1
|
Dinter C, Gumprecht A, Menze MA, Azizan A, Niehoff PJ, Hansen S, Büchs J. Validation of computational fluid dynamics of shake flask experiments at moderate viscosity by liquid distributions and volumetric power inputs. Sci Rep 2024; 14:3658. [PMID: 38351095 PMCID: PMC10864319 DOI: 10.1038/s41598-024-53980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Computational fluid dynamics (CFD) has recently become a pivotal tool in the design and scale-up of bioprocesses. While CFD has been extensively utilized for stirred tank reactors (STRs), there exists a relatively limited body of literature focusing on CFD applications for shake flasks, almost exclusively concentrated on fluids at waterlike viscosity. The importance of CFD model validation cannot be overstated. While techniques to elucidate the internal flow field are necessary for model validation in STRs, the liquid distribution, caused by the orbital shaking motion of shake flasks, can be exploited for model validation. An OpenFOAM CFD model for shake flasks has been established. Calculated liquid distributions were compared to suitable, previously published experimental data. Across a broad range of shaking conditions, at waterlike and moderate viscosity (16.7 mPa∙s), the CFD model's liquid distributions align excellently with the experimental data, in terms of overall shape and position of the liquid relative to the direction of the centrifugal force. Additionally, the CFD model was used to calculate the volumetric power input, based on the energy dissipation. Depending on the shaking conditions, the computed volumetric power inputs range from 0.1 to 7 kW/m3 and differed on average by 0.01 kW/m3 from measured literature data.
Collapse
Affiliation(s)
- Carl Dinter
- RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Andreas Gumprecht
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | | | - Amizon Azizan
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | | | - Sven Hansen
- Evonik Operations GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany
| | - Jochen Büchs
- RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Seidel S, Maschke RW, Mozaffari F, Eibl-Schindler R, Eibl D. Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution. Bioengineering (Basel) 2023; 10:bioengineering10040478. [PMID: 37106665 PMCID: PMC10135925 DOI: 10.3390/bioengineering10040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
HEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shake flasks, with and without baffles, and in stirred Minifors 2 bioreactors to evaluate its effect on the growth and aggregate size distribution of HEK293 suspension cells. The HEK FreeStyleTM 293-F cell line was cultivated in batch mode at different specific power inputs (from 63 W m-3 to 451 W m-3), whereby ≈60 W m-3 corresponds to the upper limit, which is what has been typically described in published experiments. In addition to the specific growth rate and maximum viable cell density VCDmax, the cell size distribution over time and cluster size distribution were investigated. The VCDmax of (5.77±0.02)·106cellsmL-1 was reached at a specific power input of 233 W m-3 and was 23.8% higher than the value obtained at 63 W m-3 and 7.2% higher than the value obtained at 451 W m-3. No significant change in the cell size distribution could be measured in the investigated range. It was shown that the cell cluster size distribution follows a strict geometric distribution whose free parameter p is linearly dependent on the mean Kolmogorov length scale. Based on the performed experiments, it has been shown that by using CFD-characterised bioreactors, the VCDmax can be increased and the cell aggregate rate can be precisely controlled.
Collapse
Affiliation(s)
- Stefan Seidel
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Rüdiger W Maschke
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Fruhar Mozaffari
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Regine Eibl-Schindler
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| |
Collapse
|
3
|
Hansen S, Gumprecht A, Micheel L, Hennemann HG, Enzmann F, Blümke W. Implementation of Perforated Concentric Ring Walls Considerably Improves Gas-Liquid Mass Transfer of Shaken Bioreactors. Front Bioeng Biotechnol 2022; 10:894295. [PMID: 35646878 PMCID: PMC9135409 DOI: 10.3389/fbioe.2022.894295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Since their first use in the 1930s, shake flasks have been a widely used bioreactor type for screening and process development due to a number of advantages. However, the limited gas-liquid mass transfer capacities—resulting from practical operation limits regarding shaking frequency and filling volumes—are a major drawback. The common way to increase the gas-liquid mass transfer in shake flasks with the implementation of baffles is generally not recommended as it comes along with several severe disadvantages. Thus, a new design principle for shaken bioreactors that aims for improving the gas-liquid mass transfer without losing the positive characteristics of unbaffled shake flasks is introduced. The flasks consist of cylindrical glass vessels with implemented perforated concentric ring walls. The ring walls improve the gas-liquid mass transfer via the formation of additional liquid films on both of its sides, whereas the perforations allow for mixing between the compartments. Sulfite oxidation experiments revealed over 200% higher maximum oxygen transfer capacities (OTRmax) compared to conventional shake flasks. In batch cultivations of Escherichia coli BL21 in mineral media, unlimited growth until glucose depletion and oxygen transfer rates (OTR) of up to 138 mmol/L/h instead of an oxygen limitation at 57 mmol/L/h as in normal shake flasks under comparable conditions could be achieved. Even overflow metabolism could be prevented due to sufficient oxygen supply without the use of unconventional shaking conditions or oxygen enrichment. Therefore, we believe that the new perforated ring flask principle has a high potential to considerably improve biotechnological screening and process development steps.
