1
|
Tscheliessnig R, Silva GL, Plewka J, Jakob LA, Lichtenegger H, Jungbauer A, Dias-Cabral AC. Antibody-ligand interactions on a high-capacity staphylococcal protein A resin. J Chromatogr A 2024; 1730:465102. [PMID: 38941799 DOI: 10.1016/j.chroma.2024.465102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
Staphylococcal protein-A affinity chromatography has been optimized for antibody purification, achieving a current capacity of up to 90 mg/ml in packed bed. The morphology of the particles, the number of antibodies bound per ligand and the spatial arrangement of the ligands were assessed by in-situ Small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM) combined with measurement of adsorption isotherms. We employed SAXS measurements to probe the nanoscale structure of the chromatographic resin. From scanning electron microcopy, the morphology and area of the beads were obtained. The adsorption isotherm revealed a bi-Langmuirian behavior where the association constant varied with the critical bulk concentration, indicating multilayer adsorption. Determining the antibody-ligand stoichiometry was crucial for understanding the adsorption mechanism, which was estimated to be 4 at lower concentrations and 4.5 at higher concentrations, suggestive of reversible protein-protein interactions. The same results were reached from the in-situ small angle X-ray scattering measurements. A stoichiometry of 6 cannot be achieved since the two protein A monomers are anchored to the stationary phase and thus sterically hindered. Normalization through ellipsoids facilitated SAXS analysis, enabling the determination of distances between ligands and antibody-ligand complexes. Density fluctuations were examined by subtracting the elliptical fit, providing insights into ligand density distribution. The dense ligand packing of TOYOPEARL® AF-rProtein A HC was confirmed, making further increases in ligand density impractical. Additionally, SAXS analysis revealed structural rearrangements of the antibody-ligand complex with increasing antibody surface load, suggesting reversible association of antibodies.
Collapse
Affiliation(s)
- Rupert Tscheliessnig
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria; Department of Theoretical Chemistry, University of Vienna, Vienna, Austria; Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Goncalo L Silva
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria
| | - Jacek Plewka
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria; Department of Material Science and Process Engineering, University of Natural Resources and Life Sciences, Peter-Jordan Strasse 82, Vienna 1190, Austria
| | - Leo A Jakob
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria
| | - Helga Lichtenegger
- Department of Material Science and Process Engineering, University of Natural Resources and Life Sciences, Peter-Jordan Strasse 82, Vienna 1190, Austria
| | - Alois Jungbauer
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria.
| | - Ana C Dias-Cabral
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã 6201-506, Portugal; Department of Chemistry, University of Beira Interior, R. Marquês d'Ávila e Bolama, Covilhã 6201-001, Portugal
| |
Collapse
|
2
|
Mravljak R, Stantič M, Bizjak O, Podgornik A. Noninvasive method for determination of immobilized protein A. J Chromatogr A 2022; 1671:462976. [DOI: 10.1016/j.chroma.2022.462976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
3
|
Sánchez-Trasviña C, Flores-Gatica M, Enriquez-Ochoa D, Rito-Palomares M, Mayolo-Deloisa K. Purification of Modified Therapeutic Proteins Available on the Market: An Analysis of Chromatography-Based Strategies. Front Bioeng Biotechnol 2021; 9:717326. [PMID: 34490225 PMCID: PMC8417561 DOI: 10.3389/fbioe.2021.717326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023] Open
Abstract
Proteins, which have inherent biorecognition properties, have long been used as therapeutic agents for the treatment of a wide variety of clinical indications. Protein modification through covalent attachment to different moieties improves the therapeutic's pharmacokinetic properties, affinity, stability, confers protection against proteolytic degradation, and increases circulation half-life. Nowadays, several modified therapeutic proteins, including PEGylated, Fc-fused, lipidated, albumin-fused, and glycosylated proteins have obtained regulatory approval for commercialization. During its manufacturing, the purification steps of the therapeutic agent are decisive to ensure the quality, effectiveness, potency, and safety of the final product. Due to the robustness, selectivity, and high resolution of chromatographic methods, these are recognized as the gold standard in the downstream processing of therapeutic proteins. Moreover, depending on the modification strategy, the protein will suffer different physicochemical changes, which must be considered to define a purification approach. This review aims to deeply analyze the purification methods employed for modified therapeutic proteins that are currently available on the market, to understand why the selected strategies were successful. Emphasis is placed on chromatographic methods since they govern the purification processes within the pharmaceutical industry. Furthermore, to discuss how the modification type strongly influences the purification strategy, the purification processes of three different modified versions of coagulation factor IX are contrasted.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Miguel Flores-Gatica
