1
|
Robles-Iglesias R, Fernández-Blanco C, Nicaud JM, Veiga MC, Kennes C. Unlocking the potential of one-carbon gases (CO 2, CO) for concomitant bioproduction of β-carotene and lipids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115950. [PMID: 38211510 DOI: 10.1016/j.ecoenv.2024.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
This study investigates the use of a Yarrowia lipolytica strain for the bioconversion of syngas-derived acetic acid into β-carotene and lipids. A two-stage process was employed, starting with the acetogenic fermentation of syngas by Clostridium aceticum, metabolising CO, CO2, H2, to produce acetic acid, which is then utilized by Y. lipolytica for simultaneous lipid and β-carotene synthesis. The research demonstrates that acetic acid concentration plays a pivotal role in modulating lipid profiles and enhancing β-carotene production, with increased acetic acid consumption leading to higher yields of these compounds. This approach showcases the potential of using one-carbon gases as substrates in bioprocesses for generating valuable bioproducts, providing a sustainable and cost-effective alternative to more conventional feedstocks and substrates, such as sugars.
Collapse
Affiliation(s)
- Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain.
| |
Collapse
|
2
|
Serna-García R, Tsapekos P, Treu L, Bouzas A, Seco A, Campanaro S, Angelidaki I. Unraveling prevalence of homoacetogenesis and methanogenesis pathways due to inhibitors addition. BIORESOURCE TECHNOLOGY 2023; 376:128922. [PMID: 36940878 DOI: 10.1016/j.biortech.2023.128922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Three inhibitors targeting different microorganisms, both from Archaea and Bacteria domains, were evaluated for their effect on CO2 biomethanation: sodium ionophore III (ETH2120), carbon monoxide (CO), and sodium 2-bromoethanesulfonate (BES). This study examines how these compounds affect the anaerobic digestion microbiome in a biogas upgrading process. While archaea were observed in all experiments, methane was produced only when adding ETH2120 or CO, not when adding BES, suggesting archaea were in an inactivated state. Methane was produced mainly via methylotrophic methanogenesis from methylamines. Acetate was produced at all conditions, but a slight reduction on acetate production (along with an enhancement on CH4 production) was observed when applying 20 kPa of CO. Effects on CO2 biomethanation were difficult to observe since the inoculum used was from a real biogas upgrading reactor, being this a complex environmental sample. Nevertheless, it must be mentioned that all compounds had effects on the microbial community composition.
Collapse
Affiliation(s)
- Rebecca Serna-García
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain.
| | - Panagiotis Tsapekos
- Department of Chemical Engineering, Søltofts Plads 228A, Technical University of Denmark, DTU, 2800 Lyngby, Denmark
| | - Laura Treu
- Department of Biology, University of Padua, Via U. Bassi 58/b, Padova 35121, Italy
| | - Alberto Bouzas
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Aurora Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/b, Padova 35121, Italy
| | - Irini Angelidaki
- Department of Chemical Engineering, Søltofts Plads 228A, Technical University of Denmark, DTU, 2800 Lyngby, Denmark
| |
Collapse
|
3
|
Harahap BM, Ahring BK. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023; 11:microorganisms11040995. [PMID: 37110418 PMCID: PMC10143712 DOI: 10.3390/microorganisms11040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In this paper, we will review the microbial conversion of syngas to acetic acid. This will include the presentation of acetate-producing bacterial strains and their optimal fermentation conditions, such as pH, temperature, media composition, and syngas composition, to enhance acetate production. The influence of syngas impurities generated from lignocellulose gasification will further be covered along with the means to alleviate impurity problems through gas purification. The problem with mass transfer limitation of gaseous fermentation will further be discussed as well as ways to improve gas uptake during the fermentation.
