engineering Division, Institute of Microbial Technology (IMTECH), Sector 39A, Chandigarh 160036, India
| | | | | |
Collapse
|
19
|
de María PD, Stillger T, Pohl M, Kiesel M, Liese A, Gröger H, Trauthwein H. Enantioselective CC Bond Ligation Using RecombinantEscherichia coli-Whole-Cell Biocatalysts. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200700230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Baldascini H, Janssen DB. Interfacial inactivation of epoxide hydrolase in a two-liquid-phase system. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2003.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Rosche B, Breuer M, Hauer B, Rogers PL. Role of pyruvate in enhancing pyruvate decarboxylase stability towards benzaldehyde. J Biotechnol 2005; 115:91-9. [PMID: 15607228 DOI: 10.1016/j.jbiotec.2004.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 07/26/2004] [Accepted: 08/09/2004] [Indexed: 11/19/2022]
Abstract
Biotransformation of benzaldehyde and pyruvate into (R)-phenylacetylcarbinol (PAC) catalysed by Candida utilis pyruvate decarboxylase (PDC) at low buffer concentration (20 mM MOPS) was enhanced by maintenance of neutral pH through acetic acid addition. PDC was very stable in this buffer (half-life 138 h at 6 degrees C), however a benzaldehyde emulsion (400 mM) caused rapid deactivation. The inclusion of 2M glycerol did not protect PDC from inactivation by benzaldehyde but initial rates were increased by 50% and the final PAC level was enhanced from 40 to 51 g l(-1). Low levels of by-products acetaldehyde (0.1-0.15 g l(-1)) and acetoin (1.1-1.3 g l(-1)) were formed in both the presence and absence of 2 M glycerol. Interestingly PDC was more stable towards benzaldehyde when pyruvate was present: no activity was lost during the first hour of biotransformation (2 M glycerol, benzaldehyde concentration decreased from 400 to 345 mM, pyruvate from 480 to 420 mM) but PDC was completely inactivated in less than 30 min when exposed to the same concentrations of benzaldehyde in the absence of pyruvate. Thus the enzyme in catalytic action was more stable than the resting enzyme.
Collapse
Affiliation(s)
- Bettina Rosche
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
22
|
Sandford V, Breuer M, Hauer B, Rogers P, Rosche B. (R)-phenylacetylcarbinol production in aqueous/organic two-phase systems using partially purified pyruvate decarboxylase fromCandida utilis. Biotechnol Bioeng 2005; 91:190-8. [PMID: 15892055 DOI: 10.1002/bit.20513] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aqueous/organic two-phase systems have been evaluated for enhanced production of (R)-phenylacetylcarbinol (PAC) from pyruvate and benzaldehyde using partially purified pyruvate decarboxylase (PDC) from Candida utilis. In a solvent screen, octanol was identified as the most suitable solvent for PAC production in the two-phase system in comparison to butanol, pentanol, nonanol, hexane, heptane, octane, nonane, dodecane, methylcyclohexane, methyl tert butyl ether, and toluene. The high partitioning coefficient of the toxic substrate benzaldehyde in octanol allowed delivery of large amounts of benzaldehyde into the aqueous phase at a concentration less than 50 mM. PDC catalyzed the biotransformation of benzaldehyde and pyruvate to PAC in the aqueous phase, and continuous extraction of PAC and byproducts acetoin and acetaldehyde into the octanol phase further minimized enzyme inactivation, and inhibition due to acetaldehyde. For the rapidly stirred two-phase system with a 1:1 phase ratio and 8.5 U/mL carboligase activity, 937 mM (141 g/L) PAC was produced in the octanol phase in 49 h with an additional 127 mM (19 g/L) in the aqueous phase. Similar concentrations of PAC could be produced in the slowly stirred phase separated system at this enzyme level, although at a much slower rate. However at lower enzyme concentration very high specific PAC production (128 mg PAC/U carboligase at 0.9 U/mL) was achieved in the phase separated system, while still reaching final PAC levels of 102 g/L in octanol and 13 g/L in the aqueous phase. By comparison with previously published data by our group for a benzaldehyde emulsion system without octanol (50 g/L PAC, 6 mg PAC/U carboligase), significantly higher PAC concentrations and specific PAC production can be achieved in an octanol/aqueous two-phase system.