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Daniela Enriquez-Ochoa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| |
Collapse
|
4
|
Jakob LA, Beyer B, Janeiro Ferreira C, Lingg N, Jungbauer A, Tscheließnig R. Protein-protein interactions and reduced excluded volume increase dynamic binding capacity of dual salt systems in hydrophobic interaction chromatography. J Chromatogr A 2021; 1649:462231. [PMID: 34038776 DOI: 10.1016/j.chroma.2021.462231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Deploying two salts in hydrophobic interaction chromatography can significantly increase dynamic binding capacities. Nevertheless, the mechanistic understanding of this phenomenon is lacking. Here, we investigate whether surface tension or ionic strength govern dynamic binding capacities of the chromatographic resin Toyopearl Butyl-650 M in dual salt systems. Small-angle X-ray scattering was employed to analyze the model proteins and the protein-resin adduct in the respective dual salt systems. The dual salt systems incorporate sodium citrate and a secondary sodium salt (acetate, sulfate, or phosphate). As model proteins, we used lysozyme, GFP, and a monoclonal antibody (adalimumab). Moreover, for the protein-resin adduct, we determined the model parameters of a self-avoiding random walk model fitted into the pair density distribution function of the SAXS data. Ionic strength is more predictive for dynamic binding capacities in HIC dual salt systems than surface tension. However, dynamic binding capacities still differ by up to 30 % between the investigated dual salt systems. The proteins exhibit extensive protein-protein interactions in the studied dual salt HIC buffers. We found a correlation of protein-protein interactions with the well-known Hofmeister series. For systems with elevated protein-protein interactions, adsorption isotherms deviate from Langmuirian behavior. This highlights the importance of lateral protein-protein interactions in protein adsorption, where monomolecular protein layers are usually assumed. SAXS analysis of the protein-resin adduct indicates an inverse correlation of the binding capacity and the excluded volume parameter. This is indicative of the deposition of proteins in the cavities of the stationary phase. We hypothesize that increasing protein-protein interactions allow the formation of attractive clusters and multilayers in the cavities, respectively.
Collapse
Affiliation(s)
- Leo A Jakob
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria
| | - Beate Beyer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna A-1190, Austria
| | | | - Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna A-1190, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna A-1190, Austria.
| | - Rupert Tscheließnig
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria
| |
Collapse
|
5
|
Rincon Pabon JP, Kochert BA, Liu YH, Richardson DD, Weis DD. Protein A does not induce allosteric structural changes in an IgG1 antibody during binding. J Pharm Sci 2021; 110:2355-2361. [PMID: 33640336 DOI: 10.1016/j.xphs.2021.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Affinity chromatography is widely used for antibody purification in biopharmaceutical production. Although there is evidence suggesting that affinity chromatography might induce structural changes in antibodies, allosteric changes in structure have not been well-explored. Here, we used hydrogen exchange-mass spectrometry (HX-MS) to reveal conformational changes in the NIST mAb upon binding with a protein A (ProA) matrix. HX-MS measurements of NIST mAb bound to in-solution and resin forms of ProA revealed regions of the CH2 and CH3 domains with increased protection from HX upon ProA binding, consistent with the known ProA binding region. In-solution ProA experiments revealed regions in the Fab with increased HX uptake when the ProA:mAb molar ratio was increased to 2:1, suggesting an allosterically induced increase in backbone flexibility. Such effects were not observed with lower ProA concentration (1:1 molar ratio) or when ProA resin was used, suggesting some kind of change in binding mode. Since all pharmaceutical processes use ProA bound to resin, our results rule out reversible allosteric effects on the NIST mAb during interaction with resin ProA. However, irreversible effects cannot be ruled out since the NIST mAb was previously exposed to ProA during its original purification.
