1
|
Zhang T, Jin Q, Ji J. Antimicrobial Peptides and Their Mimetics: Promising Candidates of Next-Generation Therapeutic Agents Combating Multidrug-Resistant Bacteria. Adv Biol (Weinh) 2025:e2400461. [PMID: 39913150 DOI: 10.1002/adbi.202400461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/05/2025] [Indexed: 02/07/2025]
Abstract
The increasing morbidity and mortality caused by multidrug-resistant bacteria alerts human beings to the fact that conventional antibiotics are no longer reliable and effective alternatives are imperatively needed. Owing to wide range of sources, diverse structures, and unique mode of action, antimicrobial peptides have been highly anticipated and extensively studied in recent years. Besides, the integration of artificial intelligence helps researchers gain access to the vast unexplored chemical space, which opens more opportunities for the optimization and design of novel structures. Moreover, Due to advances in chemistry and synthetic biology, researchers have also begun to focus on the potential of chemical mimetics of antimicrobial peptides. In this review, a comprehensive discussion about natural and synthesized antimicrobial peptides as well as their chemical mimetics is made, so as to provide a comprehensive summary of this field and inspire follow-up research.
Collapse
Affiliation(s)
- Tianyi Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
2
|
Bhattacharya S, Jenkins MC, Keshavarz-Joud P, Bourque AR, White K, Alvarez Barkane AM, Bryksin AV, Hernandez C, Kopylov M, Finn M. Heterologous Prime-Boost with Immunologically Orthogonal Protein Nanoparticles for Peptide Immunofocusing. ACS NANO 2024; 18:20083-20100. [PMID: 39041587 PMCID: PMC11308774 DOI: 10.1021/acsnano.4c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Protein nanoparticles are effective platforms for antigen presentation and targeting effector immune cells in vaccine development. Encapsulins are a class of protein-based microbial nanocompartments that self-assemble into icosahedral structures with external diameters ranging from 24 to 42 nm. Encapsulins from Myxococcus xanthus were designed to package bacterial RNA when produced in E. coli and were shown to have immunogenic and self-adjuvanting properties enhanced by this RNA. We genetically incorporated a 20-mer peptide derived from a mutant strain of the SARS-CoV-2 receptor binding domain (RBD) into the encapsulin protomeric coat protein for presentation on the exterior surface of the particle, inducing the formation of several nonicosahedral structures that were characterized by cryogenic electron microscopy. This immunogen elicited conformationally relevant humoral responses to the SARS-CoV-2 RBD. Immunological recognition was enhanced when the same peptide was presented in a heterologous prime/boost vaccination strategy using the engineered encapsulin and a previously reported variant of the PP7 virus-like particle, leading to the development of a selective antibody response against a SARS-CoV-2 RBD point mutant. While generating epitope-focused antibody responses is an interplay between inherent vaccine properties and B/T cells, here we demonstrate the use of orthogonal nanoparticles to fine-tune the control of epitope focusing.
