1
|
Oh YH, Becker ML, Mendola KM, Choe LH, Min L, Lee KH, Yigzaw Y, Seay A, Bill J, Li X, Roush DJ, Cramer SM, Menegatti S, Lenhoff AM. Factors affecting product association as a mechanism of host-cell protein persistence in bioprocessing. Biotechnol Bioeng 2024; 121:1284-1297. [PMID: 38240126 DOI: 10.1002/bit.28658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.
Collapse
Affiliation(s)
- Young Hoon Oh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew L Becker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kerri M Mendola
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yinges Yigzaw
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Alexander Seay
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Jerome Bill
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David J Roush
- Biologics PR&D, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, 27606, North Carolina, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Maier M, Weiß L, Zeh N, Schmieder-Todtenhaupt V, Dehghani A, Felix MN, Heinzelmann D, Lindner B, Schmidt M, Studts J, Schulz P, Reisinger B, Otte K, Franzreb M, Lakatos D, Fischer S. Illuminating a biologics development challenge: systematic characterization of CHO cell-derived hydrolases identified in monoclonal antibody formulations. MAbs 2024; 16:2375798. [PMID: 38984665 PMCID: PMC11238916 DOI: 10.1080/19420862.2024.2375798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024] Open
Abstract
Monoclonal antibodies (mAb) and other biological drugs are affected by enzymatic polysorbate (PS) degradation that reduces product stability and jeopardizes the supply of innovative medicines. PS represents a critical surfactant stabilizing the active pharmaceutical ingredients, which are produced by recombinant Chinese hamster ovary (CHO) cell lines. While the list of potential PS-degrading CHO host cell proteins (HCPs) has grown over the years, tangible data on industrially relevant HCPs are still scarce. By means of a highly sensitive liquid chromatography-tandem mass spectrometry method, we investigated seven different mAb products, resulting in the identification of 12 potentially PS-degrading hydrolases, including the strongly PS-degrading lipoprotein lipase (LPL). Using an LPL knockout CHO host cell line, we were able to stably overexpress and purify the remaining candidate hydrolases through orthogonal affinity chromatography methods, enabling their detailed functional characterization. Applying a PS degradation assay, we found nine mostly secreted, PS-active hydrolases with varying hydrolytic activity. All active hydrolases showed a serine-histidine-aspartate/glutamate catalytical triad. Further, we subjected the active hydrolases to pH-screenings and revealed a diverse range of activity optima, which can facilitate the identification of residual hydrolases during bioprocess development. Ultimately, we compiled our dataset in a risk matrix identifying PAF-AH, LIPA, PPT1, and LPLA2 as highly critical hydrolases based on their cellular expression, detection in purified antibodies, active secretion, and PS degradation activity. With this work, we pave the way toward a comprehensive functional characterization of PS-degrading hydrolases and provide a basis for a future reduction of PS degradation in biopharmaceutical drug products.
Collapse
Affiliation(s)
- Melanie Maier
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Linus Weiß
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Nikolas Zeh
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Alireza Dehghani
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Marius Nicolaus Felix
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Heinzelmann
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Joey Studts
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bernd Reisinger
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kerstin Otte
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
3
|
Oh YH, Mendola KM, Choe LH, Min L, Lavoie AR, Sripada SA, Williams TI, Lee KH, Yigzaw Y, Seay A, Bill J, Li X, Roush DJ, Cramer SM, Menegatti S, Lenhoff AM. Identification and characterization of CHO host-cell proteins in monoclonal antibody bioprocessing. Biotechnol Bioeng 2024; 121:291-305. [PMID: 37877536 PMCID: PMC10842603 DOI: 10.1002/bit.28568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines. The results show considerable variability in HCP identities in the processing steps but extensive commonality in the identities and quantities of the most abundant HCPs in the harvests for different processes. Analysis of HCP abundance in the harvests shows a likely relationship between abundance and the reproducibility of quantification measurements and suggests that some groups of HCPs may hinder the characterization. Quantitative monitoring of HCPs persisting through purification steps coupled with the findings from the harvest analysis suggest that multiple factors, including HCP abundance and mAb-HCP interactions, can contribute to the persistence of individual HCPs and the identification of groups of common, persistent HCPs in mAb manufacturing.
