1
|
Luo Z, Yan Y, Du S, Zhu Y, Pan F, Wang R, Xu Z, Xu X, Li S, Xu H. Recent advances and prospects of Bacillus amyloliquefaciens as microbial cell factories: from rational design to industrial applications. Crit Rev Biotechnol 2023; 43:1073-1091. [PMID: 35997331 DOI: 10.1080/07388551.2022.2095499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Bacillus amyloliquefaciens is one of the most characterized Gram-positive bacteria. This species has unique characteristics that are beneficial for industrial applications, including its utilization of: cheap carbon as a substrate, a transparent genetic background, and large-scale robustness in fermentation. Indeed, the productivity characteristics of B. amyloliquefaciens have been thoroughly analyzed and further optimized through systems biology and synthetic biology techniques. Following the analysis of multiple engineering design strategies, B. amyloliquefaciens is now considered an efficient cell factory capable of producing large quantities of multiple products from various raw materials. In this review, we discuss the significant potential advantages offered by B. amyloliquefaciens as a platform for metabolic engineering and industrial applications. In addition, we systematically summarize the recent laboratory research and industrial application of B. amyloliquefaciens, including: relevant advances in systems and synthetic biology, various strategies adopted to improve the cellular performances of synthetic chemicals, as well as the latest progress in the synthesis of certain important products by B. amyloliquefaciens. Finally, we propose the current challenges and essential strategies to usher in an era of broader B. amyloliquefaciens use as microbial cell factories.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Xun W, Gong B, Liu X, Yang X, Zhou X, Jin L. Antifungal Mechanism of Phenazine-1-Carboxylic Acid against Pestalotiopsis kenyana. Int J Mol Sci 2023; 24:11274. [PMID: 37511033 PMCID: PMC10379350 DOI: 10.3390/ijms241411274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pestalotiopsis sp. is an important class of plant pathogenic fungi that can infect a variety of crops. We have proved the pathogenicity of P. kenyana on bayberry leaves and caused bayberry blight. Phenazine-1-carboxylic acid (PCA) has the characteristics of high efficiency, low toxicity, and environmental friendliness, which can prevent fungal diseases on a variety of crops. In this study, the effect of PCA on the morphological, physiological, and molecular characteristics of P. kenyana has been investigated, and the potential antifungal mechanism of PCA against P. kenyana was also explored. We applied PCA on P. kenyana in vitro and in vivo to determine its inhibitory effect on PCA. It was found that PCA was highly efficient against P. kenyana, with EC50 around 2.32 μg/mL, and the in vivo effect was 57% at 14 μg/mL. The mechanism of PCA was preliminarily explored by transcriptomics technology. The results showed that after the treatment of PCA, 3613 differential genes were found, focusing on redox processes and various metabolic pathways. In addition, it can also cause mycelial development malformation, damage cell membranes, reduce mitochondrial membrane potential, and increase ROS levels. This result expanded the potential agricultural application of PCA and revealed the possible mechanism against P. kenyana.
