1
|
Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128749. [PMID: 35364527 DOI: 10.1016/j.jhazmat.2022.128749] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Thermally enhanced bioremediation (TEB), a new concept proposed in recent years, explores the combination of thermal treatment and bioremediation to address the challenges of the low efficiency and long duration of bioremediation. This study presented a comprehensive review regarding the fundamentals of TEB and its applications in soil and groundwater remediation. The temperature effects on the bioremediation of contaminants were systematically reviewed. The thermal effects on the physical, chemical and biological characteristics of soil, and the corresponding changes of contaminants bioavailability and microbial metabolic activities were summarized. Specifically, the increase in temperature within a suitable range can proliferate enzymes enrichment, extracellular polysaccharides and biosurfactants production, and further enhancing bioremediation. Furthermore, a systematic evaluation of TEB applications by utilizing traditional in situ heating technologies, as well as renewable energy (e.g., stored aquifer thermal energy and solar energy), was provided. Additionally, TEB has been applied as a biological polishing technology post thermal treatment, which can be a cost-effective method to address the contaminants rebounds in groundwater remediation. However, there are still various challenges to be addressed in TEB, and future research perspectives to further improve the basic understanding and applications of TEB for the remediation of contaminated soil and groundwater are presented.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwei Guo
- Zhejiang University, Hangzhou, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Huang X, Shen S, Lin Y. Biodegradation of catechol by
Pseudomonas fluorescens
isolated from petroleum‐impacted soil. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyan Huang
- Department of Chemical and Biological Engineering University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Siyang Shen
- Department of Chemical and Biological Engineering University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Yen‐Han Lin
- Department of Chemical and Biological Engineering University of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
3
|
Current Status of the Degradation of Aliphatic and Aromatic Petroleum Hydrocarbons by Thermophilic Microbes and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122782. [PMID: 30544637 PMCID: PMC6313336 DOI: 10.3390/ijerph15122782] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 01/10/2023]
Abstract
Contamination of the environment by petroleum products is a growing concern worldwide, and strategies to remove these contaminants have been evaluated. One of these strategies is biodegradation, which consists of the use of microorganisms. Biodegradation is significantly improved by increasing the temperature of the medium, thus, the use of thermophiles, microbes that thrive in high-temperature environments, will render this process more efficient. For instance, various thermophilic enzymes have been used in industrial biotechnology because of their unique catalytic properties. Biodegradation has been extensively studied in the context of mesophilic microbes, and the mechanisms of biodegradation of aliphatic and aromatic petroleum hydrocarbons have been elucidated. However, in comparison, little work has been carried out on the biodegradation of petroleum hydrocarbons by thermophiles. In this paper, a detailed review of the degradation of petroleum hydrocarbons (both aliphatic and aromatic) by thermophiles was carried out. This work has identified the characteristics of thermophiles, and unraveled specific catabolic pathways of petroleum products that are only found with thermophiles. Gaps that limit our understanding of the activity of these microbes have also been highlighted, and, finally, different strategies that can be used to improve the efficiency of degradation of petroleum hydrocarbons by thermophiles were proposed.
Collapse
|
4
|
Ashokkumar S, Nair AS, Saravanan V, Rajasimman M, Rajamohan N. Kinetics studies on the removal of Methyl ethyl ketone using cornstack based biofilter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134:377-382. [PMID: 26409650 DOI: 10.1016/j.ecoenv.2015.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 09/05/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
The performance of cornstack based biofilter inoculated with a mixed culture was evaluated for gas phase MEK removal under various operating conditions. Experiments were carried out at different flow rates (0.03-0.12m3h-1) and various initial concentrations (0.2-1.2g-3). A maximum elimination capacity (EC) of 35g-3h-1 was achieved at an inlet loading rate of 60g-3h-1 with a removal efficiency of 95%. High elimination capacity reached with this system could have been due to the dominant presence of filamentous fungi among others. The experimental results were compared with the values obtained from the Ottengraf-van den Oever model for zero-order diffusion-controlled region. The critical inlet concentration, critical inlet load and biofilm thickness were estimated using the model predictions.