Collapse
Affiliation(s)
- Vanessa Sandford
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
23
|
Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1381-1177(00)00244-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Maruyama T, Nakajima M, Seki M. Effect of hydrocarbon-water interfaces on synthetic and hydrolytic activities of lipases. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80257-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
|
26
|
Berberich JA, Knutson BL, Strobel HJ, Tarhan S, Nokes SE, Dawson KA. Toxicity effects of compressed and supercritical solvents on thermophilic microbial metabolism. Biotechnol Bioeng 2000; 70:491-7. [PMID: 11042545 DOI: 10.1002/1097-0290(20001205)70:5<491::aid-bit3>3.0.co;2-u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selection of biocompatible solvents is critical when designing bioprocessing applications for the in situ biphasic extraction of metabolic end-products. The prediction of the biocompatibility of supercritical and compressed solvents is more complicated than for liquid solvents, because their properties can change significantly with pressure and temperature. The activity of the anaerobic thermophilic bacterium, Clostridium thermocellum, was studied when the organism was incubated in the presence of compressed nitrogen, ethane, and propane at 333 K and multiple pressures. The metabolic activity of the organisms in contact with compressed solvents was analyzed using traditional indicators of solvent biocompatibility, such as log P, interfacial tension, and solvent density. The toxicity of the compressed solvents was compared with the phase and molecular toxicity effects measured in liquid alkanes at atmospheric pressure. Inactivation increased with time in the presence of the compressed solvents, but was constant in the presence of atmospheric liquid solvents. Knowledge of molecular and phase toxicity provides a framework for the interpretation of C. thermocellum metabolism in contact with atmospheric and compressed solvents.
Collapse
Affiliation(s)
- J A Berberich
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Surface properties, including surface net and local hydrophobicities, of bovine serum albumin, gamma-globulin, and six lipases of different origins were evaluated using the aqueous two-phase partitioning method. Each showed a specific and characteristic pattern of surface properties. Correlations between the protein surface hydrophobicities and the coverages of the proteins by lipid-coating with a synthetic detergent, dioleyl glucosyl L-glutamate, were discussed. The results indicated that the surface net hydrophobicity of each protein was indicative of the affinity of the protein for the coating detergent applied in lipid-coating.
Collapse
|
28
|
Ross AC, Bell G, Halling PJ. Effect of pH on rate of interfacial inactivation of serine proteases in aqueous-organic systems. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000220)67:4<498::aid-bit14>3.0.co;2-m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Ross AC, Bell G, Halling PJ. Organic solvent functional group effect on enzyme inactivation by the interfacial mechanism. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1381-1177(99)00056-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Sellek GA, Chaudhuri JB. Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00075-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Arroyo M, Torres R, de la Mata I, Pilar Castillón M, Acebal C. Interaction of penicillin V acylase with organic solvents:. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00057-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Lamb S, Stuckey D. Enzyme immobilisation on colloidal liquid aphrons (CLAs): the influence of protein properties. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(98)00154-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Caussette M, Gaunand A, Planche H, Colombié S, Monsan P, Lindet B. Lysozyme inactivation by inert gas bubbling: kinetics in a bubble column reactor. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(98)00151-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Wolff A, Zhu L, Wong YW, Straathof AJJ, Jongejan JA, Heijnen JJ. Understanding the influence of temperature change and cosolvent addition on conversion rate of enzymatic suspension reactions based on regime analysis. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19990120)62:2<125::aid-bit1>3.0.co;2-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Abstract
A quick and simple method has been developed for the recovery of proteins from water-in-oil microemulsions (w/o-MEs), which is needed to further the use of liquid-liquid extraction in bioseparations. By adding a small portion (0.1 v/v or less) of cosurfactant (e.g., 1-alkanol) to w/o-ME solution, proteins were readily expelled, sometimes as solids, while most or all of the surfactant (Aerosol OT) remained in solution. The release of proteins increased with the further addition of cosurfactant and was greater when the molar ratio of protein to w/o-ME or fractional occupancy (f) was high. However, protein expulsion was also significant when f was small. The addition of cosurfactant released ribonuclease, lysozyme, alpha-chymotrypsin, pepsin, bovine serum albumin (BSA), and catalase from w/o-ME solution, but the expulsion was greater for BSA relative to chymotrypsin and lysozyme. Protein expulsion also increased with cosurfactant chain length for the homologous series of 1-alkanols starting at 1-butanol; however, water was also coexpelled in significant amounts. An exception to the latter rule was 1-butanol, which readily promoted the release of protein, but not encapsulated water. The addition of 1-butanol to a w/o-ME solution containing alpha-chymotrypsin and BSA selectively released the former protein, with chymotryptic activity occurring in the recovered protein. Possible mechanisms for the cosurfactant-mediated release of protein are discussed. Copyright 1998 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- DG Hayes