Collapse
Affiliation(s)
- Budi Mandra Harahap
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Anand U, Vaishnav A, Sharma SK, Sahu J, Ahmad S, Sunita K, Suresh S, Dey A, Bontempi E, Singh AK, Proćków J, Shukla AK. Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156641. [PMID: 35700781 DOI: 10.1016/j.scitotenv.2022.156641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are an important component of the ecosystem and have an enormous impact on human lives. Moreover, microorganisms are considered to have desirable effects on other co-existing species in a variety of habitats, such as agriculture and industries. In this way, they also have enormous environmental applications. Hence, collections of microorganisms with specific traits are a crucial step in developing new technologies to harness the microbial potential. Microbial culture collections (MCCs) are a repository for the preservation of a large variety of microbial species distributed throughout the world. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are vital for the safeguarding and circulation of biological resources, as well as for the progress of the life sciences. Ex situ conservation of microorganisms tagged with specific traits in the collections is the crucial step in developing new technologies to harness their potential. Type strains are mainly used in taxonomic study, whereas reference strains are used for agricultural, biotechnological, pharmaceutical research and commercial work. Despite the tremendous potential in microbiological research, little effort has been made in the true sense to harness the potential of conserved microorganisms. This review highlights (1) the importance of available global microbial collections for man and (2) the use of these resources in different research and applications in agriculture, biotechnology, and industry. In addition, an extensive literature survey was carried out on preserved microorganisms from different collection centres using the Web of Science (WoS) and SCOPUS. This review also emphasizes knowledge gaps and future perspectives. Finally, this study provides a critical analysis of the current and future roles of microorganisms available in culture collections for different sustainable agricultural and industrial applications. This work highlights target-specific potential microbial strains that have multiple important metabolic and genetic traits for future research and use.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anukool Vaishnav
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Sushil K Sharma
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Mau 275 103, Uttar Pradesh, India.
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar, Odisha 751029, India
| | - Sarfaraz Ahmad
- Department of Botany, Jai Prakash University, Saran, Chhapra 841301, Bihar, India
| | - Kumari Sunita
- Department of Botany, Faculty of Science, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal 462 003, Madhya Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College, (A Constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur 812007, Bihar, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya (affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya) 224123, Uttar Pradesh, India.
| |
Collapse
|
5
|
Perret L, Lacerda de Oliveira Campos B, Herrera Delgado K, Zevaco TA, Neumann A, Sauer J. CO
x
Fixation to Elementary Building Blocks: Anaerobic Syngas Fermentation vs. Chemical Catalysis. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lukas Perret
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | | | - Karla Herrera Delgado
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Thomas A. Zevaco
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Anke Neumann
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences 2 – Technical Biology 76131 Karlsruhe Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
6
|
Tsibranska I, Vlaev S, Dzhonova D, Tylkowski B, Panyovska S, Dermendzhieva N. Modeling and assessment of the transfer effectiveness in integrated bioreactor with membrane separation. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2020-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Integrating a reaction process with membrane separation allows for effective product removal, favorable shifting of the reaction equilibrium, overcoming eventual inhibitory or toxic effects of the products and has the advantage of being energy and space saving. It has found a range of applications in innovative biotechnologies, generating value-added products (exopolysaccharides, antioxidants, carboxylic acids) with high potential for separation/ concentration of thermosensitive bioactive compounds, preserving their biological activity and reducing the amount of solvents and the energy for solvent recovery. Evaluating the effectiveness of such integrated systems is based on fluid dynamics and mass transfer knowledge of flowing matter close to the membrane surface – shear deformation rates and shear stress at the membrane interface, mass transfer coefficients. A Computational Fluid Dynamics (CFD)-based approach for assessing the effectiveness of integrated stirred tank bioreactor with submerged membrane module is compiled. It is related to the hydrodynamic optimization of the selected reactor configuration in two-phase flow, as well as to the concentration profiles and analysis of the reactor conditions in terms of reaction kinetics and mass transfer.