Collapse
Affiliation(s)
- Young Hoon Oh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kerri M Mendola
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Ashton R Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Taufika Islam Williams
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yinges Yigzaw
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Alexander Seay
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Jerome Bill
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David J Roush
- BPR&D, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Tuameh A, Harding SE, Darton NJ. Methods for addressing host cell protein impurities in biopharmaceutical product development. Biotechnol J 2023; 18:e2200115. [PMID: 36427352 DOI: 10.1002/biot.202200115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The high demand for monoclonal antibody (mAb) therapeutics in recent years has resulted in significant efforts to improve their costly manufacturing process. The high cost of manufacturing mAbs derives mainly from the purification process, which contributes to 50%-80% of the total manufacturing cost. One of the main challenges facing industry at the purification stage is the clearance of host cell proteins (HCPs) that are produced and often co-purified with the desired mAb product. One of the issues HCPs can cause is the degradation of the final mAb protein product. In this review, techniques are considered that can be used at different stages (upstream and downstream) of mAb manufacture to improve HCP clearance. In addition to established techniques, many new approaches for HCP removal are discussed that have the potential to replace current methods for improving HCP reduction and thereby the quality and stability of the final mAb product.
Collapse
Affiliation(s)
- Abdulrahman Tuameh
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Nicholas J Darton
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
5
|
Hu M, Molden R, Hu Y, Huang Y, Qiu H, Li N. Host cell protein identification in monoclonal antibody high molecular weight species. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123448. [PMID: 36115198 DOI: 10.1016/j.jchromb.2022.123448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
High molecular weight (HMW) species are product-related variants that may impact therapeutic product safety and efficacy. Therefore, HMW species and aggregates are considered critical quality attributes and their levels should be closely monitored and controlled during drug development, commercial manufacturing, and shelf-life storage period for therapeutic monoclonal antibody drug products. Various biophysical and analytical methods have been developed to characterize the HMW species to understand their mechanisms of formation and assess potential product risk. However, host cell protein (HCP) analysis has seldom been conducted to characterize the impurities in aggregates. In this work, HCP analysis of enriched HMW species and drug substance (DS) from five different monoclonal antibodies (mAbs) was performed. More HCPs are identified in the enriched HMW than in the DS, thus demonstrating a potential interaction between HCPs and HMW. Certain HCPs, including commonly detected HCPs and problematic HCPs, were enriched in HMW fractions. Especially, the most abundant HCP from mAb1, CC motif chemokine, was 46 times more abundant in enriched HMW than DS. The enriched HMW was further fractionated into enriched dimers and enriched very HMW (vHMW) fractions. The CC motif chemokine was found to interact mainly with mAb1 dimer species rather than vHMW fraction. Removing the HMW species from mAb1 significantly decreased the CC motif chemokine level in the final mAb1 DS. Our findings demonstrate that some HCPs are more preferentially bound to HMW species and this finding may provide a new opportunity for removing HCPs in downstream purification steps.
Collapse
Affiliation(s)
- Mengqi Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA
| | - Rosalynn Molden
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA
| | - Yunli Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA.
| | - Yu Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA
| | - Haibo Qiu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA.