Collapse
Affiliation(s)
- Sonia Bhattacharya
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Matthew C. Jenkins
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Parisa Keshavarz-Joud
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Alisyn Retos Bourque
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Keiyana White
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Amina Maria Alvarez Barkane
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton V. Bryksin
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carolina Hernandez
- New
York Structural Biology Center, New York, New York 10027, United States
| | - Mykhailo Kopylov
- New
York Structural Biology Center, New York, New York 10027, United States
| | - M.G. Finn
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| |
Collapse
|
3
|
Liu X, Ding Y, Shen Y, Liu S, Liu Y, Wang Y, Wang S, Gualerzi CO, Fabbretti A, Guan L, Kong L, Zhang H, Ma H, He C. Prokaryotic Expression and Functional Verification of Antimicrobial Peptide LR GG. Int J Mol Sci 2024; 25:7072. [PMID: 39000180 PMCID: PMC11241267 DOI: 10.3390/ijms25137072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The antimicrobial peptide LRGG (LLRLLRRGGRRLLRLL-NH2) was designed and chemically synthesized in a study conducted by Jia et al. Gram-negative bacteria were found to be sensitive to LRGG and exhibited a high therapeutic index. Genetic engineering methods were used to create the prokaryotic fusion expression vector pQE-GFP-LRGG, and the resulting corresponding fusion protein GFP-LRGG was subsequently expressed and purified. The precursor GFP was then removed by TEV proteolysis, and pure LRGG was obtained after another round of purification and endotoxin removal. The prokaryotic-expressed antimicrobial peptide LRGG displays a broad-spectrum antibacterial effect on Gram-negative bacteria, and its minimum inhibitory activity (MIC) against Escherichia coli can reach 2 μg/mL. Compared to the chemically synthesized LRGG, the prokaryotic-expressed LRGG exhibits similar temperature, pH, salt ion, serum stability, and cell selectivity. Furthermore, prokaryotic-expressed LRGG showed excellent therapeutic effects in both the infection model of cell selectivity and no embryotoxicity in a Galleria mellonella infection model. The mechanism by which LRGG causes bacterial death was found to be the disruption of the Gram-negative cell membrane.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yining Ding
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yuhan Shen
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Sizhuo Liu
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yuehua Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Yuting Wang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Shikun Wang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | | | - Attilio Fabbretti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Lili Guan
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Lingcong Kong
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Haipeng Zhang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Hongxia Ma
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Chengguang He
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| |
Collapse
|
4
|
Van de Steen A, Wilkinson HC, Dalby PA, Frank S. Encapsulation of Transketolase into In Vitro-Assembled Protein Nanocompartments Improves Thermal Stability. ACS APPLIED BIO MATERIALS 2024; 7:3660-3674. [PMID: 38835217 PMCID: PMC11190991 DOI: 10.1021/acsabm.3c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Protein compartments offer definitive structures with a large potential design space that are of particular interest for green chemistry and therapeutic applications. One family of protein compartments, encapsulins, are simple prokaryotic nanocompartments that self-assemble from a single monomer into selectively permeable cages of between 18 and 42 nm. Over the past decade, encapsulins have been developed for a diverse application portfolio utilizing their defined cargo loading mechanisms and repetitive surface display. Although it has been demonstrated that encapsulation of non-native cargo proteins provides protection from protease activity, the thermal effects arising from enclosing cargo within encapsulins remain poorly understood. This study aimed to establish a methodology for loading a reporter protein into thermostable encapsulins to determine the resulting stability change of the cargo. Building on previous in vitro reassembly studies, we first investigated the effectiveness of in vitro reassembly and cargo-loading of two size classes of encapsulins Thermotoga maritima T = 1 and Myxococcus xanthus T = 3, using superfolder Green Fluorescent Protein. We show that the empty T. maritima capsid reassembles with higher yield than the M. xanthus capsid and that in vitro loading promotes the formation of the M. xanthus T = 3 capsid form over the T = 1 form, while overloading with cargo results in malformed T. maritima T = 1 encapsulins. For the stability study, a Förster resonance energy transfer (FRET)-probed industrially relevant enzyme cargo, transketolase, was then loaded into the T. maritima encapsulin. Our results show that site-specific orthogonal FRET labels can reveal changes in thermal unfolding of encapsulated cargo, suggesting that in vitro loading of transketolase into the T. maritima T = 1 encapsulin shell increases the thermal stability of the enzyme. This work supports the move toward fully harnessing structural, spatial, and functional control of in vitro assembled encapsulins with applications in cargo stabilization.