- Department of Chemical Engineering, University of Alabama in Huntsville, 307 Material Sciences Building, Huntsville, Alabama 35899, USA
| | | |
Collapse
|
36
|
Raghuvanshi RS, Goyal S, Singh O, Panda AK. Stabilization of dichloromethane-induced protein denaturation during microencapsulation. Pharm Dev Technol 1998; 3:269-76. [PMID: 9653765 DOI: 10.3109/10837459809028504] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This paper describes the denaturation of protein drugs by dichloromethane (DCM) during the primary emulsification step of the microencapsulation process using biodegradable polymer matrix for controlled-release application. It was found that interaction of proteins such as tetanus toxoid (TT), diphtheria toxoid (DT), ovine growth hormone (oGH), and human chorionic gonadotropin-based antifertility vaccine (beta-hCG-TT) with DCM during primary emulsification stages of particle formulation led to the precipitation of the proteins at the aqueous organic interface with concomitant reduction in their immunoreactivity. On the other hand, the B subunit of E. coli enterotoxin (LTB) was found to be comparatively stable toward the denaturing action of DCM. Attempts were made to overcome the DCM-induced denaturation by incorporation of stabilizers during the primary emulsification step of the particle formulation. Of the many additives tested to overcome the DCM-induced denaturation of proteins, serum albumins and polyvinyl alcohol (PVA) showed promising results in terms of retention of the immunoreactivity of the protein. TT stabilized by the incorporation of serum albumin during the primary emulsification step not only showed immunoreactivity in vitro, but also invoked antibody titers in rats comparable to those obtained for the native protein molecules. Incorporation of 2.5% of serum albumins in the internal aqueous phase not only protected the protein from the degradative action of DCM but also led to stabilized primary emulsion, which is necessary for uniform entrapment of protein drugs in the polymer matrix.
Collapse
Affiliation(s)
- R S Raghuvanshi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
37
|
Enzyme inactivation by inert gas bubbling. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0921-0423(98)80057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Protein Inactivations During Novel Bioseparation Techniques. SEP SCI TECHNOL 1998. [DOI: 10.1016/s0149-6395(98)80034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register]
|
39
|
Inactivation of enzymes at the aqueous-organic interface. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0921-0423(98)80054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Cowan DA. Thermophilic proteins: stability and function in aqueous and organic solvents. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:429-38. [PMID: 9406427 DOI: 10.1016/s0300-9629(97)00004-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular stability of thermophilic and hyperthermophilic enzymes generally reflects the growth temperatures of the parent organisms. Extracellular enzymes from the hyperthermophilic Archaea typically show very high levels of thermal stability and a number of enzymes with Tm values of greater than 100 degrees C have been reported. The mechanisms responsible for high molecular stability are typically intrinsic characteristics of the protein, as shown by the comparative stabilities of many native and recombinant proteins. However, some extrinsic stabilisation mechanisms have been demonstrated. High levels of thermal stability are positively correlated with stability in the presence of other denaturing agents, including detergents and organic solvents. This correlation suggests a common denaturation pathway where molecular mobility/flexibility is the prime determinant of susceptibility to irreversible denaturation. In single phase organic-aqueous solvents, protein destabilisation occurs via solvent-induced alteration to the protein hydration shell. However, correlations between protein stability and solvent hydrophobicity are unreliable. In two-phase organic-aqueous systems, interfacial denaturation predominates and is a function of both interfacial tension and interfacial surface area. Intracellular enzymes are protected from interfacial denaturation but are potentially susceptible to direct organic solvent effects, possibly depending on the role of the cell wall and cell membrane in the partitioning of the organic solvent into the cell cytoplasm. Immobilisation of thermophilic enzymes provides a method for enhancing both the thermal and solvent stabilities of thermophilic and mesophilic enzymes. Multi-point covalent immobilisation to glyoxal-agarose enhances thermal stability and limits protein-protein inactivation mechanisms. Miscible organic solvents have a profound influence on the specificities of enzyme reactions. The presence of high concentrations of miscible organic solvents may induce gross changes in substrate specificity and/or more subtle alterations in chiral selectivity. Correlations between the variation in enantioselectivity and both solvent hydrophobicity and solvent dielectric constant have been demonstrated although some recent studies implicate the formation of specific solvent-enzyme complexes which directly affect reaction kinetics.
Collapse
Affiliation(s)
- D A Cowan
- Department of Biochemistry and Molecular Biology, University College London, U.K.
| |
Collapse
|
41
|
|
42
|
|