Collapse
Affiliation(s)
- Juan P Rincon Pabon
- Department of Chemistry and the Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Brent A Kochert
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Yan-Hui Liu
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Douglas D Richardson
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - David D Weis
- Department of Chemistry and the Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
6
|
Behere K, Yoon S. n-Layer BET adsorption isotherm modeling for multimeric Protein A ligand and its lifetime determination. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1162:122434. [PMID: 33302227 DOI: 10.1016/j.jchromb.2020.122434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 01/14/2023]
Abstract
Langmuir and other single-layer adsorption isotherms show the binding behavior of natural Protein A ligands immobilized on a column. However, no models have been shown in literature to explain the adsorption phenomena on the recombinant high binding capacity Protein A resins. This study has characterized the Protein A binding domain distribution across the ligand with multi-layer adsorption isotherms for a recombinant Protein A resin. The adsorption data was analyzed using the Langmuir, Freundlich, Brunauer-Emmett-Teller (BET) and various other mathematical equations. The best fit of experimental data was obtained with n-layer BET model wherein the isotherms of Protein A exhibited Type IV behavior according to BET classification. Furthermore, the binding capacity was studied throughout the shelf life using the multi-layer adsorption isotherm model. Antibody adsorption isotherms of Protein A resin were obtained at preset duration of caustic incubation. The experiments were carried out for two conditions of sanitization agent, namely, caustic and caustic with salt. Static and dynamic isotherm analysis showed that a new resin had a lower binding capacity and the initial sanitization improved the binding capacity, probably by making the binding domains more accessible. The binding capacity at equilibrium, dynamic breakthrough and batch were also evaluated and reported in this paper. The study modeled the multimeric Protein A ligand and established the requirement of optimization for cleaning regime. This study provides a fundamental understanding of the binding patterns in the recombinant Protein A ligands through a working mathematical equation and improves the current knowledge of Protein A resin lifetimes.
Collapse
Affiliation(s)
- Ketki Behere
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
7
|
Pereira Bresolin IRA, Lingg N, Bresolin ITL, Jungbauer A. Hydrophobic interaction chromatography as polishing step enables obtaining ultra-pure recombinant antibodies. J Biotechnol 2020; 324S:100020. [PMID: 34154739 DOI: 10.1016/j.btecx.2020.100020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/04/2020] [Accepted: 05/16/2020] [Indexed: 01/04/2023]
Abstract
Hydrophobic interaction chromatography is a versatile method to polish antibodies. Here, we present a polishing procedure in order to obtain an ultra-pure preparation of antitumor necrosis factor (TNF) alpha IgG1. Hydrophobic interaction chromatography (HIC) was used with Toyopearl® Phenyl 650M adsorbent in the presence of ammonium sulfate. Adsorption isotherms, breakthrough curves and chromatographic runs were carried out. The eluted antibody was recovered with 99.9 % purity and 96.2 % yield. In the main peak, aggregates, host cell proteins (HCP) and DNA content were below the limit of detection of the analytical methods used. Thus, the method proposed here shows potential to be employed in a downstream process when an ultra-pure antibody preparation is required.
Collapse
Affiliation(s)
- Iara Rocha Antunes Pereira Bresolin
- Chemical Engineering Department, Federal University of São Paulo, Diadema, SP, Brazil; Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nico Lingg
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Igor Tadeu Lazzarotto Bresolin
- Chemical Engineering Department, Federal University of São Paulo, Diadema, SP, Brazil; Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria.
| |
Collapse
|
8
|
Papachristodoulou M, Doutch J, Leung HSB, Church A, Charleston T, Clifton LA, Butler PD, Roberts CJ, Bracewell DG. In situ neutron scattering of antibody adsorption during protein A chromatography. J Chromatogr A 2020; 1617:460842. [PMID: 31928770 PMCID: PMC10986645 DOI: 10.1016/j.chroma.2019.460842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/02/2023]
Abstract
A deeper understanding of the nanoscale and mesoscale structure of chromatographic adsorbents and the distribution of proteins within the media, is critical to a mechanistic understanding of separation processes using these materials. Characterisation of the media's architecture at this scale and protein adsorption within, is challenging using conventional techniques. In this study, we propose a novel resin characterisation technique that enables in-situ measurement of the structure of the adsorbed protein layer within the resin, under typical chromatographic conditions. A quartz flow-through cell was designed and fabricated for use with Small Angle Neutron Scattering (SANS), in order to measure the nanoscale to mesoscale structures of a silica based protein A chromatography resin during the monoclonal antibody sorption process. We were able to examine the pore-to-pore (˜133 nm) and pore size (˜63 nm) correlations of the resin and the in-plane adsorbed antibody molecules (˜ 4.2 nm) correlation at different protein loadings and washing buffers, in real time using a contrast matching approach. When 0.03 M sodium phosphate with 1 M urea and 10 % isopropanol buffer, pH 8, was introduced into the system as a wash buffer, it disrupted the system's order by causing partial unfolding of the adsorbed antibody, as evidenced by a loss of the in-plane protein correlation. This method offers new ways to investigate the nanoscale structure and ligand immobilisation within chromatography resins; and perhaps most importantly understand the in-situ behaviour of adsorbed proteins within the media under different mobile phase conditions within a sample environment replicating that of a chromatography column.