Collapse
Affiliation(s)
| | | | - Paul A. Dalby
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, U.K.
| | - Stefanie Frank
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, U.K.
| |
Collapse
|
5
|
Bhattacharya S, Jenkins MC, Keshavarz-Joud P, Bourque AR, White K, Alvarez Barkane AM, Bryksin AV, Hernandez C, Kopylov M, Finn MG. Heterologous Prime-Boost with Immunologically Orthogonal Protein Nanoparticles for Peptide Immunofocusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581861. [PMID: 38464232 PMCID: PMC10925081 DOI: 10.1101/2024.02.24.581861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Protein nanoparticles are effective platforms for antigen presentation and targeting effector immune cells in vaccine development. Encapsulins are a class of protein-based microbial nanocompartments that self-assemble into icosahedral structures with external diameters ranging from 24 to 42 nm. Encapsulins from Mxyococcus xanthus were designed to package bacterial RNA when produced in E. coli and were shown to have immunogenic and self-adjuvanting properties enhanced by this RNA. We genetically incorporated a 20-mer peptide derived from a mutant strain of the SARS-CoV-2 receptor binding domain (RBD) into the encapsulin protomeric coat protein for presentation on the exterior surface of the particle. This immunogen elicited conformationally-relevant humoral responses to the SARS-CoV-2 RBD. Immunological recognition was enhanced when the same peptide was presented in a heterologous prime/boost vaccination strategy using the engineered encapsulin and a previously reported variant of the PP7 virus-like particle, leading to the development of a selective antibody response against a SARS-CoV-2 RBD point mutant. While generating epitope-focused antibody responses is an interplay between inherent vaccine properties and B/T cells, here we demonstrate the use of orthogonal nanoparticles to fine-tune the control of epitope focusing.
Collapse
Affiliation(s)
- Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew C Jenkins
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Parisa Keshavarz-Joud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alisyn Retos Bourque
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Keiyana White
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amina M Alvarez Barkane
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anton V Bryksin
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Mykhailo Kopylov
- New York Structural Biology Center, New York, New York, 10027, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Quinton AR, McDowell HB, Hoiczyk E. Encapsulins: Nanotechnology's future in a shell. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:1-48. [PMID: 38783722 DOI: 10.1016/bs.aambs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Encapsulins, virus capsid-like bacterial nanocompartments have emerged as promising tools in medicine, imaging, and material sciences. Recent work has shown that these protein-bound icosahedral 'organelles' possess distinct properties that make them exceptionally usable for nanotechnology applications. A key factor contributing to their appeal is their ability to self-assemble, coupled with their capacity to encapsulate a wide range of cargos. Their genetic manipulability, stability, biocompatibility, and nano-size further enhance their utility, offering outstanding possibilities for practical biotechnology applications. In particular, their amenability to engineering has led to their extensive modification, including the packaging of non-native cargos and the utilization of the shell surface for displaying immunogenic or targeting proteins and peptides. This inherent versatility, combined with the ease of expressing encapsulins in heterologous hosts, promises to provide broad usability. Although mostly not yet commercialized, encapsulins have started to demonstrate their vast potential for biotechnology, from drug delivery to biofuel production and the synthesis of valuable inorganic materials. In this review, we will initially discuss the structure, function and diversity of encapsulins, which form the basis for these emerging applications, before reviewing ongoing practical uses and highlighting promising applications in medicine, engineering and environmental sciences.