Collapse
Affiliation(s)
- Weizhi Xun
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Bing Gong
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xingxin Liu
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuju Yang
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Tea, Guizhou University, Guiyang 550025, China
| | - Xia Zhou
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Linhong Jin
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Ding Q, Ye C. Recent advances in producing food additive L-malate: Chassis, substrate, pathway, fermentation regulation and application. Microb Biotechnol 2023; 16:709-725. [PMID: 36604311 PMCID: PMC10034640 DOI: 10.1111/1751-7915.14206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
In addition to being an important intermediate in the TCA cycle, L-malate is also widely used in the chemical and beverage industries. Due to the resulting high demand, numerous studies investigated chemical methods to synthesize L-malate from petrochemical resources, but such approaches are hampered by complex downstream processing and environmental pollution. Accordingly, there is an urgent need to develop microbial methods for environmentally-friendly and economical L-malate biosynthesis. The rapid progress and understanding of DNA manipulation, cell physiology, and cell metabolism can improve industrial L-malate biosynthesis by applying intelligent biochemical strategies and advanced synthetic biology tools. In this paper, we mainly focused on biotechnological approaches for enhancing L-malate synthesis, encompassing the microbial chassis, substrate utilization, synthesis pathway, fermentation regulation, and industrial application. This review emphasizes the application of novel metabolic engineering strategies and synthetic biology tools combined with a deep understanding of microbial physiology to improve industrial L-malate biosynthesis in the future.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life SciencesAnhui UniversityHefeiChina
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education InstitutesAnhui UniversityHefeiChina
- Anhui Key Laboratory of Modern BiomanufacturingHefeiChina
| | - Chao Ye
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingChina
| |
Collapse
|
4
|
Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds. Molecules 2023; 28:molecules28031418. [PMID: 36771084 PMCID: PMC9919917 DOI: 10.3390/molecules28031418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Pyruvate is a hub of various endogenous metabolic pathways, including glycolysis, TCA cycle, amino acid, and fatty acid biosynthesis. It has also been used as a precursor for pyruvate-derived compounds such as acetoin, 2,3-butanediol (2,3-BD), butanol, butyrate, and L-alanine biosynthesis. Pyruvate and derivatives are widely utilized in food, pharmaceuticals, pesticides, feed additives, and bioenergy industries. However, compounds such as pyruvate, acetoin, and butanol are often chemically synthesized from fossil feedstocks, resulting in declining fossil fuels and increasing environmental pollution. Metabolic engineering is a powerful tool for producing eco-friendly chemicals from renewable biomass resources through microbial fermentation. Here, we review and systematically summarize recent advances in the biosynthesis pathways, regulatory mechanisms, and metabolic engineering strategies for pyruvate and derivatives. Furthermore, the establishment of sustainable industrial synthesis platforms based on alternative substrates and new tools to produce these compounds is elaborated. Finally, we discuss the potential difficulties in the current metabolic engineering of pyruvate and derivatives and promising strategies for constructing efficient producers.
Collapse
|
5
|
Ding Q, Ye C. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Microb Cell Fact 2023; 22:20. [PMID: 36717860 PMCID: PMC9885587 DOI: 10.1186/s12934-023-02025-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. RESULTS As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. CONCLUSIONS In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.
Collapse
Affiliation(s)
- Qiang Ding
- grid.252245.60000 0001 0085 4987School of Life Sciences, Anhui University, Hefei, 230601 China ,grid.252245.60000 0001 0085 4987Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601 Anhui China ,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
| | - Chao Ye
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
6
|
Yan X, An J, Zhang L, Zhang L, Zhou X, Wei S. Ecotoxicological effects and bioaccumulation in Eichhornia crassipes induced by long-term exposure to triclosan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:90-98. [PMID: 36343464 DOI: 10.1016/j.plaphy.2022.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In this study, the ecotoxicological effects and bioaccumulation of triclosan (TCS) in Eichhornia crassipes (E. crassipes) were investigated with 28 d exposure experiments. The results showed that chlorophyll content was increased after 7 d exposure to 0.05-0.1 mg L-1 TCS, while it was inhibited significantly by 0.5 mg L-1 TCS after 21 d exposure. The concentrations of soluble protein in the leaves increased during the initial stage (7 d and 14 d), whereas they decreased during 21 d and 28 d. The concentrations of soluble protein in the roots gradually reduced during the exposure time. The antioxidant enzyme activities in roots decreased continually with the exposure time. However, the antioxidant enzyme (SOD and CAT) activities in leaves decreased after exposure longer than 14 d. Moreover, differentially expressed genes (DEGs) were observed in the root of E. crassipes after a 28 d exposure to 0.5 mg L-1 TCS, with 11023 DEGs down-regulated and 3947 DEGs up-regulated. 5 SOD down-regulated genes and 3 CAT down-regulated genes were identified from transport and catabolism in cellular processes. After 28 d exposure, the TCS content in roots and leaves stressed by 0.5 mg L-1 TCS were up to 13.04 μg g-1 and 1.97 μg g-1, respectively. SOD in leaves was negatively correlated with TCS content in leaves, CAT in roots was negatively correlated with TCS content in roots. These results provide experimental data to assess the ecological risk of TCS with long exposure in aquatic systems.