Collapse
Affiliation(s)
- Sven Hansen
- Evonik Operations GmbH, Marl, Germany
- *Correspondence: Sven Hansen,
| | | | | | | | | | | |
Collapse
|
4
|
Montes‐Serrano I, Satzer P, Jungbauer A, Dürauer A. Characterization of hydrodynamics and volumetric power input in microtiter plates for the scale-up of downstream operations. Biotechnol Bioeng 2022; 119:523-534. [PMID: 34741535 PMCID: PMC9299155 DOI: 10.1002/bit.27983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Parameter estimation for scale-up of downstream operations from microtiter plates (MTPs) is mostly done empirically because engineering correlations between microplates and stirred tank reactors (STRs) are not yet available. It is challenging to change the operation mode from shaken MTPs to large-scale STRs. For the scale-up of STRs, volumetric power input is well-established although it is unclear whether this parameter can be used to transfer the operations from MTPs. We determine the volumetric power input in MTPs via the temperature increase caused by the motion of the liquid. The hydrodynamics in MTPs are studied with computational fluid dynamics (CFD). Mixing is investigated in 96-, 24-, and 6-well MTPs to cover different geometries, filling volumes, shaking diameters, and shaking frequencies. All CFD simulations are validated by experimental results, which now allows prediction of the volumetric power input and hydrodynamics at various conditions in MTPs without the need for further experiments. We provide a map of the power input achievable in MTPs. Based on this map, from knowing about large-scale conditions, adequate microscale conditions can be adjusted for process development. This enables the direct scale-up of downstream unit operations from MTPs to STRs.
Collapse
Affiliation(s)
| | - Peter Satzer
- Austrian Centre of Industrial Biotechnology (acib GmbH)ViennaAustria
| | - Alois Jungbauer
- Austrian Centre of Industrial Biotechnology (acib GmbH)ViennaAustria
- Department of Biotechnology, Institute of Bioprocess Science & EngineeringUniversity of Natural Resources and Life Sciences, Vienna (BOKU)ViennaAustria
| | - Astrid Dürauer
- Austrian Centre of Industrial Biotechnology (acib GmbH)ViennaAustria
- Department of Biotechnology, Institute of Bioprocess Science & EngineeringUniversity of Natural Resources and Life Sciences, Vienna (BOKU)ViennaAustria
| |
Collapse
|
5
|
Meyer V, Cairns T, Barthel L, King R, Kunz P, Schmideder S, Müller H, Briesen H, Dinius A, Krull R. Understanding and controlling filamentous growth of fungal cell factories: novel tools and opportunities for targeted morphology engineering. Fungal Biol Biotechnol 2021; 8:8. [PMID: 34425914 PMCID: PMC8383395 DOI: 10.1186/s40694-021-00115-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 02/20/2023] Open
Abstract
Filamentous fungal cell factories are efficient producers of platform chemicals, proteins, enzymes and natural products. Stirred-tank bioreactors up to a scale of several hundred m³ are commonly used for their cultivation. Fungal hyphae self-assemble into various cellular macromorphologies ranging from dispersed mycelia, loose clumps, to compact pellets. Development of these macromorphologies is so far unpredictable but strongly impacts productivities of fungal bioprocesses. Depending on the strain and the desired product, the morphological forms vary, but no strain- or product-related correlations currently exist to improve
process understanding of fungal production systems. However, novel genomic, genetic, metabolic, imaging and modelling tools have recently been established that will provide fundamental new insights into filamentous fungal growth and how it is balanced with product formation. In this primer, these tools will be highlighted and their revolutionary impact on rational morphology engineering and bioprocess control will be discussed.
Collapse
Affiliation(s)
- Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Timothy Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Lars Barthel
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Rudibert King
- Chair of Measurement and Control, Institute of Chemical and Process Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Philipp Kunz
- Chair of Measurement and Control, Institute of Chemical and Process Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Stefan Schmideder
- Chair of Process Systems Engineering, School of Life Sciences, Technical University of Munich, Gregor- Mendel-Str. 4, 85354, Freising, Germany
| | - Henri Müller
- Chair of Process Systems Engineering, School of Life Sciences, Technical University of Munich, Gregor- Mendel-Str. 4, 85354, Freising, Germany
| | - Heiko Briesen
- Chair of Process Systems Engineering, School of Life Sciences, Technical University of Munich, Gregor- Mendel-Str. 4, 85354, Freising, Germany
| | - Anna Dinius
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Brunswick, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Brunswick, Germany
| |
Collapse
|