Collapse
Affiliation(s)
- Amy Ruth Quinton
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Harry Benjamin McDowell
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Egbert Hoiczyk
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
7
|
Abstract
Encapsulins are a recently discovered class of prokaryotic self-assembling icosahedral protein nanocompartments measuring between 24 and 42 nm in diameter, capable of selectively encapsulating dedicated cargo proteins in vivo. They have been classified into four families based on sequence identity and operon structure, and thousands of encapsulin systems have recently been computationally identified across a wide range of bacterial and archaeal phyla. Cargo encapsulation is mediated by the presence of specific targeting motifs found in all native cargo proteins that interact with the interior surface of the encapsulin shell during self-assembly. Short C-terminal targeting peptides (TPs) are well documented in Family 1 encapsulins, while more recently, larger N-terminal targeting domains (TDs) have been discovered in Family 2. The modular nature of TPs and their facile genetic fusion to non-native cargo proteins of interest has made cargo encapsulation, both in vivo and in vitro, readily exploitable and has therefore resulted in a range of rationally engineered nano-compartmentalization systems. This review summarizes current knowledge on cargo protein encapsulation within encapsulins and highlights select studies that utilize TP fusions to non-native cargo in creative and useful ways.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Robert Benisch
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Michel-Souzy S, Cornelissen JJLM. Modification and Production of Encapsulin. Methods Mol Biol 2023; 2671:157-169. [PMID: 37308645 DOI: 10.1007/978-1-0716-3222-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Encapsulins are a class of protein nanocages that are found in bacteria, which are easy to produce and engineer in E. coli expression systems. The encapsulin from Thermotoga maritima (Tm) is well studied, its structure is available, and without modification it is barely taken up by cells, making it promising candidates for targeted drug delivery. In recent years, encapsulins are engineered and studied for potential use as drug delivery carriers, imaging agents, and as nanoreactors. Consequently, it is important to be able to modify the surface of these encapsulins, for example, by inserting a peptide sequence for targeting or other functions. Ideally, this is combined with high production yields and straightforward purification methods. In this chapter, we describe a method to genetically modify the surface of Tm and Brevibacterium linens (Bl) encapsulins, as model systems, to purify them and characterize the obtain nanocages.
Collapse
Affiliation(s)
- Sandra Michel-Souzy
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.
| | - Jeroen J L M Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
9
|
Kwon S, Giessen TW. Engineered Protein Nanocages for Concurrent RNA and Protein Packaging In Vivo. ACS Synth Biol 2022; 11:3504-3515. [PMID: 36170610 PMCID: PMC9944510 DOI: 10.1021/acssynbio.2c00391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein nanocages have emerged as an important engineering platform for biotechnological and biomedical applications. Among naturally occurring protein cages, encapsulin nanocompartments have recently gained prominence due to their favorable physico-chemical properties, ease of shell modification, and highly efficient and selective intrinsic protein packaging capabilities. Here, we expand encapsulin function by designing and characterizing encapsulins for concurrent RNA and protein encapsulation in vivo. Our strategy is based on modifying encapsulin shells with nucleic acid-binding peptides without disrupting the native protein packaging mechanism. We show that our engineered encapsulins reliably self-assemble in vivo, are capable of efficient size-selective in vivo RNA packaging, can simultaneously load multiple functional RNAs, and can be used for concurrent in vivo packaging of RNA and protein. Our engineered encapsulation platform has potential for codelivery of therapeutic RNAs and proteins to elicit synergistic effects and as a modular tool for other biotechnological applications.
Collapse
Affiliation(s)
- Seokmu Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tobias W. Giessen
- Department of Biological Chemistry and Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
11
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Michel-Souzy S, Hamelmann NM, Zarzuela-Pura S, Paulusse JMJ, Cornelissen JJLM. Introduction of Surface Loops as a Tool for Encapsulin Functionalization. Biomacromolecules 2021; 22:5234-5242. [PMID: 34747611 PMCID: PMC8672354 DOI: 10.1021/acs.biomac.1c01156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Encapsulin-based
protein cages are nanoparticles with potential
biomedical applications, such as targeted drug delivery or imaging.
These particles are biocompatible and can be produced in bacteria,
allowing large-scale production and protein engineering. In order
to use these bacterial nanocages in different applications, it is
important to further explore their surface modification and optimize
their production. In this study, we design and show new surface modifications
of Thermotoga maritima (Tm) and Brevibacterium linens (Bl) encapsulins. Two new loops
on the Tm encapsulin with a His-tag insertion after residue 64 and
residue 127 and the modification of the C-terminus on the Bl encapsulin
are reported. The multimodification of the Tm encapsulin enables up
to 240 functionalities on the cage surface, resulting from four potential
modifications per protein subunit. We further report an improved production
protocol giving a better stability and good production yield of the
cages. Finally, we tested the stability of different encapsulin variants
over a year, and the results show a difference in stability arising
from the tag insertion position. These first insights in the structure–property
relationship of encapsulins, with respect to the position of a functional
loop, allow for further study of the use of these protein nanocages
in biomedical applications.