Collapse
Affiliation(s)
- Xiuxiu Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, New Jersey, 07102, USA
| | - Lingyan Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xu Zhou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
7
|
Lu Q, Shan X, Zeng W, Zhou J. Production of pyruvic acid with Candida glabrata using self-fermenting spent yeast cell dry powder as a seed nitrogen source. BIORESOUR BIOPROCESS 2022; 9:109. [PMID: 38647593 PMCID: PMC10991669 DOI: 10.1186/s40643-022-00593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
Pyruvic acid is an important organic acid and a key industrial raw material. It is widely used in the chemical, agricultural, and food fields. Candida glabrata is the preferred strain for pyruvic acid production. The waste yeast cell for pyruvic acid fermentation with C. glabrata are rich in protein, amino acid, nucleic acid, and vitamins, as potential and cost-effective nitrogen source raw material. In this study, the potential of C. glabrata to produce pyruvic acid using spent yeast cell dry powder was evaluated. When 30 g/L of spray-dried spent yeast cell powder was used as the seed nitrogen source, a high titer of pyruvic acid was obtained. The pyruvic acid production reached 63.4 g/L with a yield of 0.59 g/g in a 5 L bioreactor. After scale-up to a 50 L bioreactor using the fermented spent yeast cell dry powder as a seed nitrogen source, 65.1 g/L of pyruvic acid was harvested, with a yield of 0.61 g/g. This study proposes a promisingapproach for increasing the pyruvic acid titer and reducing the costs.
Collapse
Affiliation(s)
- Qiyuan Lu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
8
|
Xu S, Xu J, Zeng W, Shan X, Zhou J. Efficient biosynthesis of exopolysaccharide in Candida glabrata by a fed-batch culture. Front Bioeng Biotechnol 2022; 10:987796. [PMID: 36118574 PMCID: PMC9478339 DOI: 10.3389/fbioe.2022.987796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides are important natural biomacromolecules. In particular, microbial exopolysaccharides have received much attention. They are produced by a variety of microorganisms, and they are widely used in the food, pharmaceutical, and chemical industries. The Candida glabrata mutant 4-C10, which has the capacity to produce exopolysaccharide, was previously obtained by random mutagenesis. In this study we aimed to further enhance exopolysaccharide production by systemic fermentation optimization. By single factor optimization and orthogonal design optimization in shaking flasks, an optimal fermentation medium composition was obtained. By optimizing agitation speed, aeration rate, and fed-batch fermentation mode, 118.6 g L−1 of exopolysaccharide was obtained by a constant rate feeding fermentation mode, with a glucose yield of 0.62 g g−1 and a productivity of 1.24 g L−1 h−1. Scaling up the established fermentation mode to a 15-L fermenter led to an exopolysaccharide yield of 113.8 g L−1, with a glucose yield of 0.60 g g−1 and a productivity of 1.29 g L−1 h−1.
Collapse
Affiliation(s)
- Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jinke Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|
9
|
Zhu Y, Hu Y, Yan Y, Du S, Pan F, Li S, Xu H, Luo Z. Metabolic Engineering of Bacillus amyloliquefaciens to Efficiently Synthesize L-Ornithine From Inulin. Front Bioeng Biotechnol 2022; 10:905110. [PMID: 35757793 PMCID: PMC9214239 DOI: 10.3389/fbioe.2022.905110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens is the dominant strain used to produce γ-polyglutamic acid from inulin, a non-grain raw material. B. amyloliquefaciens has a highly efficient tricarboxylic acid cycle metabolic flux and glutamate synthesis ability. These features confer great potential for the synthesis of glutamate derivatives. However, it is challenging to efficiently convert high levels of glutamate to a particular glutamate derivative. Here, we conducted a systematic study on the biosynthesis of L-ornithine by B. amyloliquefaciens using inulin. First, the polyglutamate synthase gene pgsBCA of B. amyloliquefaciens NB was knocked out to hinder polyglutamate synthesis, resulting in the accumulation of intracellular glutamate and ATP. Second, a modular engineering strategy was applied to coordinate the degradation pathway, precursor competition pathway, and L-ornithine synthesis pathway to prompt high levels of intracellular precursor glutamate for l-ornithine synthesis. In addition, the high-efficiency L-ornithine transporter was further screened and overexpressed to reduce the feedback inhibition of L-ornithine on the synthesis pathway. Combining these strategies with further fermentation optimizations, we achieved a final L-ornithine titer of 31.3 g/L from inulin. Overall, these strategies hold great potential for strengthening microbial synthesis of high value-added products derived from glutamate.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
10
|
