1
|
Brower K, Wiltberger K, Berdugo C, Bosley A, Goodrich E, Pferdeort V, Schaefer G. Process development and characterization for integrated continuous bioprocesses-Highlights from N-mAb. Biotechnol Prog 2024; 40:e3425. [PMID: 38289271 DOI: 10.1002/btpr.3425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 08/20/2024]
Abstract
The N-mAb case study was produced by the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) to support teaching and learning for both industry and to accelerate adoption of advanced manufacturing process technologies such as integrated continuous bioprocesses (ICB) for mAbs. Similar to the A-mAb case study, N-mAb presents the evolution of an integrated control strategy, from early clinical through process validation and commercial manufacturing with a focus on elements that are unique to integrated continuous bioprocesses. This publication presents a summary of the process design and characterization chapters to allow a greater focus on the unique elements relevant to that phase of development.
Collapse
Affiliation(s)
- Kevin Brower
- Sanofi, Purification Development-Mammalian Platform, Framingham, Massachusetts, USA
| | - Kelly Wiltberger
- Biogen, Biologics Development, Biogen, Research Triangle Park, North Carolina, USA
| | | | - Allen Bosley
- AstraZeneca, Purification Process Sciences, Gaithersburg, Maryland, USA
| | | | - Valerie Pferdeort
- Biogen, Cell Culture Development, Research Triangle Park, North Carolina, USA
| | - Gene Schaefer
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, Delaware, USA
| |
Collapse
|
2
|
Müller-Späth T. Continuous Countercurrent Chromatography in Protein Purification. Methods Mol Biol 2023; 2699:31-50. [PMID: 37646992 DOI: 10.1007/978-1-0716-3362-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Continuous countercurrent chromatography can be applied for both capture and polishing steps in the downstream processing of biopharmaceuticals. This chapter explains the concept of countercurrent operation, focusing on twin-column processes and how it can be used to alleviate the trade-offs of traditional batch chromatography with respect to resin utilization/productivity and yield/purity. CaptureSMB and MCSGP, the main twin-column continuous countercurrent chromatography processes, are explained, and the metrics by which they are compared to single-column chromatography are identified. Practical hints for process design and application examples are provided. Finally, regulatory aspects, scale-up, and UV-based process control are covered.
Collapse
|
3
|
Malakian A, Jung SY, Afzal MA, Carbrello C, Giglia S, Johnson M, Miller C, Rayfield W, Boenitz D, Cetlin D, Zydney AL. Development of a transient inline spiking system for evaluating virus clearance in continuous bioprocessing -- Proof of concept for virus filtration. Biotechnol Bioeng 2022; 119:2134-2141. [PMID: 35470427 DOI: 10.1002/bit.28119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/05/2022]
Abstract
The development of continuous/connected bioprocesses requires new approaches for viral clearance validation, both for specific unit operations and for the overall process. In this study, we have developed a transient inline spiking system that can be used to evaluate virus clearance at distinct time points during prolonged operation of continuous bioprocesses. The proof of concept for this system was demonstrated by evaluating the viral clearance for a virus filtration step, both with and without a prefilter upstream of the virus filter. The residence time distribution was evaluated using a previously identified non-interacting fluorescent tracer, while viral clearance was evaluated from measurements of the virus titer in samples obtained downstream of the virus filter. The measured log reduction values (LRV) for ϕX174, Minute Virus of Mice (MVM), Xenotropic Murine Leukemia Virus (XMuLV), and a non-infectious Mock Virus Particle (MVP) were all within 0.5 logs of those obtained using a traditional batch virus challenge for both model and real-world process streams (LRV between 2.2 and 3.4 for ϕX174 using a single layer of virus filter). The results demonstrate the effectiveness of transient inline spiking to validate the virus clearance capabilities in continuous bioprocessing, an essential element for the adoption of these processes for products made using mammalian cell lines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Malakian
- Department of Chemical Engineering, The Pennsylvania State University
| | - Seon Yeop Jung
- Department of Chemical Engineering, The Pennsylvania State University.,Dankook University, South Korea
| | - Mohammad A Afzal
- Department of Chemical Engineering, The Pennsylvania State University
| | | | | | | | | | | | | | | | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University
| |
Collapse
|
4
|
Capito F, Flato H, Oeinck V, Dierl S, Berg A. Mimicking continuous capture chromatography for virus clearance using a single chromatography column model. Biotechnol J 2022; 17:e2100433. [PMID: 35089643 DOI: 10.1002/biot.202100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/11/2022]
Abstract
Continuous chromatography is increasingly being used across the biotechnology industry due to its economic advantages. For adoption in commercial manufacturing, also models for virus clearance studies must be available. We demonstrate how for a virus clearance study for a multispecific antibody, the continuous protein A capture chromatography process, being run on multiple interconnected columns, can be mimicked with only a single column. With this mimicking small-scale model, resources and complexity can be minimized, when conducting virus clearance studies at a contract research organization (CRO) lab. Obtained log reduction values (LRV) for xMuLV and MVM virus, used as model viruses, are comparable to batch protein A chromatography and results described by other groups. The feasibility of this mimicking small-scale model helps to further reduce barriers to adoption when implementing continuous chromatography. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Capito
- Purification Process Development, Industriepark Höchst, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, 65926, Germany
| | - Hendrik Flato
- Purification Process Development, Industriepark Höchst, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, 65926, Germany
| | - Verena Oeinck
- Purification Process Development, Industriepark Höchst, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, 65926, Germany
| | - Stefan Dierl
- Purification Process Development, Industriepark Höchst, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, 65926, Germany
| | - Annette Berg
- Purification Process Development, Industriepark Höchst, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, 65926, Germany
| |
Collapse
|
5
|
Angelo JM, Potter K, Müller-Späth T, Xu X, Li ZJ, Ghose S. Continued insights into virus clearance validation across continuous capture chromatography. Biotechnol Bioeng 2021; 118:3604-3609. [PMID: 33421115 DOI: 10.1002/bit.27674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022]
Abstract
Multi-column capture chromatography (MCC) has gained increased attention lately due to the significant economic and process-related advantages it offers compared to traditional batch mode chromatography. However, for wide adoption of this technology in the clinical and commercial space, it requires scalable models for viral validation. In this study, additional viral validation studies were conducted under cGLP guidelines to assess retro-(X-MuLV) and parvo-virus (minute virus of mice) clearance across twin-column continuous capture chromatography (CaptureSMB) to supplement work previously performed. A surrogate model was validated using standard batch mode chromatography equipment based on flow path modifications to mimic the loading strategy employed in CaptureSMB. In addition, aged resin was used in this surrogate format to assess the impact of resin lifetime on viral clearance during continuous capture operation. The impact of column loading was also explored to shed light on the viral clearance mechanisms of protein A chromatography in overloading conditions. The proposed approach greatly simplifies MCC virus validation studies, and provides a robust strategy for regulatory filing of continuous biomanufacturing processes.