Collapse
Affiliation(s)
- Sandra Michel-Souzy
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sara Zarzuela-Pura
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Jeroen J L M Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
13
|
Almeida AV, Carvalho AJ, Pereira AS. Encapsulin nanocages: Protein encapsulation and iron sequestration. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Goel D, Sinha S. Naturally occurring protein nano compartments: basic structure, function, and genetic engineering. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac2c93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Abstract
Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter - too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller-sized nanocompartments have therefore been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments, the prospects for applications as well as open question and challenges that need to be addressed to fully understand these important structures.
Collapse
|
16
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
17
|
Rodríguez JM, Allende-Ballestero C, Cornelissen JJLM, Castón JR. Nanotechnological Applications Based on Bacterial Encapsulins. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1467. [PMID: 34206092 PMCID: PMC8229669 DOI: 10.3390/nano11061467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Encapsulins are proteinaceous nanocontainers, constructed by a single species of shell protein that self-assemble into 20-40 nm icosahedral particles. Encapsulins are structurally similar to the capsids of viruses of the HK97-like lineage, to which they are evolutionarily related. Nearly all these nanocontainers encase a single oligomeric protein that defines the physiological role of the complex, although a few encapsulate several activities within a single particle. Encapsulins are abundant in bacteria and archaea, in which they participate in regulation of oxidative stress, detoxification, and homeostasis of key chemical elements. These nanocontainers are physically robust, contain numerous pores that permit metabolite flux through the shell, and are very tolerant of genetic manipulation. There are natural mechanisms for efficient functionalization of the outer and inner shell surfaces, and for the in vivo and in vitro internalization of heterologous proteins. These characteristics render encapsulin an excellent platform for the development of biotechnological applications. Here we provide an overview of current knowledge of encapsulin systems, summarize the remarkable toolbox developed by researchers in this field, and discuss recent advances in the biomedical and bioengineering applications of encapsulins.
Collapse
Affiliation(s)
- Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
| | - Carolina Allende-Ballestero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
| | - Jeroen J. L. M. Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
18
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Jones JA, Giessen TW. Advances in encapsulin nanocompartment biology and engineering. Biotechnol Bioeng 2020; 118:491-505. [PMID: 32918485 DOI: 10.1002/bit.27564] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization is an essential feature of all cells. It allows cells to segregate and coordinate physiological functions in a controlled and ordered manner. Different mechanisms of compartmentalization exist, with the most relevant to prokaryotes being encapsulation via self-assembling protein-based compartments. One widespread example of such is that of encapsulins-cage-like protein nanocompartments able to compartmentalize specific reactions, pathways, and processes in bacteria and archaea. While still relatively nascent bioengineering tools, encapsulins exhibit many promising characteristics, including a number of defined compartment sizes ranging from 24 to 42 nm, straightforward expression, the ability to self-assemble via the Hong Kong 97-like fold, marked physical robustness, and internal and external handles primed for rational genetic and molecular manipulation. Moreover, encapsulins allow for facile and specific encapsulation of native or heterologous cargo proteins via naturally or rationally fused targeting peptide sequences. Taken together, the attributes of encapsulins promise substantial customizability and broad usability. This review discusses recent advances in employing engineered encapsulins across various fields, from their use as bionanoreactors to targeted delivery systems and beyond. A special focus will be provided on the rational engineering of encapsulin systems and their potential promise as biomolecular research tools.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Tobias W Giessen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|