Collapse
Affiliation(s)
- Irene Tsibranska
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| | - Serafim Vlaev
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| | - Daniela Dzhonova
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya , C/Marcellí Domingo s/n , 43007 Tarragona , Spain
| | - Stela Panyovska
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| | - Nadezhda Dermendzhieva
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| |
Collapse
|
7
|
Stark C, Münßinger S, Rosenau F, Eikmanns BJ, Schwentner A. The Potential of Sequential Fermentations in Converting C1 Substrates to Higher-Value Products. Front Microbiol 2022; 13:907577. [PMID: 35722332 PMCID: PMC9204031 DOI: 10.3389/fmicb.2022.907577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Today production of (bulk) chemicals and fuels almost exclusively relies on petroleum-based sources, which are connected to greenhouse gas release, fueling climate change. This increases the urgence to develop alternative bio-based technologies and processes. Gaseous and liquid C1 compounds are available at low cost and often occur as waste streams. Acetogenic bacteria can directly use C1 compounds like CO, CO2, formate or methanol anaerobically, converting them into acetate and ethanol for higher-value biotechnological products. However, these microorganisms possess strict energetic limitations, which in turn pose limitations to their potential for biotechnological applications. Moreover, efficient genetic tools for strain improvement are often missing. However, focusing on the metabolic abilities acetogens provide, they can prodigiously ease these technological disadvantages. Producing acetate and ethanol from C1 compounds can fuel via bio-based intermediates conversion into more energy-demanding, higher-value products, by deploying aerobic organisms that are able to grow with acetate/ethanol as carbon and energy source. Promising new approaches have become available combining these two fermentation steps in sequential approaches, either as separate fermentations or as integrated two-stage fermentation processes. This review aims at introducing, comparing, and evaluating the published approaches of sequential C1 fermentations, delivering a list of promising organisms for the individual fermentation steps and giving an overview of the existing broad spectrum of products based on acetate and ethanol. Understanding of these pioneering approaches allows collecting ideas for new products and may open avenues toward making full use of the technological potential of these concepts for establishment of a sustainable biotechnology.
Collapse
Affiliation(s)
- Christina Stark
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sini Münßinger
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, University of Ulm, Ulm, Germany
| | - Bernhard J. Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- *Correspondence: Bernhard J. Eikmanns,
| | - Andreas Schwentner
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
8
|
|
9
|
Fernández-Blanco C, Veiga MC, Kennes C. Efficient production of n-caproate from syngas by a co-culture of Clostridium aceticum and Clostridium kluyveri. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113992. [PMID: 34710762 DOI: 10.1016/j.jenvman.2021.113992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the possibility of merging technologies for waste recovery such as those based on syngas fermentation and chain elongation has been studied for the production of medium chain fatty acids (MCFAs) and bioalcohols, in an attempt to integrate the concept of circular economy in the industry. Nevertheless, one of the main issues of this approach is the pH mismatch between acetogens and chain elongating microorganisms. This work reports, for the first time, the suitability of a co-culture of C. aceticum and C. kluyveri metabolizing syngas at near neutral pH in stirred tank bioreactors. For this purpose, bioreactor studies were carried out with continuous syngas supply. In the first experiment, maximum concentrations of n-butyrate and n-caproate of 7.0 and 8.2 g/L, respectively, were obtained. In the second experiment, considerable amounts of n-butanol were produced as a result of the reduction, by C. aceticum, of the carboxylates already formed in the broth. In both experiments, ethanol was used as an exogenous electron agent at some point. Finally, batch bottle assays were performed with a pure culture of C. aceticum grown on CO in presence of n-butyrate to assess and confirm its ability to produce n-butanol, reaching concentrations up to 951 mg/L, with a n-butyrate conversion efficiency of 96%, which had never been reported before in this species. Therefore, this work contributes to the state of the art, presenting a novel system for the bioproduction of MCFAs by combining syngas fermentation and chain elongation at near neutral pH, as opposed to the acidic pH range used in all previously reported literature.