Collapse
Affiliation(s)
- S Ashokkumar
- Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.
| | - Aprana S Nair
- Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India
| | - V Saravanan
- Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India
| | - M Rajasimman
- Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India
| | - N Rajamohan
- Department of Chemical Engineering, Sohar University, Sohar, Oman
| |
Collapse
|
5
|
|
6
|
Choi HJ, Seo JY, Hwang SM, Lee YI, Jeong YK, Moon JY, Joo WH. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0860-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 2010; 85:207-28. [PMID: 19730850 DOI: 10.1007/s00253-009-2192-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 02/03/2023]
Abstract
Biodegradation can achieve complete and cost-effective elimination of aromatic pollutants through harnessing diverse microbial metabolic processes. Aromatics biodegradation plays an important role in environmental cleanup and has been extensively studied since the inception of biodegradation. These studies, however, are diverse and scattered; there is an imperative need to consolidate, summarize, and review the current status of aromatics biodegradation. The first part of this review briefly discusses the catabolic mechanisms and describes the current status of aromatics biodegradation. Emphasis is placed on monocyclic, polycyclic, and chlorinated aromatic hydrocarbons because they are the most prevalent aromatic contaminants in the environment. Among monocyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene; phenylacetic acid; and structurally related aromatic compounds are highlighted. In addition, biofilms and their applications in biodegradation of aromatic compounds are briefly discussed. In recent years, various biomolecular approaches have been applied to design and understand microorganisms for enhanced biodegradation. In the second part of this review, biomolecular approaches, their applications in aromatics biodegradation, and associated biosafety issues are discussed. Particular attention is given to the applications of metabolic engineering, protein engineering, and "omics" technologies in aromatics biodegradation.
Collapse
|
8
|
Saravanan V, Rajamohan N. Treatment of xylene polluted air using press mud-based biofilter. JOURNAL OF HAZARDOUS MATERIALS 2009; 162:981-988. [PMID: 18632206 DOI: 10.1016/j.jhazmat.2008.05.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 05/24/2008] [Accepted: 05/27/2008] [Indexed: 05/26/2023]
Abstract
In the present work, biofiltration of xylene vapors has been investigated on a laboratory scale biofilter packed with press mud as filter material inoculated with activated sludge from pharmaceutical industry. Four various gas flow rates, i.e. 0.03, 0.06, 0.09 and 0.12 m(3) h(-1), were tested for inlet xylene concentration ranging from 0.2 to 1.2 g m(-3). The biofilter proved to be highly efficient in the removal of xylene at a gas flow rate of 0.2m(3) h(-1) corresponding to a gas residence time of 2.8 min. For all the tested inlet concentrations, the removal efficiency decreased for high gas flow rates. For all the tested gas flow rates, a decrease in the removal efficiency was noticed for high xylene inlet concentration. The follow-up of carbon dioxide concentration profile through the biofilter revealed that the mass ratio of carbon dioxide produced to the xylene removed was approximately 2.52, which confirms complete degradation of xylene if one considers the fraction of the consumed organic carbon used for the microbial growth.
Collapse
Affiliation(s)
- V Saravanan
- Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India.
| | | |
Collapse
|
9
|
Choi HJ, Kim SA, Kim DW, Moon JY, Jeong YK, Joo WH. Characterization ofPseudomonassp. BCNU 171 tolerant to organic solvents. J Basic Microbiol 2008; 48:473-9. [DOI: 10.1002/jobm.200700410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Mathur A, Majumder C. Isolation and Characterization of Potent Strains for Metabolizing Paint VOCs from an Active Trickle-bed Air Biofilter. Chem Eng Technol 2008. [DOI: 10.1002/ceat.200700338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Mohammad BT, Veiga MC, Kennes C. Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors. Biotechnol Bioeng 2007; 97:1423-38. [PMID: 17252607 DOI: 10.1002/bit.21350] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop.
Collapse
Affiliation(s)
- Balsam T Mohammad
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rua Alejandro de la Sota,1, 15008 La Coruña, Spain
| | | | | |
Collapse
|
12
|
Long-term operation of a compost-based biofilter for biological removal of n-butyl acetate, p-xylene and ammonia gas from an air stream. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T. bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiology (Reading) 2005; 151:4139-4151. [PMID: 16339959 DOI: 10.1099/mic.0.28437-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillussp. JF8 is a thermophilic polychlorinated biphenyl (PCB) degrader, which utilizes biphenyl and naphthalene. A thermostable, Mn-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase, BphC_JF8, has been characterized previously. Upstream ofbphCare five ORFs exhibiting low homology with, and a different gene order from, previously characterizedbphgenes. From the 5′ to 3′ direction the genes are: a putative regulatory gene (bphR), a hydrolase (bphD), the large and small subunits of a ring-hydroxylating dioxygenase(bphA1A2), and acis-diol dehydrogenase (bphB). Hybridization studies indicate that the genes are located on a plasmid. Ring-hydroxylating activity of recombinant BphA1A2_JF8 towards biphenyl, PCB, naphthalene and benzene was observed inEscherichia colicells, with complementation of non-specific ferredoxin and ferredoxin reductase by host cell proteins. PCB degradation by recombinant BphA1A2_JF8 showed that the congener specificity of the recombinant enzyme was similar toBacillussp. JF8. BphD_JF8, with an optimum temperature of 85 °C, exhibited a narrow substrate preference for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. The Arrhenius plot of BphD_JF8 was biphasic, with two characteristic energies of activation and a break point at 47 °C.