| | - Ning Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA
| |
Collapse
|
6
|
Parasnavis SS, Niu B, Aspelund M, Chung WK, Snyder M, Cramer SM. Systematic workflow for studying domain contributions of bispecific antibodies to selectivity in multimodal chromatography. Biotechnol Bioeng 2021; 119:211-225. [PMID: 34687215 DOI: 10.1002/bit.27967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/19/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022]
Abstract
In this article, a systematic workflow was formulated and implemented to understand selectivity differences and preferred binding patches for bispecific monoclonal antibodies (mAbs) and their parental mAbs on three multimodal cation exchange resin systems. This workflow incorporates chromatographic screening of the parent mAbs and their fragments at various pH followed by surface property mapping and protein footprinting using covalent labeling followed by liquid chromatography-mass spectrometry analysis. The chromatography screens on multimodal resins with the intact mAbs indicated enhanced selectivity as compared to single-mode interaction systems. While the bispecific antibody (bsAb) eluted between the two parental mAbs on most of the resins, the retention of the bispecific transitioned from co-eluting with one parental mAb to the other parental mAb on Capto MMC. To investigate the contribution of different domains, mAb fragments were evaluated and the results indicated that the interactions were likely dominated by the Fab domain at higher pH. Protein surface property maps were then employed to hypothesize the potential preferred binding patches in the solvent-exposed regions of the parental Fabs. Finally, protein footprinting was carried out with the parental mAbs and the bsAb in the bound and unbound states at pH 7.5 to identify the preferred binding patches. Results with the intact mAb analysis supported the hypothesis that interactions with the resins were primarily driven by the residues in the Fab fragments and not the Fc. Furthermore, peptide mapping data indicated that the light chain may be playing a more important role in the higher binding of Parent A as compared with Parent B in these resin systems. Finally, results with the bsAb indicated that both halves of the molecule contributed to binding with the resins, albeit with subtle differences as compared to the parental mAbs. The workflow presented in this paper lays the foundation to systematically study the chromatographic selectivity of large multidomain molecules which can provide insights into improved biomanufacturability and expedited downstream bioprocess development.
Collapse
Affiliation(s)
- Siddharth S Parasnavis
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ben Niu
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Matthew Aspelund
- Purification Process Sciences, AstraZeneca, Gaithersburg, Maryland, USA
| | - Wai K Chung
- Purification Process Sciences, AstraZeneca, Gaithersburg, Maryland, USA
| | - Mark Snyder
- Bio-Rad Laboratories, Hercules, California, USA
| | - Steven M Cramer
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
7
|
Jones M, Palackal N, Wang F, Gaza-Bulseco G, Hurkmans K, Zhao Y, Chitikila C, Clavier S, Liu S, Menesale E, Schonenbach NS, Sharma S, Valax P, Waerner T, Zhang L, Connolly T. "High-risk" host cell proteins (HCPs): A multi-company collaborative view. Biotechnol Bioeng 2021; 118:2870-2885. [PMID: 33930190 DOI: 10.1002/bit.27808] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Host cell proteins (HCPs) are process-related impurities that may copurify with biopharmaceutical drug products. Within this class of impurities there are some that are more problematic. These problematic HCPs can be considered high-risk and can include those that are immunogenic, biologically active, or enzymatically active with the potential to degrade either product molecules or excipients used in formulation. Some have been shown to be difficult to remove by purification. Why should the biopharmaceutical industry worry about these high-risk HCPs? What approach could be taken to understand the origin of its copurification and address these high-risk HCPs? To answer these questions, the BioPhorum Development Group HCP Workstream initiated a collaboration among its 26-company team with the goal of industry alignment around high-risk HCPs. The information gathered through literature searches, company experiences, and surveys were used to compile a list of frequently seen problematic/high-risk HCPs. These high-risk HCPs were further classified based on their potential impact into different risk categories. A step-by-step recommendation is provided for establishing a comprehensive control strategy based on risk assessments for monitoring and/or eliminating the known impurity from the process that would be beneficial to the biopharmaceutical industry.