Collapse
Affiliation(s)
- Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain.
| |
Collapse
|
10
|
Akkoyunlu B, Daly S, Casey E. Membrane bioreactors for the production of value-added products: Recent developments, challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125793. [PMID: 34450442 DOI: 10.1016/j.biortech.2021.125793] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The potential of membrane bioreactors to produce value-added products such as biofuels, biopolymers, proteins, organic acids and lipids at high productivities is emerging. Despite the promising results at laboratory scale, industrial deployment of this technology is hindered due to challenges associated with scale-up. This review aims to address these challenges and create a framework to encourage further research directed towards industrial application of membrane bioreactors to produce value-added products. This review describes the current state-of-the art in such bioreactor systems by exploiting membranes to increase the mass transfer rate of the limiting substrates, reach high cell concentrations and separate the inhibitory substances that may inhibit the bioconversion reaction. It also covers the current trends in commercialization, challenges linked with membrane usage, such as high costs and membrane fouling, and proposes possible future directions for the wider application of membrane bioreactors.
Collapse
Affiliation(s)
- Burcu Akkoyunlu
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Sorcha Daly
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Arslan K, Veiga MC, Kennes C. Autotrophic (C 1-gas) versus heterotrophic (fructose) accumulation of acetic acid and ethanol in Clostridium aceticum. BIORESOURCE TECHNOLOGY 2021; 337:125485. [PMID: 34320764 DOI: 10.1016/j.biortech.2021.125485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The influence of the carbon source on the metabolism and growth of Clostridium aceticum was investigated, supplying either CO or fructose as sole carbon source. The acid and solvent production patterns were determined under either autotrophic or heterotrophic conditions, elucidating the effect of pH on the substrate's bioconversion pattern. The highest maximum specific growth rate was observed with CO, under the organism's optimal growth conditions, reaching 0.052 h-1 and an acetic acid concentration of 18 g·L-1. The production of 4.4 g·L-1 ethanol was also possible, after medium acidification, during CO bioconversion. Conversely, formic acid inhibition was observed during fructose fermentation under optimal growth conditions. In the latter experiments, it was not possible to stimulate solvent production when growing C. aceticum on fructose, despite applying the same medium acidification strategy as with CO, showing the selective effect of the carbon source (autotrophic vs heterotrophic) on the metabolic pattern and solventogenesis.
Collapse
Affiliation(s)
- Kübra Arslan
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain.
| |
Collapse
|
12
|
Process Engineering Aspects for the Microbial Conversion of C1 Gases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:33-56. [PMID: 34291298 DOI: 10.1007/10_2021_172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Industrially applied bioprocesses for the reduction of C1 gases (CO2 and/or CO) are based in particular on (syn)gas fermentation with acetogenic bacteria and on photobioprocesses with microalgae. In each case, process engineering characteristics of the autotrophic microorganisms are specified and process engineering aspects for improving gas and electron supply are summarized before suitable bioreactor configurations are discussed for the production of organic products under given economic constraints. Additionally, requirements for the purity of C1 gases are summarized briefly. Finally, similarities and differences in microbial CO2 valorization are depicted comparing gas fermentations with acetogenic bacteria and photobioprocesses with microalgae.
Collapse
|
13
|
Syngas Derived from Lignocellulosic Biomass Gasification as an Alternative Resource for Innovative Bioprocesses. Processes (Basel) 2020. [DOI: 10.3390/pr8121567] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A hybrid system based on lignocellulosic biomass gasification and syngas fermentation represents a second-generation biorefinery approach that is currently in the development phase. Lignocellulosic biomass can be gasified to produce syngas, which is a gas mixture consisting mainly of H2, CO, and CO2. The major challenge of biomass gasification is the syngas’s final quality. Consequently, the development of effective syngas clean-up technologies has gained increased interest in recent years. Furthermore, the bioconversion of syngas components has been intensively studied using acetogenic bacteria and their Wood–Ljungdahl pathway to produce, among others, acetate, ethanol, butyrate, butanol, caproate, hexanol, 2,3-butanediol, and lactate. Nowadays, syngas fermentation appears to be a promising alternative for producing commodity chemicals in comparison to fossil-based processes. Research studies on syngas fermentation have been focused on process design and optimization, investigating the medium composition, operating parameters, and bioreactor design. Moreover, metabolic engineering efforts have been made to develop genetically modified strains with improved production. In 2018, for the first time, a syngas fermentation pilot plant from biomass gasification was built by LanzaTech Inc. in cooperation with Aemetis, Inc. Future research will focus on coupling syngas fermentation with additional bioprocesses and/or on identifying new non-acetogenic microorganisms to produce high-value chemicals beyond acetate and ethanol.