Collapse
Affiliation(s)
- James M Angelo
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Kevin Potter
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | | | - Xuankuo Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Sanchayita Ghose
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| |
Collapse
|
6
|
Xu J, Xu X, Huang C, Angelo J, Oliveira CL, Xu M, Xu X, Temel D, Ding J, Ghose S, Borys MC, Li ZJ. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study. MAbs 2020; 12:1770669. [PMID: 32425110 PMCID: PMC7531520 DOI: 10.1080/19420862.2020.1770669] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Process intensification has shown great potential to increase productivity and reduce costs in biomanufacturing. This case study describes the evolution of a manufacturing process from a conventional processing scheme at 1000-L scale (Process A, n = 5) to intensified processing schemes at both 1000-L (Process B, n = 8) and 2000-L scales (Process C, n = 3) for the production of a monoclonal antibody by a Chinese hamster ovary cell line. For the upstream part of the process, we implemented an intensified seed culture scheme to enhance cell densities at the seed culture step (N-1) prior to the production bioreactor (N) by using either enriched N-1 seed culture medium for Process B or by operating the N-1 step in perfusion mode for Process C. The increased final cell densities at the N-1 step allowed for much higher inoculation densities in the production bioreactor operated in fed-batch mode and substantially increased titers by 4-fold from Process A to B and 8-fold from Process A to C, while maintaining comparable final product quality. Multiple changes were made to intensify the downstream process to accommodate the increased titers. New high-capacity resins were implemented for the Protein A and anion exchange chromatography (AEX) steps, and the cation exchange chromatography (CEX) step was changed from bind-elute to flow-through mode for the streamlined Process B. Multi-column chromatography was developed for Protein A capture, and an integrated AEX-CEX pool-less polishing steps allowed semi-continuous Process C with increased productivity as well as reductions in resin requirements, buffer consumption, and processing times. A cost-of-goods analysis on consumables showed 6.7–10.1 fold cost reduction from the conventional Process A to the intensified Process C. The hybrid-intensified process described here is easy to implement in manufacturing and lays a good foundation to develop a fully continuous manufacturing with even higher productivity in the future.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Xuankuo Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Chao Huang
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - James Angelo
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | | | - Mengmeng Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Xia Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Deniz Temel
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Julia Ding
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Sanchayita Ghose
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Michael C Borys
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| |
Collapse
|
7
|
Li Y, Chang A, Beattie D, Remington KM. Novel spiking methods developed for anion exchange chromatography operating in a continuous process. Biotechnol Bioeng 2020; 117:3379-3389. [PMID: 32667685 DOI: 10.1002/bit.27500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 11/11/2022]
Abstract
Many manufacturers of biopharmaceuticals are moving from batch to continuous processing. While this approach offers advantages over batch processing, demonstration of viral clearance for continuous processes is challenging. Fluctuating output from a continuous process chromatography column results in a nonhomogeneous load for the subsequent column and must be considered when designing viral clearance studies. One approach to clearance studies is to downscale the connected unit operations and introduce virus by in-line spiking. This is challenging to be implemented at the contract research organization performing the clearance study given the complexity of systems and level of expertise required. Alternately, each unit operation could be evaluated in traditional batch mode but the spiking and loading conditions be modified to mimic the variance introduced by the transition between two connected columns. Using a standard chromatography system, we evaluated a flow-through anion exchange chromatography step in a monoclonal antibody (mAb) manufacturing process using five different methods to introduce the virus to the column. Our data show that whether the virus or the mAbs were introduced in concentrated peaks, or as a homogeneous batch, the clearance of mouse minute virus was similar. This study introduces an alternative way to evaluate viral clearance in a continuous process and demonstrates the robustness of anion exchange chromatography unit operating in continuous processing.
Collapse
Affiliation(s)
- Ying Li
- MilliporeSigma, Process Solutions Bioprocessing, Bedford, Massachusetts
| | - Audrey Chang
- MilliporeSigma, Process Solutions Services, Rockville, Maryland
| | - David Beattie
- MilliporeSigma, Process Solutions Bioprocessing, Bedford, Massachusetts
| | | |
Collapse
|
8
|
Model-based process development of continuous chromatography for antibody capture: A case study with twin-column system. J Chromatogr A 2020; 1619:460936. [DOI: 10.1016/j.chroma.2020.460936] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 01/06/2023]
|