Collapse
Affiliation(s)
- Maria Papachristodoulou
- Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - James Doutch
- ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK
| | - Hoi Sang Beatrice Leung
- Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andy Church
- ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK
| | - Thomas Charleston
- ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK
| | - Luke A Clifton
- ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK
| | - Paul D Butler
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD, USA; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Department of Chemistry, The University of Tennessee Knoxville, Knoxville, TN, USA
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Rosa SASL, Wagner A, da Silva CL, Aires-Barros MR, Azevedo AM, Dias-Cabral AC. Mobile-Phase Modulators as Salt Tolerance Enhancers in Phenylboronate Chromatography: Thermodynamic Evaluation of the Mechanisms Underlying the Adsorption of Monoclonal Antibodies. Biotechnol J 2019; 14:e1800586. [PMID: 31305007 DOI: 10.1002/biot.201800586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/12/2019] [Indexed: 11/06/2022]
Abstract
Phenylboronate chromatography has been employed for bioseparation applications though details concerning the mechanisms of interaction between the ligand and macromolecules remain widely unknown. Here, the phenomena underlying the adsorption of an anti-human interleukin-8 (anti-IL8) monoclonal antibody (mAb) onto an m-aminophenylboronic acid (m-APBA) ligand in the presence of different mobile-phase modulators (NaF/MgCl 2 /(NH 4 ) 2 SO 4 ) and under different pH values (7.5/8.5/9.0) is investigated. Flow microcalorimetry (FMC) is applied to measure instantaneous heat energy transfer, providing insights about the role of specific and nonspecific interactions involved in the adsorptive process. Results show that the adsorption of anti-IL8 mAb to m-APBA is enthalpically driven, corroborating the presence of the reversible esterification reaction between boronic acid or boronates and cis-diol-containing molecules. Nevertheless, for all mobile-phase modulators studied, changes in thermogram profiles are observed as well as reductions in the net heat of adsorption when increasing the pH. Overall, FMC and parallel chromatographic experiments data suggest that ligand salt tolerance could be enhanced using mobile-phase modulators, with all salts studied promoting the specific cis-diol interactions and reducing nonspecific interactions. The last feature is more noticeable at pH values above ligand's pK a , mainly due to the ability of NaF and (NH 4 ) 2 SO 4 to diminish electrostatic interactions when compared to the commonly used NaCl.
Collapse
Affiliation(s)
- Sara A S L Rosa
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Alexandra Wagner
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Maria R Aires-Barros
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Ana M Azevedo
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Ana C Dias-Cabral
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001, Covilhã, Portugal
| |
Collapse
|
10
|
Antibody Binding Heterogeneity of Protein A Resins. Biotechnol J 2019; 14:e1800632. [DOI: 10.1002/biot.201800632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Indexed: 01/25/2023]
|
11
|
L Silva G, Plewka J, Lichtenegger H, Dias-Cabral AC, Jungbauer A, Tscheließnig R. The pearl necklace model in protein A chromatography: Molecular mechanisms at the resin interface. Biotechnol Bioeng 2018; 116:76-86. [PMID: 30252938 PMCID: PMC6587469 DOI: 10.1002/bit.26843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
Staphylococcal protein A chromatography is an established core technology for monoclonal antibody purification and capture in the downstream processing. MabSelect SuRe involves a tetrameric chain of a recombinant form of the B domain of staphylococcal protein A, called the Z-domain. Little is known about the stoichiometry, binding orientation, or preferred binding. We analyzed small-angle X-ray scattering data of the antibody-protein A complex immobilized in an industrial highly relevant chromatographic resin at different antibody concentrations. From scattering data, we computed the normalized radial density distributions. We designed three-dimensional (3D) models with protein data bank crystallographic structures of an IgG1 (the isoform of trastuzumab, used here; Protein Data Bank: 1HZH) and the staphylococcal protein A B domain (the native form of the recombinant structure contained in MabSelect SuRe resin; Protein Data Bank: 1BDD). We computed different binding conformations for different antibody to protein A stoichiometries (1:1, 2:1, and 3:1) and compared the normalized radial density distributions computed from 3D models with those obtained from the experimental data. In the linear range of the isotherm we favor a 1:1 ratio, with the antibody binding to the outer domains in the protein A chain at very low and high concentrations. In the saturation region, a 2:1 ratio is more likely to occur. A 3:1 stoichiometry is excluded because of steric effects.
Collapse
Affiliation(s)
- Goncalo L Silva
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal.,Department of Biotechnology, Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Jacek Plewka
- Department of Biotechnology, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Material Science and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Helga Lichtenegger
- Department of Biotechnology, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Material Science and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ana C Dias-Cabral
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| | - Alois Jungbauer
- Department of Biotechnology, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rupert Tscheließnig
- Department of Biotechnology, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|