Collapse
|
14
|
Schwarz FM, Ciurus S, Jain S, Baum C, Wiechmann A, Basen M, Müller V. Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui. Microb Biotechnol 2020; 13:2044-2056. [PMID: 32959527 PMCID: PMC7533326 DOI: 10.1111/1751-7915.13663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
Acetogenic bacteria have gained much attraction in recent years as they can produce different biofuels and biochemicals from H2 plus CO2 or even CO alone, therefore opening a promising alternative route for the production of biofuels from renewable sources compared to existing sugar-based routes. However, CO metabolism still raises questions concerning the biochemistry and bioenergetics in many acetogens. In this study, we focused on the two acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui which, so far, are the only identified acetogens harbouring a H2 -dependent CO2 reductase and furthermore belong to different classes of 'Rnf'- and 'Ech-acetogens'. Both strains catalysed the conversion of CO into the bulk chemical acetate and formate. Formate production was stimulated by uncoupling the energy metabolism from the Wood-Ljungdahl pathway, and specific rates of 1.44 and 1.34 mmol g-1 h-1 for A. woodii ∆rnf and T. kivui wild type were reached. The demonstrated CO-based formate production rates are, to the best of our knowledge, among the highest rates ever reported. Using mutants of ∆hdcr, ∆cooS, ∆hydBA, ∆rnf and ∆ech2 with deficiencies in key enzyme activities of the central metabolism enabled us to postulate two different CO utilization pathways in these two model organisms.
Collapse
Affiliation(s)
- Fabian M. Schwarz
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Sarah Ciurus
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Surbhi Jain
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Christoph Baum
- MicrobiologyInstitute of Biological SciencesUniversity RostockRostockGermany
| | - Anja Wiechmann
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Mirko Basen
- MicrobiologyInstitute of Biological SciencesUniversity RostockRostockGermany
| | - Volker Müller
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| |
Collapse
|
15
|
Hamadi H, Shakerzadeh E, Esrafili MD. Fe-decorated all-boron B40 fullerene serving as a potential promising active catalyst for CO oxidation: A DFT mechanistic approach. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Esrafili MD, Hamadi H. Catalytic oxidation of CO using a silicon-coordinated carbon nitride fullerene. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1797919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mehdi D. Esrafili
- Department of Chemistry, Faculty of Basic Science, University of Maragheh, Maragheh, Iran
| | - Hosein Hamadi
- Chemistry Department, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
17
|
Arslan K, Bayar B, Nalakath Abubackar H, Veiga MC, Kennes C. Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas. BIORESOURCE TECHNOLOGY 2019; 292:121941. [PMID: 31401358 DOI: 10.1016/j.biortech.2019.121941] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The ethanol production capability of Clostridium aceticum was investigated and optimized, in order to evaluate the ability of that organism to produce high concentrations of fuel-ethanol. The results showed that C. aceticum can produce significant amounts of ethanol when a natural pH drop occurs in the fermentation broth as a consequence of acetic acid production in a first stage. Applying different pH-regulating strategies allowed to optimize ethanol production, which proved to be more efficient in case of natural acidification due to acetic acid, reaching up to 5.6 g/L ethanol, compared to artificial pH adjustment through the addition of hydrogen chloride. Playing with the pH value and the bioreactor operating conditions showed that, under specific conditions, C. aceticum is able to perform the reverse reaction as well and convert ethanol, produced at low pH, back to acetic acid, impeding, under those specific conditions, further accumulation of ethanol in the fermentation broth.