Collapse
Affiliation(s)
- Gouri Mukerjee-Dhar
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Kokubunji, Tokyo 185-8540, Japan
| | - Minoru Shimura
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Kokubunji, Tokyo 185-8540, Japan
| | - Daisuke Miyazawa
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Kazuhide Kimbara
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Kokubunji, Tokyo 185-8540, Japan
| | - Takashi Hatta
- Research Institute of Technology, Okayama University of Science, Okayama 703-8232, Japan
| |
Collapse
|
14
|
Kimbara K. Recent Developments in the Study of Microbial Aerobic Degradation of Polychlorinated Biphenyls. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Miyazawa D, Mukerjee-Dhar G, Shimura M, Hatta T, Kimbara K. Genes for Mn(II)-dependent NahC and Fe(II)-dependent NahH located in close proximity in the thermophilic naphthalene and PCB degrader, Bacillus sp. JF8: cloning and characterization. Microbiology (Reading) 2004; 150:993-1004. [PMID: 15073308 DOI: 10.1099/mic.0.26858-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 10 kb DNA fragment was isolated using a DNA probe derived from the N-terminal amino acid sequence of the extradiol dioxygenase purified from naphthalene-grownBacillussp. JF8, a thermophilic naphthalene and polychlorinated biphenyl degrader. The cloned DNA fragment had six open reading frames, designatednahHLOMmocBnahCbased on sequence homology, of which the products NahH_JF8 and NahC_JF8 were extradiol dioxygenases. Although NahC_JF8 and NahH_JF8 exhibit low homology to known extradiol dioxygenases, the active-site residues and metal ion ligands are conserved. The presence of Mn(II) in culture medium was found to be essential for production of active recombinant NahC_JF8, while Fe(II) was necessary for active recombinant NahH_JF8. Inductively coupled plasma mass spectrometry analysis of active NahC_JF8 identified the cofactor to be manganese, indicating a Mn(II)-dependent extradiol dioxygenase. NahC_JF8 exhibitedKmvalues of 32±5 μM for 1,2-dihydroxynaphthalene and 510±90 μM for 2,3-dihydroxybiphenyl at 60 °C. In cell-free extracts, NahH_JF8 exhibited a broad substrate range for 2,3-dihydroxybiphenyl, catechol, and 3- and 4-methylcatechol at 25 °C. Stability studies on the Mn(II)-dependent NahC_JF8 indicated that it was thermostable, retaining 50 % activity after incubation at 80 °C for 20 min, and it exhibited resistance to EDTA and H2O2. Northern hybridization studies clarified that both NahC_JF8 and NahH_JF8 were induced by naphthalene; RT-PCR showed thatnahHLOMmocBnahCis expressed as a single transcript.