Wang S, Yang Y, Yu K, Xu S, Liu M, Sun J, Zheng J, Zhang Y, Yuan W. Engineering of Yarrowia lipolytica for producing pyruvate from glycerol. 3 Biotech 2022; 12:98. [PMID: 35463047 PMCID: PMC8934898 DOI: 10.1007/s13205-022-03158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/05/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aims to increase pyruvate production by engineering Yarrowia lipolytica through modifying the glycerol metabolic pathway. Results: Wild-type Yarrowia lipolytica (Po1d) was engineered to produce six different strains, namely ZS099 (by over-expressing PYK1), ZS100 (by deleting DGA2), ZS101 (by over-expressing DAK1, DAK2, and GCY1), ZS102 (by over-expressing GUT1 and GUT2), ZS103 (by over-expressing GUT1) and ZSGP (by over-expressing POS5 and deleting GPD2). Production of pyruvate from engineered and control strains was determined using high-performance liquid chromatography (HPLC). Subsequently, the fermentation conditions for producing pyruvate were optimized, including the amount of initial inoculation, the addition of calcium carbonate (CaCO3), thiamine and glycerol. Finally, for scaled-up purposes, a 20-L fermentor was used. It was observed that pyruvate production increased by 136% (8.55 g/L) in ZSGP strain compared to control (3.62 g/L). Furthermore, pyruvate production by ZSGP reached up to 110.4 g/L in 96 h in the scaled-up process. We conclude that ZSGP strain of Y. lipolytica can be effectively used for pyruvate production at the industrial level. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03158-7.
Collapse
Affiliation(s)
- Songmao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No 18 of Changwang Road, Hangzhou, 310014 China
| | - Yuanyuan Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No 18 of Changwang Road, Hangzhou, 310014 China
| | - Kechen Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No 18 of Changwang Road, Hangzhou, 310014 China
| | - Shiyi Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No 18 of Changwang Road, Hangzhou, 310014 China
| | - Mengzhu Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No 18 of Changwang Road, Hangzhou, 310014 China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No 18 of Changwang Road, Hangzhou, 310014 China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No 18 of Changwang Road, Hangzhou, 310014 China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No 18 of Changwang Road, Hangzhou, 310014 China
| | - Wei Yuan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No 18 of Changwang Road, Hangzhou, 310014 China
| |
Collapse
|
11
|
Zhang Q, Yu S, Lyu Y, Zeng W, Zhou J. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2 S)-Naringenin in Saccharomyces cerevisiae. ACS Synth Biol 2021; 10:1166-1175. [PMID: 33877810 DOI: 10.1021/acssynbio.1c00002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The (2S)-naringenin is an important natural flavonoid with several bioactive effects on human health. It is also a key precursor in the biosynthesis of other high value compounds. The production of (2S)-naringenin is significantly influenced by the acetyl-CoA available in the cytosol. In this study, we increased the acetyl-CoA supply via the β-oxidation of fatty acids in the peroxisomes of Saccharomyces cerevisiae. Several lipases from different sources and PEX11, FOX1, FOX2, and FOX3, the key genes of the fatty acid β-oxidation pathway, were overexpressed during the production of (2S)-naringenin in yeast. The level of acetyl-CoA was 0.205 nmol higher than that in the original strain and the production of (2S)-naringenin increased to 286.62 mg/g dry cell weight when PEX11 was overexpressed in S. cerevisiae strain L07. Remarkable (2S)-naringenin production (1129.44 mg/L) was achieved with fed-batch fermentation, with the highest titer reported in any microorganism. Our results demonstrated the use of fatty acid β-oxidation to increase the level of cytoplasmic acetyl-CoA and the production of its derivatives.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Han H, Zeng W, Zhang G, Zhou J. Active tyrosine phenol-lyase aggregates induced by terminally attached functional peptides in Escherichia coli. J Ind Microbiol Biotechnol 2020; 47:563-571. [PMID: 32737623 PMCID: PMC7508748 DOI: 10.1007/s10295-020-02294-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The formation of inclusion bodies (IBs) without enzyme activity in bacterial research is generally undesirable. Researchers have attempted to recovery the enzyme activities of IBs, which are commonly known as active IBs. Tyrosine phenol-lyase (TPL) is an important enzyme that can convert pyruvate and phenol into 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and IBs of TPL can commonly occur. To induce the correct folding and recover the enzyme activity of the IBs, peptides, such as ELK16, DKL6, L6KD, ELP10, ELP20, L6K2, EAK16, 18A, and GFIL16, were fused to the carboxyl terminus of TPL. The results showed that aggregate particles of TPL-DKL6, TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16 improved the enzyme activity by 40.9%, 50.7%, 48.9%, 86.6%, and 97.9%, respectively. The peptides TPL-DKL6, TPL-EAK16, TPL-18A, and TPL-GFIL16 displayed significantly improved thermostability compared with TPL. L-DOPA titer of TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16, with cells reaching 37.8 g/L, 53.8 g/L, 37.5 g/L, and 29.1 g/L, had an improvement of 111%, 201%, 109%, and 63%, respectively. A higher activity and L-DOPA titer of the TPL-EAK16 could be valuable for its industrial application to biosynthesize L-DOPA.