Collapse
Affiliation(s)
- Kübra Arslan
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - Büşra Bayar
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - Haris Nalakath Abubackar
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain.
| |
Collapse
|
18
|
Grenz S, Baumann PT, Rückert C, Nebel BA, Siebert D, Schwentner A, Eikmanns BJ, Hauer B, Kalinowski J, Takors R, Blombach B. Exploiting Hydrogenophaga pseudoflava for aerobic syngas-based production of chemicals. Metab Eng 2019; 55:220-230. [PMID: 31319152 DOI: 10.1016/j.ymben.2019.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 01/04/2023]
Abstract
Gasification is a suitable technology to generate energy-rich synthesis gas (syngas) from biomass or waste streams, which can be utilized in bacterial fermentation processes for the production of chemicals and fuels. Established microbial processes currently rely on acetogenic bacteria which perform an energetically inefficient anaerobic CO oxidation and acetogenesis potentially hampering the biosynthesis of complex and ATP-intensive products. Since aerobic oxidation of CO is energetically more favorable, we exploit in this study the Gram-negative β-proteobacterium Hydrogenophaga pseudoflava DSM1084 as novel host for the production of chemicals from syngas. We sequenced and annotated the genome of H. pseudoflava and established a genetic engineering toolbox, which allows markerless chromosomal modification via the pk19mobsacB system and heterologous gene expression on pBBRMCS2-based plasmids. The toolbox was extended by identifying strong endogenous promotors such as PgapA2 which proved to yield high expression under heterotrophic and autotrophic conditions. H. pseudoflava showed relatively fast heterotrophic growth in complex and minimal medium with sugars and organic acids which allows convenient handling in lab routines. In autotrophic bioreactor cultivations with syngas, H. pseudoflava exhibited a growth rate of 0.06 h-1 and biomass specific uptakes rates of 14.2 ± 0.3 mmol H2 gCDW-1 h-1, 73.9 ± 1.8 mmol CO gCDW-1 h-1, and 31.4 ± 0.3 mmol O2 gCDW-1 h-1. As proof of concept, we engineered the carboxydotrophic bacterium for the aerobic production of the C15 sesquiterpene (E)-α-bisabolene from the C1 carbon source syngas by heterologous expression of the (E)-α-bisabolene synthase gene agBIS. The resulting strain H. pseudoflava (pOCEx1:agBIS) produced 59 ± 8 μg (E)-α-bisabolene L-1 with a volumetric productivity Qp of 1.2 ± 0.2 μg L-1 h-1 and a biomass-specific productivity qp of 13.1 ± 0.6 μg gCDW-1 h-1. The intrinsic properties and the genetic repertoire of H. pseudoflava make this carboxydotrophic bacterium a promising candidate for future aerobic production processes to synthesize more complex or ATP-intensive chemicals from syngas.
Collapse
Affiliation(s)
- Sebastian Grenz
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Philipp T Baumann
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Bernd A Nebel
- Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Daniel Siebert
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany; Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Andreas Schwentner
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany
| | - Bernhard Hauer
- Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany; Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
| |
Collapse
|
19
|
Biofilm systems as tools in biotechnological production. Appl Microbiol Biotechnol 2019; 103:5095-5103. [PMID: 31079168 DOI: 10.1007/s00253-019-09869-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The literature provides more and more examples of research projects that develop novel production processes based on microorganisms organized in the form of biofilms. Biofilms are aggregates of microorganisms that are attached to interfaces. These viscoelastic aggregates of cells are held together and are embedded in a matrix consisting of multiple carbohydrate polymers as well as proteins. Biofilms are characterized by a very high cell density and by a natural retentostat behavior. Both factors can contribute to high productivities and a facilitated separation of the desired end-product from the catalytic biomass. Within the biofilm matrix, stable gradients of substrates and products form, which can lead to a differentiation and adaptation of the microorganisms' physiology to the specific process conditions. Moreover, growth in a biofilm state is often accompanied by a higher resistance and resilience towards toxic or growth inhibiting substances and factors. In this short review, we summarize how biofilms can be studied and what most promising niches for their application can be. Moreover, we highlight future research directions that will accelerate the advent of productive biofilms in biology-based production processes.
Collapse
|