Collapse
Affiliation(s)
- Marisa Jones
- GlaxoSmithKline, CMC Analytical, Structure & Function Characterization, Collegeville, Pennsylvania, USA
| | - Nisha Palackal
- Regeneron Pharmaceuticals Inc., Protein Biochemistry, Tarrytown, New York, USA
| | - Fengqiang Wang
- Merck & Co. Inc., Analytical Research & Development, Kenilworth, New Jersey, USA
| | | | - Karen Hurkmans
- AbbVie Bioresearch Center, Protein Analytics, Worcester, Massachusetts, USA
| | - Yiwei Zhao
- Takeda Pharmaceuticals, Pharmaceutical science, Cambridge, Massachusetts, USA
| | - Carmelata Chitikila
- Janssen R&D LLC, BioTherapeutics Development and Supply, Analytical Development, Bioassay Methods Development, Malvern, Pennsylvania, USA
| | - Severine Clavier
- Sanofi R&D, BioAnalytics, Biologics Development, Vitry-sur-seine, France
| | - Suli Liu
- Biogen, Analytical Development, Cambridge, Massachusetts, USA
| | - Emily Menesale
- Biogen, Analytical Development, Cambridge, Massachusetts, USA
| | - Nicole S Schonenbach
- Pfizer, Downstream Process Development, Bioprocess R&D, Chesterfield, Missouri, USA
| | - Satish Sharma
- Bristol Meyers Squibb, Analytical Development, New York, New York, USA
| | - Pascal Valax
- Merck KGaA, Global Healthcare Operations, Development and Launch, Biotech Process Sciences, Merck BioDevelopment, Martillac, France
| | - Thomas Waerner
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Analytical Development, Biologicals, Biberach, Germany
| | - Lei Zhang
- Bristol Meyers Squibb, Analytical Development, New York, New York, USA
| | - Trish Connolly
- Development Group Phorum, BioPhorum, The Gridiron building, One Pancras Square, London, UK
| |
Collapse
|
8
|
Molden R, Hu M, Yen E S, Saggese D, Reilly J, Mattila J, Qiu H, Chen G, Bak H, Li N. Host cell protein profiling of commercial therapeutic protein drugs as a benchmark for monoclonal antibody-based therapeutic protein development. MAbs 2021; 13:1955811. [PMID: 34365906 PMCID: PMC8354607 DOI: 10.1080/19420862.2021.1955811] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 01/20/2023] Open
Abstract
Therapeutic proteins including monoclonal antibodies (mAbs) are usually produced in engineered host cell lines that also produce thousands of endogenous proteins at varying levels. A critical aspect of the development of biotherapeutics manufacturing processes is the removal of these host cell proteins (HCP) to appropriate levels in order to minimize risk to patient safety and drug efficacy. During the development process and associated analytical characterization, mass spectrometry (MS) has become an increasingly popular tool for HCP analysis due to its ability to provide both relative abundance and identity of individual HCP and because the method does not rely on polyclonal antibodies, which are used in enzyme-linked immunosorbent assays. In this study, HCP from 29 commercially marketed mAb and mAb-based therapeutics were profiled using liquid chromatography (LC)-MS/MS with the identification and relative quantification of 79 individual HCP in total. Excluding an outlier drug, the relative levels of individual HCP determined in the approved therapeutics were generally low, with an average of 20 ppm (µmol HCP/mol drug) measured by LC-MS/MS, and only a few (<7 in average) HCP were identified in each drug analyzed. From this analysis, we also gained knowledge about which HCP are frequently identified in mAb-based products and their typical levels relative to the drugs for the identified individual HCP. In addition, we examined HCP composition from antibodies produced in house and found our current development process brings HCP to levels that are consistent with marketed drugs. Finally, we described a specific case to demonstrate how the HCP information from commercially marketed drugs could inform future HCP analyses.
Collapse
Affiliation(s)
- Rosalynn Molden
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Mengqi Hu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Sook Yen E
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Diana Saggese
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - James Reilly
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - John Mattila
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Gang Chen
- Protein Expression Sciences, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Hanne Bak
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| |
Collapse
|
9
|
Schiermeyer A. Optimizing product quality in molecular farming. Curr Opin Biotechnol 2019; 61:15-20. [PMID: 31593785 DOI: 10.1016/j.copbio.2019.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
The production of biopharmaceuticals in plant-based systems had faced several challenges that hampered broader adoption of this technology. In recent years, various plant production hosts have been improved by genetic engineering approaches to overcome obstacles with regard to post-translational modifications and integrity of target proteins. Together with optimized extraction and purification processes, those advances have put plant molecular farming in a more competitive position compared to established production systems. Certain biopharmaceuticals can be derived from plant systems with unique desired properties, qualifying them as biobetters.
Collapse
Affiliation(s)
- Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Navarro S, Ventura S. Computational re-design of protein structures to improve solubility. Expert Opin Drug Discov 2019; 14:1077-1088. [DOI: 10.1080/17460441.2019.1637413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|