Collapse
Affiliation(s)
- Hongmei Han
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
15
|
Han H, Zeng W, Du G, Chen J, Zhou J. Site-directed mutagenesis to improve the thermostability of tyrosine phenol-lyase. J Biotechnol 2020; 310:6-12. [PMID: 31926982 DOI: 10.1016/j.jbiotec.2020.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
3,4-Dihydroxyphenyl-L-alanine (L-DOPA) is the most important antiparkinsonian drug, and tyrosine phenol-lyase (TPL)-based enzyme catalysis process is one of the most adopted methods on industrial scale production. TPL activity and stability represent the rate-limiting step in L-DOPA synthesis. Here, 25 TPL mutants were predicted, and two were confirmed as exhibiting the highest L-DOPA production and named E313W and E313M. The L-DOPA production from E313W and E313M was 47.5 g/L and 62.1 g/L, which was 110.2 % and 174.8 % higher, respectively, than that observed from wild-type (WT) TPL. The Km of E313W and E313M showed no apparent decrease, whereas the kcat of E313W and E313M improved by 45.5 % and 36.4 %, respectively, relative to WT TPL. Additionally, E313W and E313M displayed improved thermostability, a higher melting temperature, and enhanced affinity between for pyridoxal-5'-phosphate. Structural analysis of the mutants suggested increased stability of the N-terminal region via enhanced interactions between the mutated residues and H317. Application of these mutants in a substrate fed-batch strategy as whole-cell biocatalysts allows realization of a cost-efficient short fermentation period resulting in high L-DOPA yield.
Collapse
Affiliation(s)
- Hongmei Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhancement of pyruvic acid production in Candida glabrata by engineering hypoxia-inducible factor 1. BIORESOURCE TECHNOLOGY 2020; 295:122248. [PMID: 31627065 DOI: 10.1016/j.biortech.2019.122248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Dissolved oxygen (DO) supply plays essential roles in microbial organic acid production. Candida glabrata, as a dominant strain for producing pyruvic acid, principally converts glucose to pyruvic acid through glycolysis. However, this process relies excessively on high extracellular DO content. In this study, in combination with specific motif analysis of gene promoters, hypoxia-inducible factor 1 (HIF1) was engineered to improve the transcription level of some enzymes related to pyruvic acid synthesis under low DO level and directly led to increased pyruvic acid production and glycolysis efficiency. Moreover, the intracellular stability of HIF1 was further optimized from different aspects to maximize pyruvic acid accumulation. Finally, the pyruvic acid titer in a 5-L batch bioreactor with 10% DO level reached 53.1 g/L. As pyruvic acid is involved in the biosynthesis of various products, these findings suggest that HIF1-enabled regulation method has significant potential for increasing the synthesis of other chemicals in microorganisms.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
17
|
Lei Q, Zeng W, Zhou J, Du G. Efficient separation of α-ketoglutarate from Yarrowia lipolytica WSH-Z06 culture broth by converting pyruvate to l-tyrosine. BIORESOURCE TECHNOLOGY 2019; 292:121897. [PMID: 31398548 DOI: 10.1016/j.biortech.2019.121897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Co-production of α-ketoglutaric acid (KGA) and pyruvic acid (PYR) by Yarrowia lipolytica WSH-Z06 could significantly increase the final titer and yield of keto acids. However, efficient separation of KGA and PYR in an economic manner is a big challenge owing to their similar properties. In the present study, a separation process was established to convert PYR in the fermentation broth to l-tyrosine (TYR). Owing to its low solubility, TYR was easily precipitated out and could be easily removed from the reaction system. The whole-cell catalysis reaction solution was subjected to acid treatment, centrifugation, cation exchange column separation, rotary evaporation, Buchner funnel filtration, and dry separation method to obtain KGA and TYR powders. The purity/recovery rates of KGA and TYR were 98.16%/78.68% and 98.19%/73.46%, respectively. The use of biological pathways to separate KGA from the culture broth could make the separation process easier and further decrease the operation cost.