Collapse
Affiliation(s)
- Daisuke Miyazawa
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Gouri Mukerjee-Dhar
- Biotechnology Laboratory, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
| | - Minoru Shimura
- Biotechnology Laboratory, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
| | - Takashi Hatta
- Research Institute of Technology, Okayama University of Science, Okayama 703-8232, Japan
| | - Kazuhide Kimbara
- Biotechnology Laboratory, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| |
Collapse
|
16
|
Hatta T, Mukerjee-Dhar G, Damborsky J, Kiyohara H, Kimbara K. Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8. J Biol Chem 2003; 278:21483-92. [PMID: 12672826 DOI: 10.1074/jbc.m210240200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed of four identical subunits (35 kDa). BphC_JF8 has a temperature optimum of 85 degrees C and a pH optimum of 7.5. It exhibited a half-life of 30 min at 80 degrees C and 81 min at 75 degrees C, making it the most thermostable extradiol dioxygenase studied. Inductively coupled plasma mass spectrometry analysis confirmed the presence of 4.0-4.8 manganese atoms per enzyme molecule. The EPR spectrum of BphC_JF8 exhibited g = 2.02 and g = 4.06 signals having the 6-fold hyperfine splitting characteristic of Mn(II). The enzyme can oxidize a wide range of substrates, and the substrate preference was in the order 2,3-dihydroxybiphenyl > 3-methylcatechol > catechol > 4-methylcatechol > 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mm 2,3-dihydroxybiphenyl. A decrease in Km accompanied an increase in temperature, and the Km value of 0.095 microm for 2,3-dihydroxybiphenyl (at 60 degrees C) is among the lowest reported. The kinetic properties and thermal stability of the native and recombinant enzyme were identical. The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. The metal ligands and active site residues of extradiol dioxygenases are conserved, although several amino acid residues found exclusively in enzymes that preferentially cleave bicyclic substrates are missing in BphC_JF8. A three-dimensional homology model of BphC_JF8 provided a basis for understanding the substrate specificity, quaternary structure, and stability of the enzyme.
Collapse
Affiliation(s)
- Takashi Hatta
- Research Institute of Technology, Okayama University of Science, 401-1 Seki, Okayama 703-8232, Japan.
| | | | | | | | | |
Collapse
|
17
|
Shim H, Shin E, Yang ST. A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1093-0191(01)00132-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Shimura M, Mukerjee-Dhar G, Kimbara K, Nagato H, Kiyohara H, Hatta T. Isolation and characterization of a thermophilic Bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol Lett 1999; 178:87-93. [PMID: 10483727 DOI: 10.1111/j.1574-6968.1999.tb13763.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bacillus sp. strain JF8, which was isolated from compost, utilizes naphthalene and biphenyl as carbon sources at 60 degrees C. Biphenyl grown cells of strain JF8 barely degraded naphthalene while naphthalene grown cells did not degrade p-chlorobiphenyl, suggesting the existince of two independent degradation pathways. Isolation of JF8N, a mutant strain which can not utilize biphenyl as a carbon source while retaining the ability to utilize naphthalene, supports this hypothesis. Biphenyl grown cells of strain JF8 can degrade several polychlorinated biphenyl congeners including tetra- and pentachlorobiphenyl. bph and nah probes from mesophilic organisms failed to hybridize to strain JF8 DNA.
Collapse
Affiliation(s)
- M Shimura
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Shim H, Yang ST. Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J Biotechnol 1999; 67:99-112. [PMID: 9990730 DOI: 10.1016/s0168-1656(98)00166-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A fibrous-bed bioreactor containing the coculture of Pseudomonas putida and P. fluorescens immobilized in a fibrous matrix was developed to degrade benzene (B), toluene (T), ethylbenzene (E), and o-xylene (X) in synthetic waste streams. The kinetics of BTEX biodegradation by immobilized cells adapted in the fibrous-bed bioreactor and free cells grown in serum bottles were studied. In general, the BTEX biodegradation rate increased with increasing substrate concentration and then decreased after reaching a maximum, showing substrate-inhibition kinetics. However, for immobilized cells, the degradation rate was much higher than that of free cells. Compared to free cells, immobilized cells in the bioreactor tolerated higher concentrations (> 1000 mg l-1) of benzene and toluene, and gave at least 16-fold higher degradation rates for benzene, ethylbenzene, and o-xylene, and a 9-fold higher degradation rate for toluene. Complete and simultaneous degradation of BTEX mixture was achieved in the bioreactor under hypoxic conditions. Cells in the bioreactor were relatively insensitive to benzene toxicity; this insensitivity was attributed to adaptation of the cells in the bioreactor. Compared to the original seeding culture, the adapted cells from the fibrous-bed bioreactor had higher specific growth rate, benzene degradation rate, and cell yield when the benzene concentration was higher than 100 mg l-1. Cells in the fibrous bed had a long, slim morphology, which is different from the normal short-rod shape found for suspended cells in solution.
Collapse
Affiliation(s)
- H Shim
- Department of Chemical Engineering, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
20
|
Müller R, Antranikian G, Maloney S, Sharp R. Thermophilic degradation of environmental pollutants. BIOTECHNOLOGY OF EXTREMOPHILES 1998. [DOI: 10.1007/bfb0102292] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|