Collapse
Affiliation(s)
- Qingzi Lei
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Stress tolerance phenotype of industrial yeast: industrial cases, cellular changes, and improvement strategies. Appl Microbiol Biotechnol 2019; 103:6449-6462. [DOI: 10.1007/s00253-019-09993-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
19
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System. ACS Synth Biol 2019; 8:787-795. [PMID: 30856339 DOI: 10.1021/acssynbio.8b00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Energy metabolism plays an important role in the growth and central metabolic pathways of cells. Manipulating energy metabolism is an efficient strategy to improve the formation of target products and to understand the effects of altering intracellular energy levels on global metabolic networks. Candida glabrata, as a dominant yeast strain for producing pyruvate, principally converts glucose to pyruvate through the glycolytic pathway. However, this process can be severely inhibited by a high intracellular ATP content. Here, in combination with the physiological characteristics of C. glabrata, efforts have been made to construct an ATP futile cycle system (ATP-FCS) in C. glabrata to decrease the intracellular ATP level without destroying F0F1-ATPase function. ATP-FCS was capable of decreasing the intracellular ATP level by 51.0% in C. glabrata. The decrease in the ATP level directly led to an increased pyruvate production and glycolysis efficiency. Moreover, we further optimized different aspects of the ATP-FCS to maximize pyruvate accumulation. Combining ATP-FCS with further genetic optimization strategies, we achieved a final pyruvate titer of 40.2 g/L, with 4.35 g pyruvate/g dry cell weight and a 0.44 g/g substrate conversion rate in 500 mL flasks, which represented increases of 98.5%, 322.3%, and 160%, respectively, compared with the original strain. Thus, these strategies hold great potential for increasing the synthesis of other organic acids in microbes.
Collapse
|
20
|
Yarrowia lipolytica application as a prospective approach for biosynthesis of pyruvic acid from glycerol. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0513-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Guo H, Huang T, Zhao J, Chen H, Chen G. Fungi short-chain carboxylate transporter: shift from microbe hereditary functional component to metabolic engineering target. Appl Microbiol Biotechnol 2018; 102:4653-4662. [PMID: 29679102 DOI: 10.1007/s00253-018-9010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
Abstract
Short-chain carboxylic acids and their derivatives are widely utilized in all aspects of our daily life. Given their specific functional groups, these molecules are also utilized in fine chemical synthesis. The traditional petroleum-based carboxylate production methods are restricted by petrol shortage and environmental pollution. Renowned for their more sustainable processes than traditional methods, biotechnological methods are preferred alternatives and have attracted increasing attention. However, the industrial application of biotechnological methods is currently limited by low factors: low productivity and low yield. Therefore, understanding the regulation of carboxylate accumulation will greatly enhance the industrial biotechnological production of short-chain carboxylate acids. The carboxylate transporter plays a crucial role in transmembrane uptake and secretion of carboxylate; therefore, regulating these transporters is of high academic and application relevance. This review concentrates on the physiological roles, regulation mechanisms, and harnessing strategies of Jen and AcpA orthologs in fungi, which provide potential clues for the biotechnological production of short-chain carboxylic acids with high efficiency.
Collapse
Affiliation(s)
- Hongwei Guo
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China.
| | - Tianqiu Huang
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| | - Jun Zhao
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| | - Hongwen Chen
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| | - Guo Chen
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| |
Collapse
|